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Simple Summary: Bovine mastitis is one of the most common diseases in cattle farms in Russia.
In this work we investigate a microbial composition of milk samples collected from farms of Russian
Central Region. Our data revealed significant dominance of several operational taxonomic units
corresponding mostly to groups of Staphylococcus aureus, Aerococcus spp. and Streptococcus spp. We
identify interesting fact of Staphylococcus and Aerococcus genera seemed to be antagonistic to each
other, and the disappearance of the Aerococcus genus in milk microbiota may represent a marker for
its transition to a subclinical stage of mastitis.

Abstract: Bovine mastitis is a widespread infectious disease. In addition to the economic damages
associated with reduced milk yield due to mastitis, the problem of food contamination by microor-
ganism metabolites, in particular toxins, is also a concern. Horizontal transfer of microorganisms
from animal populations to humans can also be complicated by antibiotic resistance. Therefore,
bovine mastitis is relevant to the study of microbiology and veterinary medicine. In this study, we
investigated the microbiome of milk samples from healthy cows and cows with different forms of
mastitis from individual quarters of the udder of cows during first and second lactation. Total DNA
was extracted from milk samples. The V3–V4 regions of the bacterial 16S rRNA genes from each
sample were amplified to generate a library via high-throughput sequencing. We revealed signifi-
cant dominance of several operational taxonomic units (OTUs) corresponding mostly to groups of
Staphylococcus aureus, Aerococcus spp., and Streptococcus spp. In addition, we unexpectedly identified
Streptococcus thermophilus in samples with high SCC quantities. We found some infectious agents
that characterized summer mastitis. We demonstrated that in Central Russia, mastitis is associated
with a wide variety of causal organisms. We observed some differences in the diversity of the two
investigated farms. However, we did not find any significant difference among healthy, mastitis and
subclinical samples according to their SCC status from either farms by principal component analysis.
Linear discriminant analysis effect size (LEfSe) confirmed the presence of several indicator genera in
farms from Moscow and the Tula Region. These results confirm the complex bacterial etiology of
bovine mastitis.
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1. Introduction

Bovine mastitis is one of the most economically important diseases in cattle [1]. Masti-
tis is an inflammatory disease of the mammary glands and similar to all other host-pathogen
related diseases, has its own signature of microbiota composition [2]. Several studies has
demonstrated that it is not possible to exclude transmission from animal to human [3–7],
and dissemination of milk of pathogenic microorganisms may colonize both animals and
humans, causing secondary diseases [8,9]. Another important aspect of this disease is the
probable presence of toxins in milk produced by the pathogens, as many bacterial toxins
are known to facilitate allergy development [10–13]. A number of studies have attempted
to identify the primary cause of mastitis and the major microbial pathogen by analysis of
microbiota from healthy animal milk compared to milk from animals with various forms
and stages of mastitis [14–21]. Further, mastitis may depend on the season, so summer
mastitis may be associated with microbiota transmitted from insects. In winter, mastitis
can be caused by hypothermia and use of various mats. Injuries of the udder are another
important factor in mastitis [22–24].

Interactions between multicellular host organisms and microbiota that colonize vari-
ous parts of the host organism are currently an actively investigated topic. There is a quest
for symbiotic microorganisms that are able to provide protection from various pathogens.
Classic culture methods have shown a connection between particular bacterial species and
the onset of mastitis. Recently developed omics methods are currently in use for expanding
the list of such species and identifying their physiological state [25,26].

The aim of this study was to quantitatively analyze the milk microbiota from healthy
animals and animals with various forms and stages of mastitis in farms of Central Russia.
In the present work, we investigated bovine milk microbiomes on two farms in different
regions (Moscow and the Tula Regions).

2. Materials and Methods
2.1. Sample Collection

Milk samples were collected from Holsteinized black-and-white breed cows from two
farms (Moscow and Tula regions) of Central Russia from June to August. Samples were
taken 60-70 days after calving from each quarter of the udder separately. Examination of the
general condition of the animal by using veterinary medicine methods the mammary gland
and inguinal lymph nodes was carried out. To diagnose latent mastitis on a farm, tests of
milk samples with dimastin were conducted. Cows had first or second lactation, animals of
the same age and lactation were selected. Samples were collected after milking into sterile
tubes in compliance with aseptic rules. Classical hygienic procedures included cleaning
of teats with an individual paper towel before milking and post milking teat dipping in
0.5% solution of chloramine, after which the udder was dried with an individual paper
napkin. All samples were transported to the laboratory under refrigeration (4–8 ◦C) in cool
boxes with ice packs. Analysis of somatic cells was performed by the express method on a
Somacount 150 (Bentley Instruments Inc., Chaska, MN, USA) analyzer. According to the
veterinary data and the number of quarter somatic cell count (QSCC), all samples were
divided into three groups of mastitis form: healthy (H) with QSCC up to 100,000/cm3;
mastitic (M) with QSCC over 500,000/cm3, and subclinical (S) the remaining samples. In
order to select the most healthy samples we specially lowered the SCC threshold to 100,000.
Salt meat broth (HiMedia Laboratories Pvt., Ltd., Mumbai, India) was inoculated with the
milk samples at a ratio of 1:9 and stored at 37 ◦C for 18–24 h. Internationally recognized
traditional phenotypic methods, such as Gram-stained colony microscopy, growth in Baird–
Parker agar (HiMedia Laboratories Pvt., Ltd.), hemolysis on azide blood agar Pronadisa
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(Condalab, Madrid, Spain), plasma coagulation, and biochemical identification, were
applied to all the isolates. Therefore, 53 milk samples from 31 cows were ultimately used
for this study: 18 samples (8 from Moscow rand 10 from Tula regions) derived from
clinically healthy, culture negative quarters with an SCC of less than 100,000 cells/cm3

(group 1, (H) healthy); 24 samples (13 from Moscow and 11 from Tula regions) derived
from clinical mastitis quarters (group 2, (M) clinical); and 11 samples (5 from Moscow
and 6 from Tula regions) derived from clinically healthy quarters with an SCC 100,000–
500,000 cells/cm3 (group 3, (S) subclinical). Additional data about milk samples descriptive
characteristics can be found in Table S1.

2.2. DNA Extraction and Sequence Library Preparation

Milk aliquots from Tula and MR farms were kept frozen at−70 ◦C until DNA isolation
procedure. The extraction of DNA from milk samples of both datasets was performed by the
same researchers’ team in the same laboratory in a laminar flow cabinet using Milk Bacterial
DNA Isolation Kit (Norgen Biotek, Thorold, ON, Canada) according to the manufacturer’s
instructions. DNA was subsequently used as a template for polymerase chain reaction.
The V3–V4 regions of the bacterial 16S rRNA gene from each sample was amplified using a
universal primer set (16S Amplicon PCR Forward Primer = 5′-CCTACGGGNGGCWGCAG;
16S Amplicon PCR Reverse Primer = 5′-GACTACHVGGGTATCTAATCC) with correspond-
ing Illumina (Illumina Inc., San Diego, CA, USA) overhang adapters. The KAPA HiFi
HotStart DNA Polymerase was used for the DNA amplification. After quantification
and purification of the PCR products, a sequencing library was generated using the 16S
Metagenomic Sequencing Library Preparation protocol. Finally, the library was sequenced
using a MiSeq 2 × 250.

2.3. Bioinformatics Analysis

Generated sequences were processed using the Nephele platform [27], and sequence
quality was confirmed with the FastQC toolkit (Babraham Bioinformatics, Cambridge,
UK) [28]. The #6494pp sample did not pass quality control and was excluded from further
manipulations. Operational taxonomic units (OTUs) were characterized by matching to
the SILVA dataset of 16S rRNA sequences [29]. Reads were subsequently mapped back to
OTUs to determine OTU abundance for each sample, and differences in the community
composition/structure in each sample were analyzed with the Quantitative Insights Into
Microbial Ecology (QIIME) package [30].

Diversity was assessed by calculating the Shannon diversity metric, the Chao1 es-
timate of diversity, and the number of observed species for each sample at various
sequencing depths.

Beta diversity estimates were calculated using weighted and unweighted UniFrac
distances between samples [31].

Linear discriminant analysis (LDA) effect size (LEfSe) [32] available at
https://huttenhower.sph.harvard.edu/galaxy (date accessed 1 March 2021) was used
to assess microbial compositional differences between the two groups of samples at the
genus or higher taxonomic level.

3. Results
3.1. Taxonomic Profile

To profile the milk microbiome, pools of 16S amplicons were processed to remove
low-quality reads, chimeras, and samples with a low depth of coverage. The resultant
dataset of 2,870,927 high-quality reads (median reads per sample = 60,413) was rarified to
an even depth of 10,885 reads and binned into OTUs at 97% sequence identity. We observed
OTUs from 16 bacterial phyla with an average relative abundance of above 0.1%, and six
of these phyla (Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, Tenericutes, and
Fusobacteria) collectively accounted for more than 97% of all sequencing reads (Figure 1).

https://huttenhower.sph.harvard.edu/galaxy
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Figure 1. The relative abundance of major bacterial phyla present in milk samples.

Core microbiome analysis identified most abundant bacterial genera, including Staphy-
lococcus, Aerococcus, Streptococcus, Enterobacter, Macrococcus, Corynebacterium, Acinetobacter,
Psychrobacter, Ignavigranum, and Atopostipes (Figure 2). Many of these dominant core mi-
crobiome genera belonged to Firmicutes (especially Bacilli), as well as to Proteobacteria
and Actinobacteria.

All milk samples analyzed here revealed great microbial diversity, regardless of their
SCC status. In our samples, Staphylococcus spp. and Streptococcus spp. were among the
most prevalent genera in all groups. The clinical mastitis group included animals with
decreased appetite, depression of the general condition, if at least one quarter of the udder
is swollen, affected, enlarged, has compaction, there are clots during milking and pus
admixtures, also a positive test with dimastin (analogue of California mastitis test).

In particular, S. aureus was found in all three groups examined. In M samples, its
highest abundance varied from 41.19 to 95.82%, while in S samples it did not typically
exceed 8.92% (in one sample (#7478lp) it was 20.88%), and in H samples with predominating
S. aureus, these values were in the range of 21.0 to 91.15%.

Sequences belonging to the Streptococcus genus were abundant only in samples derived
from quarters that had an SCC greater than 430,000 cells/mL, and S. pyogenes (90.88%)
was likely associated with clinical mastitis in at least one case (#7029pp). Interestingly, the
nonpathogenic S. thermophilus is not a causative agent for infection, but this species was
detected in large amounts (up to 96.37%) only in milk samples derived from quarters with
clinical mastitis.

Acinetobacter sp. was detected in most subclinical and clinical mastitis milk samples,
except for those with predominating Staphylococcus spp. and Streptococcus spp. Other possi-
ble causative agents for subclinical mastitis could be Streptococcus spp. (93.95%, #7197pl),
Enterobacter sp. (59.32%, #7029zl), and Macrococcus sp. (60.26%, #7284pp). Additionally, one
case of clinical mastitis (#7211pp) was presumably associated with the predominance of
Mycoplasma spp. (40.09%).
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Species level analysis indicated that Aerococcus spp. was the most prevalent genus in
44% of our healthy milk samples.

Sequences representing Atopostipes and Oligella species were found in relatively high
quantities (up to 7.09% and 32.8%, correspondingly) only in milk samples derived from the
Moscow region. These species were almost absent in Tula milk samples, except for one S
sample (#7021pp) with both Atopostipes (6.2%) and Oligella (6.38%) spp. detected.

Corynebacteria were represented in the most milk samples, but notably, larger amounts
of Corynebacterium (up to 35.76%) were detected in samples derived from Moscow region
cows with second lactation, with greater than 68% of them exhibiting >10%
Corynebacterium sequences.

3.2. Diversity Analysis
3.2.1. Alpha Diversity

The alpha diversity of milk microbial communities was assessed by calculating Chao1
and Shannon indices (Figure 3A,B). The Shannon index is a nonparametric diversity index
that combines estimates of richness (the total number of OTUs) and evenness (the relative
abundance of OTUs). For example, communities with one dominant species have a low
index, whereas communities with a more even distribution have a higher index. Chao1 is
a nonparametric estimator of the minimum richness (number of OTUs) and is based on
the number of rare OTUs (singletons and doublets) within a sample. The median value
is represented as the center line of each box, while the lower and upper limits of the box
represent the 25th and 75th quantiles, respectively. Error bars extend to the last data point
within the ×.
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We analyzed diversity and evenness in three groups (H, M, and S) and in two sites
(Moscow and Tula). Both metrics showed differences between H, M, and S groups, as well
as groups from Tula and Moscow regions.

3.2.2. Beta Diversity

Homogeneity of multivariate dispersion (PERMDISP2) was run using Bray–Curtis
distances to assess if differences in heterogeneity existed among the samples based on
different factors. As shown in Figure 4A, there was no clear separation of milk samples
from groups within the plots. The distribution of milk samples from group M revealed an
overlap with groups H and S.

However, clustering of the milk samples based on their microbiota made it possible to
separate samples from Tula and Moscow regions (Figure 4B).

3.3. Discriminant Analysis

Rarefaction curves for each group of samples and for a cutoff value of 0.03 are pre-
sented in Figure S2. For LEfSe analysis, we took sequences with a depth > 50,000 reads and
number of observed OTUs > 1000 to avoid the very strong influence of sequences where
the minority of numbered OTUs are represented by the ultimate majority of total reads
(Figure 5).
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4. Discussion

Investigating the problem of mastitis and searching for causes of its development
remain relevant today. Omics technologies have been actively used in attempts to find a
solution to this problem. [33]. Understanding the causes of mastitis and its pathogens will
facilitate creation of preventive measures to reduce the incidence.

In the current work, we analyzed milk microbiotas associated with bovine mastitis in
Central Russia. Milk samples were provided from two farms located in two neighboring
regions of Central Russia but spaced approximately 200 km apart. We investigated milk
microbiomes of individual quarters of mammalian gland isolated from two farms in during
the summer.

We identified most abundant bacterial genera, including Staphylococcus, Aerococcus,
Streptococcus, Enterobacter, Macrococcus, Corynebacterium, Acinetobacter, Psychrobacter, Ignavi-
granum, and Atopostipes.

Determination of the most abundant OTUs shown that S. aureus was detected in all
types of milk samples (H, M, and S). S. aureus is a major intramammary pathogen associated
with mastitis, along with E. coli and Streptococcus uberis [15,19,34–37]. In previous work,
we demonstrated that an acute form of bovine mastitis in Russia during first and second
lactations is often characterized by the presence of Staphylococcus species in the milk
and Staphylococcus aureus in particular [38]. Moreover, in the current study, we detected
the presence of Staphylococcus aureus in huge quantities (21.0 to 91.15%) in five samples
from healthy quarters with QSCC < 100,000 cells/cm3. We explain this observation by
these conditionally healthy quarters actually belonging to animals with diagnosed clinical
mastitis. On the other hand, there are milk samples from mastitis quarters without evident
predominating species that could serve as causative agents. These results are consistent
with the suggestion that mastitis has a distinct etiology and that dysbacteriosis may be one
of the causes of this disease [39].

In addition in this work we specially lowered the SCC level for healthy quarters to
100,000 to analyze healthy samples. In previous works authors suggest that SCC level
varies depending on the mastitis pathogen [40]. In this direction, Grispoldi et al. in 2019 [41]
discovered the prevalence of S. aureus ranged from 40.74% in milk samples with SCC <
100,000. In addition Oikonomou et al. in 2014 [35] has demonstrated that Staphylococcus
spp. and Streptococcus spp. were among the most prevalent genera in all groups with high
and low SCC levels.

In this work we pay the special attention to the SCC level < 100,000 to analyze healthy
samples and conditionally healthy samples obtained from cows with higher SCC levels in
other quarter. As of today the low level of SCC values remains under discussion, different
authors consider different values [42].

Interestingly, Staphylococcus and Aerococcus genera seemed to be antagonistic to each
other, and the disappearance of the Aerococcus genus in milk microbiota may represent a
marker for its transition to a subclinical stage of mastitis. The replacement of Aerococcus
with opportunistic microorganisms is clearly visible when comparing healthy milk samples
to subclinical and clinical samples.

The next agent identified in this work was Corynebacterium. In recent studies by
Porcellato et al. [43] strong negative correlation of Corynebacteriaceae and Staphylococcacea
was detected. In contrast, early positive correlations with Staphylococcus were shown for
this genus [44]. Here, we did not identify a strong correlation, but most samples contained
sequences of Corynebacterium. Similar results on the association of Corynebacterium with
mastitis were reported in previous studies [34,45].

Medically relevant members of the genus Acinetobacter are being increasingly recog-
nized as a serious health hazard worldwide. In particular, Acinetobacter baumannii, a mem-
ber of the ESKAPE group of pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), is
a leading cause of nosocomial infections [46]. In our study, DNA from Acinetobacter sp.
was detected in 82% of subclinical and 74% of mastitic milk samples, except for those with
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predominating Staphylococcus spp. and Streptococcus spp. However, Pang et al. [45] have
shown that Acinetobacter is more prevalent in healthy group samples.

Streptococcus was the second dominant group in our work. This genus, including
S. uberis, S. agalactiae and S. dysgalactiae, is a typical mastitis associated pathogen [35,45,47].
However, in our work, we identified nonpathogenic S. thermophilus as a dominant organism
in three milk samples with high SCC level (>2,000,000). We speculate that this is due to the
ability of increasing somatic cells to stimulate growth of S. thermophilus [48].

The possible role of anaerobic bacteria Fusobacterium spp. and Porphyromonas spp. as
opportunistic pathogens in existing mastitis cases was discussed in previous studies [35,49].
In addition, several authors have shown that F. necrophorum may be associated with sum-
mer mastitis [50,51], which is in agreement with our period of milk sampling (from June
to August). Recently, Gu and coauthors have shown that Fusobacterium causes dysbio-
sis [52]. We show here that the prevalence of these microorganisms (17.49% and 16.31%,
respectively) may be associated with subclinical mastitis in sample #5895zp.

Moreover, one case of clinical mastitis (#7211pp) was presumably associated with the
predominance of Mycoplasma sp. (40.09%). Different species of Mycoplasma were deter-
mined to be mastitis-caused organisms, and M. bovis was the most prevalent. Mycoplasma
sp. stimulates apoptosis and inflammatory cytokine reactions [53] and is one of the reasons
for milking reductions [54].

Bovine milk microbiome analysis revealed strong variations between quarters, with
some quarters clearly dominated by one taxonomic unit, whereas others displayed a more
balanced profile. Similarly, a considerable difference in quarter microbiota from the same
cow was described in previous work [43] We show in our study that not only a single
group of pathogenic microorganisms but several pathogenic genera and species within
milk microbiota might be associated with subclinical and clinical bovine mastitis at the
same time within one general area of Central Russia.

Analyzing the microbial diversity of Moscow and Tula regions, we determined that
diversity of the Moscow region groups was higher than in the Tula groups.

Analyzing the diversity of H, M and S groups, we detected no significant difference
between the Shannon indices of groups M and S. However, the Shannon index of group
H was lower compared to previous studies reporting the richness and diversity of micro-
biota from healthy quarters as significantly higher compared to subclinical and clinical
samples [35,45].

We found some differences in OTU with respect to diversity between the farms.
Atopostipies and Oligella genera were detected only in the Moscow farm (except for one
S sample). Moreover, when comparing the two farms, Corynebacterum was detected in
large amounts in the Moscow farm and was associated with second lactation. As shown,
early Atopostipies was identified in both mastitis and healthy groups, whereas Corynebac-
terium was the most abundant genera in mastitic samples [45]. Moreover, Qadri et al.
demonstrated that C. piogenes is one causative organism for summer mastitis [55].

Despite the fact that Shannon and Chao1 indices for Moscow region milk samples
were higher than in milk samples from Tula, cooccurrence analysis revealed increase
marker families in Tula milk microbiomes in contrast to those from the Moscow region.
Bacillales, Enterobacteriaceae and Leptotrichiaceae were more prevalent in H Tula samples,
while Flavobacteriales, Planctomycetales, Pseudomonadales, and one group of unclassified
bacteria were more prevalent in M Tula samples. In the Moscow region, milk samples
LEfSe analysis revealed only one significant negative correlation between Xantomonadales
in the H group and Neisseriales in the M group.

5. Conclusions

We observed marked difference in certain dominant OTUs in milk samples that have
never been reported in related studies. Remarkably, alpha-diversity analysis revealed
that the richness and diversity of mastitis microbiota were higher than in healthy and
subclinical samples in contrast to previous reports. Beta-diversity analysis showed a clear
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separation of samples from Moscow and Tula region farms; however, healthy, mastitis and
subclinical samples were unable to be distinguished from one another. This indicates that
infection-causing agents have an uncertain nature and seem to be common in both farms.
We did not identify a significant amount of Escherichia coli OTU in either the Moscow or
Tula region farm, despite E. coli being assumed as one of the frequent inflammatory agents
in bovine mastitis. In contrast, other common mastitis causative agents, Staphylococcus and
Streptococcus spp., were widespread in both healthy and mastitis milk samples. Notably,
Streptococcus thermophilus was preferentially detected in milk samples with very high SCC
values. The comparison of OTU composition in milk samples revealed that Aerococcus
and Acinetobacter could serve as marker genera for healthy cows from the Moscow region
farm and in cows with mastitis from the Tula region farm, respectively. The role that
unidentified bacilli play in normal healthy microbiota remains unclear and requires further
investigation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani11051401/s1, Table S1: Descriptive characteristics of milk samples used in the study.
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