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SUMMARY

The duality of liquid-liquid phase separation (LLPS) of cellular components into membraneless 

organelles defines the nucleation of both normal and disease processes including stress 

granule (SG) assembly. From mounting evidence of LLPS utility by viruses, we discover that 

HIV-1 nucleocapsid (NC) protein condenses into zinc-finger (ZnF)-dependent LLPSs that are 

dynamically influenced by cytosolic factors. ZnF-dependent and Zinc (Zn2+)-chelation-sensitive 

NC-LLPS are formed in live cells. NC-Zn2+ ejection reverses the HIV-1 blockade on SG assembly, 

inhibits NC-SG assembly, disrupts NC/Gag-genomic RNA (vRNA) ribonucleoprotein complexes, 

and causes nuclear sequestration of NC and the vRNA, inhibiting Gag expression and virus 

release. NC ZnF mutagenesis eliminates the HIV-1 blockade of SG assembly and repositions 

vRNA to SGs. We find that NC-mediated, Zn2+-coordinated phase separation is conserved among 

diverse retrovirus subfamilies, illustrating that this exquisitely evolved Zn2+-dependent feature of 

virus replication represents a critical target for pan-antiretroviral therapies.

Graphical Abstract

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Correspondence: anne.monette@mail.mcgill.ca (A.M.), andrew.mouland@mcgill.ca (A.J.M.).
AUTHOR CONTRIBUTIONS
A.M. and A.J.M. conceived of the study; A.M., M.N., S.R., and L.C. performed experiments; R.J.G. generated all recombinant 
retroviral NC proteins and provided key resources; A.J.M. and R.J.G. secured funding; A.M. and A.J.M. drafted the manuscript; and 
all authors revised and edited final version.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.celrep.2020.03.084.

DECLARATION OF INTERESTS
The authors declare no competing interests.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2022 March 30.

Published in final edited form as:
Cell Rep. 2020 April 21; 31(3): 107520. doi:10.1016/j.celrep.2020.03.084.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


In Brief

Monette et al. discover a high degree of conservation of zinc-finger embedded, intrinsically 

disordered prion-like domains across retrovirus Gag proteins. These domains within the Gag 

Nucleocapsid regulate the formation of zinc-dependent liquid-liquid phase condensates and stress 

granules in HIV-1-expressing cells to induce repositioning of the viral genomic RNA.

INTRODUCTION

Eukaryotic cells have liquid-like but spatially organized, membraneless compartments such 

as stress granules (SGs), P bodies (PBs), and nucleoli, enriched in multivalent proteins 

having disordered and modular domains, and which are concentrated away from the aqueous 

environment by a process called liquid-liquid phase separation (LLPS) (Ambadipudi et al., 

2017; Bergeron-Sandoval et al., 2016). Phase separation initiates LLPS and is emerging 

as one of the underlying principles of cell organization governing cell function and 

survival (Uversky, 2017), such that protective SGs assemble in response to environmental 

and genotoxic stressors (Franzmann and Alberti, 2019; Kroschwald and Alberti, 2017). 

Following stress withdrawal, LLPS and SGs rapidly disassemble, and are thus centers of 

exquisite control in normal cell physiology.

Viruses depend on an exhaustive array of host cell components and like liquid droplets 

(Camus et al., 2013), LLPSs represent ideal platforms for many virus replication stages 

(Alenquer et al., 2019; Heinrich et al., 2018; Liu et al., 2014; Nikolic et al., 2017). In 

addition to co-opting cellular proteins, LLPS may promote proximity-dependent interactions 
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and the assembly of viral factories for virus expression (Nikolic et al., 2017; Novoa et al., 

2005). Numerous viruses, however, inhibit SG assembly to evade the inherently antiviral 

nature of these ribonucleoprotein assemblies required for protein synthesis (Poblete-Durán 

et al., 2016). SG blockade by viruses is achieved by modification, cleavage, sequestering, 

or redistribution of SG-proteins and translation initiation factors (Zhang et al., 2019). 

HIV-1 has evolved multiple mechanisms to block the assembly of canonical and non-

canonical SGs. For example, HIV-1 blocks SG assembly induced by heavy metals as 

well as SG assembly induced by the expression of key SG-inducing proteins, G3BP1 

and TIAR (Valiente-Echeverría et al., 2014). HIV-1 achieves this blockade via interactions 

between the viral structural precursor polyprotein (pr55Gag), and several host factors such 

as eukaryotic elongation factor 2, G3BP1, Cyclophilin A, and eIF4E (Cinti et al., 2016; 

Valiente-Echeverría et al., 2014). A single point mutation, in fact, in the C-terminal 

capsid (CA) domain of pr55Gag, prevents host factor binding and disables the blockade 

to SG assembly, likely by changing the conformation of this pr55Gag domain (Valiente-

Echeverría et al., 2014). Complete regulation of this mechanism is increasingly puzzling 

from demonstrations that the nucleocapsid (NC) domain of pr55Gag promotes Gag- and 

CA-resistant SGs (Rao et al., 2018), and suggests that an equilibrium exists between SG 

assembly and disassembly during HIV-1 replication.

NC is among the viral protease (PR) cleavage products generated from pr55Gag, also 

yielding matrix (MA) and capsid (CA) proteins. This 55-amino acid (7-kDa) protein is a 

major component of infectious virus cores, with ~2,000 HIV-1 NC molecules coating the 

dimeric, viral genomic RNA (vRNA) (Darlix et al., 1995). NC has two zinc-coordinating 

finger (ZnF) domains in CCHC conformation controlling several steps of retroviral 

replication from transcription to vRNA selection for packaging (Muriaux and Darlix, 2010). 

The highly conserved amino acids essential for the many functions of retroviral NC ZnFs, 

along with their inability to produce viable escape mutants from drug targeting, poise them 

as ideal therapeutic targets (Goebel et al., 2001; Rice et al., 1995, 1997b).

NC is characterized as a nucleic acid chaperone from its ZnF-dependent roles in nucleic 

acid binding (single-stranded DNA and RNA), condensing, annealing, and strand transfer 

(Muriaux and Darlix, 2010). It localizes to the cytoplasm, and to the nucleus on account 

of its nuclear localization signals (Anton et al., 2015; Lochmann et al., 2013). Like NC, 

other cellular RNA-binding proteins and chaperones (e.g., G3BP1, TIAR, TIA-1, DDX6, 

TDP-43, FUS/TLS, and hnRNPs) are SG and PB components (Kedersha et al., 2016; 

Poblete-Durán et al., 2016), may be Zn2+-regulated (Garnier et al., 2017; Rayman et al., 

2018), and form LLPSs due to their low-complexity, intrinsically disordered prion-like 

domains (PrLDs) (Kedersha et al., 2016; Maharana et al., 2018). The entire NC is a PrLD at 

the C terminus of pr55Gag, where NC exerts its functions via its ZnFs (Darlix et al., 2011; 

Dick and Vogt, 2014). Retroviral HIV-1, SIV, and MuLV NCs are also important for virion 

structure, whereby NC-mutated virions are immature and have aberrant particle morphology 

(Cimarelli et al., 2000; Muriaux et al., 2004; Tanchou et al., 1998; Yovandich et al., 2001). 

Rabies virus (RABV), vesicular stomatitis virus (VSV), Ebola, and measles virus proteins 

have PrLDs and use LLPS mechanisms for host-defense shielding replication dynamics in 

membraneless inclusions within viroplasms (Heinrich et al., 2018; Nikolic et al., 2017).
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From demonstrations that other viral proteins form LLPS, and from shared similarities 

that NC has with other proteins that bind RNA, possess PrLDs, and induce SG assembly 

and LLPS, we investigated the possibility that NC function may be triggered by its ability 

to phase separate. We performed biochemical and cellular experiments to show that NC 

condenses into LLPSs in vitro and in living cells. NC-LLPSs displayed fundamental 

properties of a liquid phase, including a spherical shape from surface tension, an 

ability to fuse and separate, and rapid internal and cellular diffusion (Heinrich et al., 

2018). We observed that NC-LLPS and the HIV-1 blockade to SG assembly are ZnF-

dependent, blocked by NC ZnF mutagenesis or Zn2+ chelation, to promote aberrant 

cellular localization of NC, Gag, and the vRNA, retention of Gag, and reduced virus 

production. In silico methods mapped conserved Gag protein PrLD and ZnF positioning 

across retroviruses. We demonstrated that both HIV-1 Gag and NC from several retroviral 

subfamily members undergo Zn2+-dependent LLPS. Finally, we have observed that NC is 

generated in cells by PR. Our results point to a pan-retrovirus NC-specific, membraneless, 

LLPS mechanism nucleating virus assembly, and controlled by reversible, Zn2+-dependent 

secondary structures supported by PrLDs. In this report, we provide insight on how Zn2+-

dependent NC-LLPSs promote vRNA trafficking, vRNA packaging, and virus release.

RESULTS

NC Condenses into ZnF-Dependent LLPSs Dynamically Regulated by the Cellular 
Environment

To establish that HIV-1 NC condensed into LLPSs, increasing concentrations of purified 

Zn2+-loaded and green-fluorescence-labeled NC protein (Wu et al., 1996) were mixed with 

buffers containing Ficoll or dextran as crowding agents (Alberti et al., 2019; Boehning et al., 

2018; Maharana et al., 2018). Laser microscopy and differential interference contrast (DIC) 

validated that green fluorescent NC-LLPSs had expected spherical morphology. NC-LLPSs 

could be seen at 5 µM of NC protein with Ficoll, but were more numerous and spherical at 

the optimal concentration of 10 µM, with homogeneous NC-LLPS sizes ranging from 0.5 to 

2 µm (Alberti et al., 2019) (5 versus 10 µM of NC, p < 0.0001) (Figure 1A).

LLPSs can be produced in vitro using synthetic macromolecular crowding agent Ficoll, 

hypothesized to mimic the crowded cellular environment (Alberti et al., 2019). To predict 

whether NC could initiate formation of LLPS in cells, we performed in vitro experiments 

replacing Ficoll with cellular homogenate with estimated equimolar concentration of total 

protein to NC. Cell homogenate readily induced formation of NC-LLPSs (Figure 1B), with 

these being more diverse in size (ranging from 0.5 to 3 µm) and less spherical, supporting 

that these NC assemblies may represent NC-LLPS and NC-RNPs containing cytosolic 

proteins or nucleic acids. With NC proteins greatly outnumbering any single cellular protein 

from homogenates in these formulations, comparison of visible DIC aggregates with green 

NC aggregates confirmed that 97.63% of these were NC-positive and distinguishable from 

cell debris (Figures 1B and 1C).

Unlike static NC-LLPSs generated by in vitro Ficoll-induced LLPS experiments, those 

formed by cell homogenates were dynamic, exhibiting liquid-phase properties including 

round shape induced by surface tension, fluidity, rapid internal diffusion, and interaction 
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and fusion forming novel droplets (Baase et al., 2010; Brangwynne et al., 2009; Heinrich 

et al., 2018) (Figures 1C–1G; Video S1). Live cell footage was used to track NC-LLPS 

movement, where the homogenate induced these to travel total distances of 16.67 ± 1.28 µm 

and linear distances of 4.04 ± 0.65 µm in 30 s (Figures 1E–1G). NC-LLPS displacements 

had average speeds of 0.56 ± 0.04 µm/s, ranging from 0.17 to 1.67 µm/s, thus moving at 

rates proportional to their sizes (Figure 1H).

We have recently demonstrated that HIV-1 NC induces SG assembly (Rao et al., 2018), 

despite NC being cleaved from pr55Gag during virus maturation, and therefore not typically 

found as an abundant entity in cells. To test if the NC moiety within full-length Gag inhibits 

or participates in LLPS in cells, mCherry-Gag expressing cellular homogenates were used 

to observe that albeit at lower abundance, mCherry-Gag co-condensed with NC-LLPSs, 

suggesting that NC within Gag may stimulate LLPS activity prior to its cleavage by PR 

(Figure 1I).

Low complexity PrLDs and ZnFs are hallmarks of phase-separating proteins (Maharana et 

al., 2018). Like NC, PrLD-containing proteins are intrinsic to SGs and can multimerize 

into Zn2+-dependent LLPS processes of aggregate-prone neurodegenerative disease markers 

TIA-1, TDP-43, FUS/TLS, Tau, amyloid-β, synucleins, and SOD1 (Caragounis et al., 2010; 

Garnier et al., 2017; Pfaender and Grabrucker, 2014; Rayman et al., 2018; Shelkovnikova 

et al., 2012). Gag multimerization requires NC with intact ZnFs and an RNA scaffold 

(Burniston et al., 1999; Campbell and Vogt, 1995; El Meshri et al., 2015). To test whether 

NC ZnFs were responsible for NC-LLPS, we performed in vitro experiments comparing 

wild-type (WT) NC to those with mutated ZnF motifs (SSHS-SSHS) (Guo et al., 2000) or 

the mutated linker region (R7A/R10A/K11A) (Wu et al., 2014a). Although linker mutant 

LLPSs were not as spherically shaped as WT NC-LLPSs, their overall numbers did not 

change (Figure 1J). In contrast, the ZnF NC mutant could not form LLPS (p < 0.0001), 

suggesting that the NC-LLPS may be Zn2+ dependent. Therefore, we used the Zn2+ 

chelator TPEN (N,N,N′,N′-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine), which inhibits 

LLPS and SG by TIA-1 (Rayman et al., 2018), and 1,6-Hexanediol (HEX), which inhibits 

LLPS by hnRNP A1 and TDP-43 (Babinchak et al., 2019; Molliex et al., 2015) and should 

interfere with maintenance of the Zn2+-induced globular, hydrophobic plateau of NC ZnFs. 

We also tested the oxidizer arsenite (ARS), which causes release of Zn2+ from ZnFs, thus 

disrupting SG assembly in cells (Rayman et al., 2018), and which selectively binds and 

unfolds C3H ZnFs (Zhao et al., 2012). All three chemicals disrupted NC-LLPSs (p < 

0.0001) (Figure 1K), confirming that NC-LLPSs are Zn2+-dependent.

Zn2+ Chelation Inhibits NC-SG Assembly and Disrupts NC-vRNA-Gag RNP Formation

We have previously reported that NC induces translational arrest and Gag- and CA-resistant 

SGs containing TIAR-1, G3BP1, eIF3, PABP, and poly(A) mRNAs (Rao et al., 2018). 

We have herein recapitulated that Gag did not disrupt NC-LLPS granules, but it rather 

colocalized with NC-LLPS granules, perhaps through Gag/NC-NC interactions (Figure 

1I). From observations that NC-LLPS were Zn2+ dependent (Figures 1J and 1K), and 

demonstrations that NC ZnF mutants have reduced SG assembly (Yu et al., 2016), we tested 

NC-SG sensitivity to Zn2+ chelation, as previously shown for TIA-1 (Rayman et al., 2018). 
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Dose-escalating TPEN treatment (0–40 µM) of HeLa cells transfected with the NC-Renilla 

Luciferase (RLuc) expression constructs showed that TPEN reversed both NC-RLuc-G3BP1 

colocalization and NC-induced SGs with no effect on expression of NC-RLuc (Figure 2A). 

TPEN also modified the formerly diffused cytoplasmic NC-RLuc localization to one mostly 

localizing closer to the plasma membrane (Figure 2A).

To visualize effects of TPEN on NC and cellular Zn2+, we loaded HeLa cells with a 

Zn2+-fluorescent probe FluoZin prior to TPEN treatment. This provided evidence that 

Zn2+ strongly localized with NC-RLuc and G3BP1 in absence of TPEN, and that while 

TPEN did not diminish overall cellular Zn2+ content, it resulted in dispersion and reduced 

colocalization with NC-RLuc (−drug versus 40 µM of TPEN (Figure 2B; STAR Methods for 

statistics). These data provide evidence that TPEN successfully chelates Zn2+ from NC and 

NC-G3BP1 SGs but does not deplete it from cells. From observations that G3BP1-FluoZin 

colocalization was also diminished by TPEN treatment−despite G3BP1 not containing ZnFs, 

and no reports supporting the possibility of it binding Zn2+, where G3BP1 rather assembles 

into SGs via RNA binding and acetylation dynamics (Gal et al., 2019; Irvine et al., 

2004)−we performed dose-escalating TPEN treatment (0–40 µM) of HeLa cells transfected 

with pG3BP1-GFP (Valiente-Echeverría et al., 2014). These experiments demonstrated that 

TPEN treatment had no significant effects on G3BP1-GFP-induced SGs also populated by 

SG marker TIAR (Figure S1), confirming earlier demonstrations that ARS-induced SGs are 

insensitive to TPEN (Rayman et al., 2018).

We sought to investigate the effects of TPEN on NC, vRNA, and Gag distribution in WT 

HIV-1 expressing cells. HeLa cells were cotransfected with NC-RLuc and the WT proviral 

construct pNL4–3, then treated with 20 µM of TPEN. We first examined the effect of TPEN 

on association of NC with DDX6, since DDX6 is a component of the HIV-1 Gag-vRNA 

packaging initiation complex (Barajas et al., 2018). Despite TPEN causing differences in 

DDX6 signal intensity and its colocalization with NC-RLuc in HIV-1 negative conditions, 

TPEN had no effect on NC-RLuc-DDX6 or Gag-DDX6 colocalization in HIV-1 expressing 

cells (Figure 2C). These results are in agreement with reports proposing that association 

of NC or Gag with DDX6 in early virion assembly intermediates are indirect, where the 

DDX6 helicase may rather unwind the vRNA for Gag accessibility (Reed et al., 2012). We 

did observe, however, that coupled HIV-1 expression and Zn2+ chelation by TPEN led to a 

fraction of NC-RLuc localizing to nuclei (Figure 2C).

Interactions between PrLDs and RNA are believed to drive LLPS (Maharana et al., 2018), 

and NC ZnFs are required for selectivity and packaging of the vRNA (Gorelick et al., 1990). 

Thus, to investigate whether TPEN treatment could alter the interactions between the vRNA 

and NC, we cotransfected HeLa cells with pNC-RLuc and WT proviral pNL4–3. Combined 

immunofluorescence/fluorescence in situ hybridization of the full-length vRNA (Vyboh et 

al., 2012) and NC-RLuc showed reduced colocalization (p = 0.0002) (Figure 2D). This 

effect was not seen for NC-RLuc-Gag or vRNA-Gag colocalization, perhaps because these 

associations are assisted by members of larger RNPs or because Gag is itself expressed 

from the vRNA. TPEN treatment also caused nuclear retention of the vRNA and NC-RLuc 

(Figure 2D), suggesting that the Zn2+-loaded NC domain may promote nuclear egress of 

NC-vRNA RNPs for virus production. Protein sequence analysis of components of HIV-1 
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vRNA export complexes revealed that they do not possess ZnFs and are thus not expected to 

be affected by Zn2+ chelation.

Zn2+ Chelation Inhibits the HIV-1 Blockade to SG Assembly and Induces vRNA 
Repositioning to SGs

Numerous divergent viruses including HIV-1, Ebola, and Zika block SG assembly (Amorim 

et al., 2017; Cinti et al., 2016; Le Sage et al., 2017; Valiente-Echeverría et al., 2014). 

For HIV-1, the CA domain may be responsible for the SG blockade, whereas WT NC, 

but not NC ZnF mutants, promotes SGs (Rao et al., 2018; Yu et al., 2016). The Zn2+-

loaded Gag NC domain may thus also promote LLPS toward growth of Gag-vRNA RNPs 

for virus assembly, whereas the CA domain and other cellular proteins interacting with 

NC-ZnF may keep SG assembly in check to guarantee that viral RNPs do not grow 

uncontrolled, producing dysfunctional viral particles. Thus, we sought to determine whether 

Zn2+ chelation could reverse the HIV-1 blockade of SG assembly. Infected Jurkat T cells 

treated with 20 µM of TPEN showed that Zn2+ chelation caused increased G3BP1 signal 

intensity in ARS-positive and -negative conditions (p < 0.0001), increased vRNA-G3BP1 

colocalization (p < 0.0001), and increased Gag expression (ARS+ versus ARS+TPEN+; 

p = 0.0017, 95% confidence interval (CI) −1,139.0 to −220.1, 1-way ANOVA, Tukey 

post-test) (Figure 3A). vRNA was also visualized in HeLa cells transfected with pNL4–3 

and treated with ARS and TPEN (20 or 40 µM). TPEN consistently increased the G3BP1 

signal intensity in ARS+ and negative conditions (p < 0.0001), increased vRNA-G3BP1 

colocalization (p < 0.0001), and increased Gag expression (ARS+ versus ARS+TPEN+; 

p = 0.0010, 95% CI −2,483.0 to −469.3, 1-way ANOVA, Tukey post-test) (Figure 3B). 

As shown in earlier work (Abrahamyan et al., 2010; Valiente-Echeverría et al., 2014), 

HIV-1 reduced the size and number of ARS-induced G3BP1+ SGs (pcDNA3.1+ARS versus 

pNL4–3+ARS, p < 0.0001, two-tailed t test), whereas TPEN treatment abrogated the SG 

blockade by HIV-1 (pNL4–3+ARS versus pNL4–3+ARS+TPEN (20 µM), p = 0.0037, 

two-tailed t test) (Figure 3B). Importantly, TPEN also caused vRNA localization to SGs in 

ARS-treated cells (Figure 3B). Conversely, TPEN treatment had a lesser effect on G3BP1-

Gag colocalization (p = 0.0261), and little influence on Gag-vRNA colocalization (Figure 

3B) in both HeLa and Jurkat T cells. Together, these results show that Zn2+ chelation of NC 

abrogates the SG blockade by HIV-1, leading to vRNA repositioning to SGs.

Zn2+ Chelation Causes Cellular Retention of Gag and Decreased Virus Production

Our observations that Zn2+ chelation abrogated the SG blockade by HIV-1, vRNA 

accumulation in SGs, but concomitant increased Gag expression, appeared confounding 

since SGs usually contain translationally silent mRNAs (Anderson and Kedersha, 2009). 

To address this, we transfected HeLa and HEK293T cells with pNL4–3, or cotransfected 

with pNL4–3 and NC-RLuc and treated with TPEN, ARS, or HEX, and collected cell 

lysates for western blotting and viral supernatants for virus quantification. NC-RLuc caused 

decreased Gag expression (pNL4–3 versus pNL4–3/NC-RLuc; p = 0.0008, 95% CI 27.12 

to 122.2, 1-way ANOVA, Tukey post-test) (Figure S2; Figure 4A), supporting that NC 

induces SG assembly and represses vRNA translation favoring its encapsidation (Rao et 

al., 2018). As previously observed (Figures 3A and 3B), and consistent between HeLa and 

HEK293T cells, TPEN caused a striking increase in Gag expression (p < 0.0001) (Figure 
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S2; Figure 4A). Consistent with previous work (Rao et al., 2018), NC-RLuc expression in 

both cell types resulted in decreased virus production (p < 0.0001) (Figure 4B). Decreased 

virus production from TPEN treatment was also observed in HIV-1 infected Jurkat T cells 

(pNL4–3 versus pNL4–3+TPEN; p = 0.0003, 95% CI 9.012 to 18.84, 1-way ANOVA, 

Tukey post-test, data not shown). Decreased virus production by TPEN suggests that Zn2+ 

is required for NC-LLPS, NC-SGs, and limiting Gag expression for virus production. These 

findings suggest that Zn2+-dependent NC-LLPSs may act by binding and arresting vRNA 

translation favoring egress of packaging initiation complexes slated for encapsidation and 

release as infectious viral particles.

NC ZnF Mutants Reverse HIV-1 Blockade on SG Assembly and Induce vRNA Repositioning 
to SGs

Our observations that the HIV-1 blockade to ARS-induced SG assembly was consistently 

abrogated by Zn2+ chelation (Figures 3A and 3B), and led to vRNA repositioning (Figure 

3B), prompted us to determine if Zn2+-chelation phenotypes were specific to NC ZnF 

function. HeLa cells transfected with the NC ZnF-mutated pNL4–3 proviral constructs (i.e., 

pNL4–3 NC-C15S-C49S) (Guo et al., 2000) were treated with ARS and TPEN. Strikingly, 

mutated NC ZnF led to a complete reversal of HIV-1 blockade of SG assembly that was 

unaltered by TPEN treatment (p < 0.0001) (Figures 5A and 5B, where Figure 5B compares 

conditions tested to those in Figure 3). As formerly observed from TPEN treatment (Figure 

3B), NC ZnF mutants also caused the vRNA to be restricted to G3BP1+ SGs (Figure 

5A). As observed with SG-inducing NC-RLuc (Figure 2D), vRNA was localized to the 

nucleus in untreated cells, and this was further pronounced in ARS-treated cells (Figure 

5A), providing evidence that NC ZnFs are required for nuclear export and/or cytoplasmic 

retention of the vRNA for virus assembly. Other prominent NC ZnF mutant phenotypes 

were loss of G3BP1-vRNA, G3BP1-Gag, and vRNA-Gag colocalization in ARS-negative 

conditions (Figure 5A), supporting that NC ZnF nucleates HIV-1 Gag-vRNA RNPs.

Clinical HIV-1 Zn2+ Ejectors Induce the Nuclear Retention of the vRNA

From our observations that TPEN treatment caused nuclear localization of NC and the 

vRNA (Figures 2C, 2D, and 3B), as also validated by TPEN treatment of the NC-ZnF 

mutant (Figure 5A), we examined 19 essential and associated Rev-RRE-CRM1-vRNA 

nuclear export proteins (e.g., Rev, CRM1, DDX1, DDX3, DHX9 (RHA), eIF5a, RanGTP, 

RIP, Sam68) (Hofmann et al., 2001; Maares and Haase, 2016; Yedavalli et al., 2004), 

to find that none possessed ZnFs and should not be affected by TPEN treatment. We 

then tested whether the nuclear vRNA phenotype could be repeated using clinical HIV-1 

NC ZnF-selective targeting Zn2+ ejectors. From numerous clinical HIV-1 Zn2+ ejectors, 

we chose Azodicarbonamide (ADA) and 2,2′-dithiobisbenzamide-1 (DIBA-1) (Rice et al., 

1995, 1997b) from their entry into Phase I/II testing, specific NC-selectivity with no affinity 

for cellular protein ZnFs (Goebel et al., 2001; Huang et al., 1998), and from interests in 

their repurposing as microbicides (Mori et al., 2015). HeLa cells transfected with pNL4–3 

were treated with 100 µM of ADA or 50 µM of DIBA-1. Indeed, both drugs led to nuclear 

retention of the HIV-1 vRNA (both −drug versus +drug, p < 0.0001) (Figure 5C), in similar 

proportions to ZnF mutant proviral constructs (pNL4–3 versus pNL4–3 NC-C15S-C49S, p 
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< 0.0001) (Figures 5A and 5D). Increased nuclear localization of the vRNA by ADA and 

DIBA-1 suggests that vRNA localization and trafficking is in part NC-Zn2+ dependent.

Pan-retrovirus NC Proteins Have Overlapping ZnFs and PrLDs and Undergo Zn2+-
Dependent LLPS

HIV-1 NC overexpression thus triggers Zn2+-dependent SGs (Figures 2A and 2B), 

and purified HIV-1 NC protein undergoes Zn2+-dependent LLPS (Figures 1A and 1J). 

Envisaging this phenomenon exists across retrovirus subfamily NCs, we used predictive 

software to identify ZnF-containing PrLDs, because we expected that their proximities 

would regulate NC-LLPSs. This notion is supported by studies of PrLDs across eukaryotic 

viruses with a high proportion identified in retroviruses (Tetz and Tetz, 2018). To map 

proximity of retrovirus Gag PrLDs and ZnFs, PONDR and PLAAC algorithms were used 

to generate PrLD alignment maps of pan-retrovirus NC and Gag amino acid sequences 

(Lancaster et al., 2014; Peng et al., 2006, 2005; Romero et al., 2001). Predicted PrLDs 

for HIV-1 Gag and NC were validated by previous studies (Xue et al., 2012), while others 

were validated by the MobiDB database (Piovesan et al., 2018). The accuracy of predictive 

software programs was tested using proteins with established presence or absence of PrLDs 

(Figure S3A) (Baase et al., 2010; Wang et al., 2018; Ward et al., 2004). All retrovirus Gag 

proteins displayed two conserved PrLDs of similar length and location: one encompassing 

the NC domain and extending to C-terminal end of Gag, and another within the Gag 

N-terminal CA domain and late (L) domains, as supported by previous reports (Figure 6A) 

(Deshmukh et al., 2015; Freed, 2002; Liang et al., 2003).

The molecular composition of membraneless organelles includes ZnFs or Zn2+-binding 

domains also found in disordered proteins forming amyloidogenic segments (Alberti et al., 

2019; Garnier et al., 2017; Gomes and Shorter, 2019). We mapped retroviral ZnFs onto 

predicted PrLDs to find them positioned within predicted C-terminal PrLDs, with exception 

of Spumaviruses lacking traditional ZnFs, instead having functionally equivalent RNA 

recognition motifs (RRMs) (Linial, 1999; Müllers, 2013), also concentrated within predicted 

PrLDs (Figure 6A). Thus, proximity of ZnFs and PrLDs are highly conserved throughout 

Retroviridae Gag proteins, suggesting that all could form Zn2+-dependent NC-LLPSs.

We tested purified Zn2+-loaded NC proteins from several closely and distantly related 

retroviral genera for their ability to LLPS (Weiss, 2006), including HIV-1, simian 

immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), equine infectious 

anemia virus (EIAV), human T-lymphotropic virus type 1 (HTLV-1), Rous sarcoma virus 

(RSV), and murine leukemia virus (MuLV) (Guo et al., 2000; Post et al., 2016; Stewart-

Maynard et al., 2008; Wu et al., 2014b, 1996; Yovandich et al., 2001) (Figure 6B). As 

expected, all pan-retroviral NC proteins could initiate LLPSs at similar sizes of ~1 µm 

(Figure 6C), despite differences in their lengths, sequences, linker regions, or number of 

ZnFs (Figure 6D).

From our observations that NC proteins produced the most spherical LLPS at first thaw, 

we next used mechanical and chemical methods to test if pan-retrovirus NC-LLPS were 

also Zn2+ dependent (Figure 1K), including Zn2+-oxidizing freeze/thaw cycles, and Zn2+ 

drugs TPEN, ADA, and DIBA-1. Both freeze/thaw cycles and 20 µM of TPEN disabled 
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NC-LLPSs (p < 0.0001 for all cases) (Figure 6E; Figure S3B). Both ADA (100 µM) and 

DIBA-1 (50 µM) potently disabled HIV-1 and SIV NC-LLPSs (all, p < 0.0001) (Figure 

6E; Figure S3B), as supported by reports of these inhibiting multiple replication steps of 

HIV-1, HIV-2, and SIV (Rice et al., 1997a, 1995, 1997b). Both drugs also disabled single-

ZnF-containing MuLV NC-LLPSs (−drug versus ADA, p < 0.0001; −drug versus DIBA, 

p = 0.0300) (Figures 6D and 6E; Figure S3B), as supported by reports that the DIBA-2 

congener inactivates HIV-1 and MuLV (Figure 6A) (Rein et al., 1996; Rice et al., 1995). 

DIBA-1 also potently disabled HTLV-1 NC-LLPS (p < 0.0001), and modestly disabled RSV 

NC-LLPS (p = 0.0294) (Figure 6E; Figure S3B), although to our knowledge, DIBA drug 

variants have yet to be tested on either retrovirus. Finally, to address whether the NC domain 

within full-length Gag also contributes to LLPS, we tested purified Gag protein for its ability 

to form condensates, where titration experiments demonstrated Gag-LLPS to form starting 

at 10 µM, but optimally at 20 µM (p < 0.0001), and where Gag-LLPSs were also observed 

to be sensitive to mechanical (freeze/thaw; p < 0.0001), general (TPEN; p < 0.0001), and 

specific (ADA and DIBA; p < 0.0001) Zn2+ ejection treatments (Figure S3C). These data 

demonstrate that divergent pan-retroviral NC and full-length HIV-1 Gag proteins undergo 

Zn2+-dependent LLPS.

ZnF-Dependent and Zn2+-Chelation-Sensitive NC-LLPS Are Dynamically Formed in Live 
Cells

NC-LLPSs are thus not specific to HIV-1 (Figures 6C and 6D), and rather represent a 

possible conserved pan-retrovirus replication mechanism. Based on our findings that cell 

homogenates induce dynamic NC-LLPSs (Figures 1C–1H), we then performed experiments 

to observe Zn2+-dependent NC-LLPS in real-time. HeLa cells were transfected with WT 

or mutated ZnF NC-YFP for live cell imaging 4 h later, where 3–4 µm \WT NC-YFP 

cytoplasmic structures were already apparent in some cells at this time point (Figure 7A; 

Video S2). In other cells, we observed de novo formation of WT NC-YFP structures, 

growing from 0.5 µm to 1.5–2 µm during 9 min of video capture (Figure 7A; Video 

S2). NC-YFP-LLPSs demonstrated dynamics similar to in vitro cell homogenate-stimulated 

NC-LLPSs (Figures 1C–1H), observed to travel, interact, and fuse with each other (Figure 

7A; Video S2).

To test the Zn2+ dependency of NC-YFP-LLPSs, and to test whether Zn2+ chelation was 

reversible, we performed live cell experiments alternating regular medium and TPEN 

treatment (Figure 7B). We observed that 20 µM of TPEN dissolved pre-established NC-

LLPSs and NC-SGs in 6 min, and that replacement of TPEN medium with unconditioned 

medium restored NC-LLPSs and NC-SGs in 20 s, indicating that effects of Zn2+ chelation 

were rapidly reversible (Figure 7C), as supported by TPEN displacing but not depleting 

cellular Zn2+ (Figure 2B). Importantly, in unconditioned medium, NC-YFP localized 

primarily to cytoplasmic LLPSs and SGs, whereas TPEN treatment not only reduced the 

size and abundance of NC-LLPSs/SGs, but also led to a diffuse phenotype and nuclear 

localization of NC-YFP (Figure 7D), as supported by earlier experiments (Figures 2C and 

2D). Conversely, the ZnF mutant NC-YFP construct (i.e., NC-C15S-C49S-YFP) mostly 

localized to nuclei and nucleoli, and could not form LLPSs or SGs at steady state or under 

any treatment tested (Figures 7E and 7F). Adjusting microscope objectives permitted us 
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to observe that in cells expressing higher levels of mutant ZnF NC-YFP, also localizing 

to the cytoplasm, LLPSs or SGs could not form at steady state or under any treatment 

tested (Figures 7G and 7H). Altogether, these results demonstrate that de novo-expressed 

NC undergoes dynamic LLPS and SG assembly in cells, and that these structures and NC 

localization are ZnF- and Zn2+ dependent.

The Gag SP1/NC cleavage site is the most sensitive to PR, and mutations in NC/SP2 

and SP1/NC cleavage sites are responsible for PR inhibitor (PI) resistance (Côté et al., 

2001; Könnyũ et al., 2013). Several reports provide evidence of active PR and GagPol 

polyprotein proteolytic products in the cytoplasm of infected cells in the absence of virus 

production and in high viral load patient-derived T cells (Freed et al., 1994; Hu et al., 

2005; Kaplan and Swanstrom, 1991; Nie et al., 2007; Park and Morrow, 1991; Wen et al., 

2016). Our observations of rapidly forming NC-LLPSs in live cell experiments suggest that 

basal NC cleavage by PR in cells may represent another event in HIV-1 replication. The 

unprocessed PR is 10,000-fold less sensitive to PIs than the targeted mature PR dimer (Pettit 

et al., 2004). Therefore, we overexpressed PR-GFP in cells cotransfected with pNL4–3 or 

pNC-RLuc, where we observed that NC and PR were extensively colocalized, and this was 

unaffected by the PI saquinavir (SAQ), suggesting that PR association with NC persists 

independently of proteolytic activity. SAQ treatment also produced PR- and NC-positive 

0.5–1 µm of puncta co-staining for G3BP1, but not PB marker Dcp1 (Figures S4A and S4B). 

We examined HIV-1 PR protein sequence to find it devoid of predicted PrLDs, indicating 

that PR should not itself undergo LLPS, promoting the more likely scenario that its affinity 

with NC-SGs or NC-LLPSs is likely derived from its role in NC cleavage or perhaps in a 

mechanism protecting cells from PR-derived toxicities. Finally, to gain evidence warranting 

future studies of cellular NC cleavage by active PR, we treated pNL4–3 transfected cells 

with SAQ, and used two different Gag-specific antibodies to observe that SAQ treatment 

caused decreased puncta resembling viruses (Figure S4C). Supernatants were collected 

and production of infectivity was tested using an X-Gal staining assay in TZM-bl cells, 

demonstrating a complete loss of infectivity by SAQ treatment (p = 0.0001). Finally, to 

assess the effect of SAQ treatment on active PR in cells generating Gag-free NC, western 

blots of cytosolic Gag proteins were analyzed from cellular lysates extensively washed 

and treated with trypsin and EDTA removing bound, noninternalized virus particles (Yao 

et al., 1998), demonstrating that SAQ treatment efficiently blocks NC cleavage in cells, 

while imaging analysis demonstrates that SAQ treatment increases NC-Gag colocalization 

(Gag(rabbit), p = 0.0106; Gag(mouse), p = 0.0064) (Figure S4C), providing further evidence 

that NC is cleaved from Gag in untreated cells. These findings warrant future studies on 

possible roles for NC-LLPSs in the late stages of HIV-1 replication.

DISCUSSION

We are first to discover that both purified HIV-1 NC and Gag proteins induce LLPS and 

that both this phenomenon and NC-induced SGs are Zn2+ dependent. NC-LLPS was induced 

in vitro with crowding agents or cytosol but also in cellulo. In live cell experiments, de novo-

synthesized NC efficiently bound Zn2+ to induce LLPSs and SGs. The rapid reestablishment 

of NC-SGs following TPEN washout highlights NC’s high affinity for Zn2+. Indeed, zinc 

deficiency is the most prevalent micronutrient abnormality in HIV-1 infected and treated 
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patients (Cárcamo et al., 2006; Koch et al., 1996a, 1996b; Visser et al., 2003; Bunupuradah 

et al., 2012; Jones et al., 2006; Wellinghausen et al., 2000) and it correlates with decreased 

CD4+ T cells, high viral load, and mortality (Baum et al., 2003; Bunupuradah et al., 2012; 

Cunningham-Rundles et al., 2005; Fufa et al., 2009; Graham et al., 1991; Irlam et al., 2010; 

Lai et al., 2001; Visser et al., 2003; Wellinghausen et al., 2000). While zinc supplementation 

delays disease progression (Baum et al., 2010; Cárcamo et al., 2006; Mocchegiani et al., 

1999, 1995; Read et al., 2019; Zeng and Zhang, 2011), an excess also causes disease 

progression and mortality (Tang et al., 1993, 1996). This duality of Zn2+ homeostasis 

is also linked to the onset of neurodegeneration (Szewczyk, 2013). Our work highlights 

Zn2+ homeostasis duality, where virus-promoting NC-LLPSs require Zn2+, but an excess 

of NC leads to the assembly of translationally silent NC-SGs (Rao et al., 2018). Likewise, 

heavy metal neurotoxins cause transition of ‘‘protective’’ LLPS to pathological SGs and 

permanent aggregates in neurological diseases (Ash et al., 2019; Rayman et al., 2018; Trojsi 

et al., 2013).

Viruses have evolved a finely tuned requirement for Zn2+. We observed that pan-retroviral 

NC-LLPSs were sensitive to Zn2+ chelation. Indeed, Zn2+ is the most common metal 

binding to viral proteins and is a key cofactor for DNA and RNA viruses (Chaturvedi and 

Shrivastava, 2005; Lazarczyk and Favre, 2008). Aside from NC, HIV-1 Integrase (IN), Tat, 

and Vif also require Zn2+ for folding, varied functions, and host resistance (Frankel et al., 

1988; Garber et al., 1998; Huang and Wang, 1996; Lazarczyk and Favre, 2008; Lee and 

Han, 1996; Lee et al., 1997; Luo et al., 2005; McEuen et al., 1992; Misumi et al., 2004; Paul 

et al., 2006; Xiao et al., 2007). Viruses outcompete cellular proteins for cellular Zn2+ via 

their highly conserved (CCHC) anisotropic ZnFs distinct from canonical eukaryotic (CCHH) 

ZnFs (Bess et al., 1992; Laity et al., 2001), providing the opportunity to target viral ZnFs 

and not host protein ZnFs (Beerheide et al., 1999; Rice et al., 1993).

We observed dramatic effects on vRNA positioning, Gag expression, and virus production 

by Zn2+ chelators and ejectors, highlighting the importance of Zn2+ bioavailability for 

retroviral NC function. As the second most abundant metal essential for >300 enzymes, 

metalloproteins (MTs), and Zn2+ transporters (ZNTs), Zn2+ is tightly and unevenly 

controlled across organs (Chaturvedi and Shrivastava, 2005; Colvin et al., 2008; Friedman 

et al., 1984; Lazarczyk and Favre, 2008). Indeed, MT and ZNT expression and functions 

are modified by numerous viruses (Ilbäck et al., 2004; Mindaye et al., 2017; Raymond et 

al., 2010; Read et al., 2018; Zilliox et al., 2006) and HIV-1 shifts cell and organ Zn2+ 

bioavailability for inflammation and apoptotic resistance (Joshi and Guidot, 2011; Raymond 

et al., 2010).

This work also demonstrates that Zn2+ chelation/ejection mediates the relocalization NC and 

the vRNA to the nucleus. NC-G3BP1 SGs were found to be enriched in Zn2+, and TPEN 

treatment shows that NC-SGs are Zn2+ dependent. Despite nuclear repositioning of both 

NC and vRNA by TPEN in the proviral context, this chemical also stunts their interaction, 

suggesting it may be Zn2+-dependent and nuclear in origin. Although components of the 

Rev-RRE-CRM1 export complex do not possess ZnFs, we could not exclude the possibility 

that vRNA retention by TPEN was specific for NC and therefore tested the NC-Zn2+-

selective clinical compounds, ADA and DIBA-1. The presence of nuclear NC is not without 
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precedence, as it possesses a nuclear localization signal (Yu et al., 2016), and is responsible 

for early Zn2+-dependent events stimulating integration (Levin et al., 2010; Poljak et al., 

2003), and mediates nucleolar retroviral Gag localization (Lochmann et al., 2013). In its 

apo form, NC remains disordered like FG-repeat-containing nucleoporins (Yu et al., 2016), 

providing yet another passport for its nucleocytoplasmic shuttling (Yamada et al., 2010).

Viral infection imposes cellular stress. To maintain a non-hostile environment hosting 

replication, various viruses have evolved different strategies to block SG assembly (Poblete-

Durán et al., 2016), and usurping SG proteins for their own functions (Abrahamyan et al., 

2010; Thomas et al., 2009). We show that NC does not cause SG assembly when HIV-1 is 

co-expressed, suggesting that accessory viral proteins may chelate Zn2+ from NC, or that 

vRNA binding to NC outcompetes its propensity to multimerize. We also find that HIV-1 

NC ZnF mutants cannot block SG assembly, where vRNA accumulates in ARS-induced 

SGs. This establishes that the Zn2+-dependent NC-vRNA association is required for SG 

blockade by HIV-1, otherwise possibly initiated by expression of this foreign vRNA.

Indeed, numerous studies on a broad range of viruses have long demonstrated that most 

induce phase separation for replication. Across time and virus type- or family-centric 

literature, widely varying terms and functions have been ascribed to classify these phase-

separating viral replication compartments, including virus factories, viroplasm, or mini-

organelles generating subcellular microenvironments concentrating viral components into 

membrane-bound or membraneless inclusions for replication and protection against virus 

defenses (Netherton and Wileman, 2011; Novoa et al., 2005). Cytoplasmic inclusion 

bodies produced later by aggregation of structural proteins or nucleocapsids are also 

importantly similar to pathologic aggresomes causing neuronal dysfunction (Novoa et al., 

2005; Wileman, 2006). Negri body viral factories described for RABV and VSV have 

been re-examined for their LLPS properties (Heinrich et al., 2018; Nikolic et al., 2017). 

Viral proteins from divergent influenza A, hendra, measles, and herpes simplex viruses also 

appear to use LLPS for virus replication (Alenquer et al., 2019; McSwiggen et al., 2019; 

Zhou et al., 2019). In a greater perspective, the association between viral nucleoproteins and 

vRNA appears responsible for LLPS (Alberti et al., 2019; Kondo et al., 2013; Lifland et al., 

2012; Nikolic et al., 2019; Zhou et al., 2019), and the association between ZnF and RING 

finger proteins lead to the assembly of virus factories, virus-like particles, and inclusion 

bodies (Brick et al., 1998; Fehling et al., 2012; Hanslip et al., 2006; Hoenen et al., 2012; 

Mathur et al., 2014; Nerenberg et al., 2005; Senkevich et al., 1995). Our work demonstrates 

that Gag and pan-retrovirus NC proteins induce Zn2+-dependent LLPS and SGs, supporting 

the notion that translational silencing of vRNA ushers it into trafficking cytoplasmic RNPs 

slated for virus assembly.

A fundamental principle underlying biological molecules undergoing LLPS is multivalency 

and the capacity to interact with multiple nucleic acids and proteins simultaneously (Li et 

al., 2012). This is in line with the pleiotropic, flexible, disordered retroviral NC nucleic acid 

chaperones performing a myriad of functions during early and late stages of viral replication 

(Darlix et al., 2014). Similar to NC composition and function, it is widely accepted that 

proteins that undergo LLPS typically contain PrLDs and can bind multivalent DNA and 

RNA scaffolds through ZnFs or RNA-recognition motifs (RRMs). From our investigation 
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of previously mapped domains of proteins undergoing LLPS, we observed that all have 

juxtaposed or overlapping PrLDs and RRMs and that the longest proteins, like Gag, which 

we also find to form LLPS, have both RNA-binding RRMs and ZnFs within PrLDs (Wang et 

al., 2018).

Large in silico and meta-analyses show disproportionately higher PrLDs in viruses relative 

to eukaryotes and in retroviruses and Gag proteins relative to other viruses (Pushker et al., 

2013; Tetz and Tetz, 2018). It is speculated that viral protein PrLDs facilitate multiple inter-

protein interactions for LLPS viral protein condensates, providing a competitive advantage 

over host RNPs requiring the same machineries for replication (Tarakhovsky and Prinjha, 

2018). Other speculations based on degree of outer virus shell disorder, where HIV-1 

MA, CA, and NC are more disordered than their orthologs, suggest that disorder assists 

“shapeshifting” immune evasion strategies (Goh et al., 2019). From our discovery that 

HIV-1 NC undergoes Zn2+-dependent LLPS, we conducted computational studies to map 

conserved and overlapping PrLDs and ZnFs. These analyses revealed that NC proteins from 

divergent retrovirus subfamilies also generate Zn2+-dependent LLPS.

HIV-1 resistance to RT, PR, and integrase (IN) targeting drugs creates an urgent need 

for new drug strategies (Das and Arnold, 2013). From its high conservation among all 

viral clades and its many essential functions during replication, NC ZnF is maintained 

as a prime target for therapeutic intervention (Mori et al., 2015). Despite many Zn2+ 

ejectors showing strong antiviral activity against a spectrum of strains without eliciting 

resistance, the difficulty in identifying those whose selectivity outweighs toxicity drives 

their repurposing as potent microbicides and ongoing efforts to identify non-covalent NC 

inhibitors (Bernacchi et al., 2007; Breuer et al., 2012; de Rocquigny et al., 2008; Goebel et 

al., 2001; Goudreau et al., 2013; Mori et al., 2012; Musah, 2004; Pustowka et al., 2003; Raja 

et al., 2006; Rice et al., 1993; Shvadchak et al., 2009; Srivastava et al., 2004; Stephen et al., 

2002; Turpin et al., 2008; Vercruysse et al., 2012; Wallace et al., 2009; Warui and Baranger, 

2009). Our discovery of NC- and Gag-induced LLPS sheds new light on the molecular 

basis for selection and packaging of vRNA and expands our understanding of mechanisms 

governing NC activity to assist in perfecting promising NC-ZnF-targeting compounds.

STAR☆METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further request for information 

on methods and reagents should be directed to Lead Contact, Andrew J. Mouland 

(andrew.mouland@mcgill.ca).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture—Adherent HeLa cells and HeLa-derived TZM-bl cells originated from a 

human female cervix, while adherent HEK293T cells originated from a human female 

embryonic kidney. HeLa and HEK293T cells [American Type Culture Collection (ATCC)], 

and TZM-bl cells (NIH AIDS Reagent Program) were grown and maintained in Dulbecco’s 

Modified Eagle Medium (DMEM) (GIBCO Thermo Fisher Scientific #) supplemented 
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with 10% fetal bovine serum (FBS) (Hyclone), 1% penicillin/streptomycin (Invitrogen) at 

37°C and 5% CO2. The CD4+/CXCR4+ Jurkat CE6.1 T cell line (ATCC) originates from 

peripheral blood and was grown and maintained as suspension culture in RPMI 1640 (Life 

Technologies) supplemented with 10% FBS (Hyclone) and 1% penicillin/streptomycin (Life 

Technologies) at 37°C and 5% CO2.

METHOD DETAILS

Recombinant DNA—pNL4–3 was obtained from NIH AIDS Reference and Reagent 

Program (ARRP). pNL4–3 NC C15S/C49S has been previously described (Guo et al., 

2000). Gag-mCherry was provided by Paul Bieniasz (Rockefeller University, USA) 

(Jouvenet et al., 2008). pRluc-N1 (Packard BioScience/Perkin-Elmer Life Sciences) and the 

construction of p2-p1/Rluc and NC-p1R7-YFP and NC-p1C15–49S-YFP have been previously 

described (Chatel-Chaix et al., 2008, 2004). pG3BP1-GFP was provided by Imed Gallouzi 

(McGill University, Canada) (Tourriére et al., 2001). pcDNA3.1 was purchased from 

Invitrogen. pRF-EGFP was provided by Rongtuan Lin (Solis et al., 2011), and pEGFP-C1 

was purchased from Clonetech.

Antibodies and fluorescent probes—Primary antibodies used were as follows: mouse 

anti-p24 (IF, 1:250; WB, 1:10,000; NIH AIDS ARRP); rabbit anti-DDX6 (IF, 1:200; Bethyl 

Laboratories #A300–461A), rabbit anti-G3BP1 (IF, 1:1,000; WB, 1:1,000; (provided by 

Imed Eddine Gallouzi, McGill University, Canada (Gallouzi et al., 1998)), goat anti-TIAR 

(1:200; Santa Cruz Biotechnology #sc-1749), rabbit anti-Renilla Luciferase (IF, 1:200; 

WB, 1:1000; MBL International #PM047), sheep anti-Digoxigenin-AP, Fab fragments 

(IF, 1:250; Roche #11093274910), rabbit anti-phospho-eIF2α (Ser51) (WB, 1:1,000; Cell 

Signaling Technology #9721), rabbit anti-eIF2 α (WB, 1:1,000; Cell Signaling Technology 

#9722), rabbit anti-cleaved caspase-3 (Asp175) (WB, 1:1,000; Cell Signaling Technology 

#9661), rabbit anti-beta Actin (1:5,000; Abcam #ab8227), and rabbit anti-GFP (WB for 

YFP, 1:5000 Novus Biologicals # NB600–308). For IF, secondary antibodies used were 

as follows: Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed, Alexa Fluor® 488 

(1:500; Invitrogen-Thermo Fisher Scientific #A-21202); Donkey anti-Rabbit IgG (H+L) 

Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor® 488 (1:500; Invitrogen-Thermo 

Fisher Scientific #A-21206); Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed, Alexa 

Fluor® 594 (1:500; Invitrogen-Thermo Fisher Scientific #A-21207); Donkey anti-Sheep 

IgG (H+L) Cross-Adsorbed, Alexa Fluor® 594 (1:500; Invitrogen-Thermo Fisher Scientific 

#A-31573); Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed, Alexa Fluor® 647 

(1:500; Invitrogen-Thermo Fisher Scientific #A-31573); Donkey anti-Goat IgG (H+L) 

Cross-Adsorbed Secondary Antibody, Alexa Fluor® 647 (1:500; Invitrogen-Thermo Fisher 

Scientific #A-21447). For western blotting secondary antibodies used were as follows, goat 

anti-mouse, goat anti-rabbit, or donkey anti-goat IgG polyclonal antibodies conjugated to 

horseradish peroxidase (HRP) (Rockland Immunochemicals). FluoZin-3, AM, cell permeant 

(Thermo Fisher Scientific # F24195) was used to visualize Zn2+ in cells.

Proteins—Methods and analyses of NC protein purification and preparation have been 

previously described for WT and mutant NC HIV-1 (Guo et al., 2000; Wu et al., 2014a, 

1996), and WT RSV, MuLV, HTLV-1 (Stewart-Maynard et al., 2008), SIV (Post et al., 
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2016), FIV (Wu et al., 2014b), and EIAV (Stewart-Maynard et al., 2008). NC proteins 

lyophilized from acetronitrile, water and trifluoroacetic acid, and containing 1 equivalent 

of Zn2+ per finger were dissolved in commercial D-PBS (Wisent), aliquoted and stored 

at −80°C until further use. Recombinant HIV-1 Gag protein purchased from Abcam 

(ab109969) was diluted in D-PBS (Wisent), as recommended by the manufacturer. Purified 

Gag was produced using Escherichia coli expression systems and purified using nickel-

affinity columns, which maintain purified protein Zn2+ content and secondary structures 

permitting functional and structural studies of Zn2+ binding proteins (Colombo et al., 2013; 

Zhang et al., 2017).

Creation and imaging of liquid-liquid phase condensates—Formation of NC-

LLPS protein samples was monitored by DIC and fluorescence microscopy. For examination 

of fluorescently labeled NC-LLPS, purified NC proteins were labeled using the Alexa Fluor 

488 Microscale Protein Labeling Kit (Thermo Fisher Scientific, #A30006) according to 

manufacturer’s instructions. Freshly labeled Retroviral NC and HIV-1 Gag proteins were 

mixed to final concentrations of 0, 1, 5, 10, and 20 µM, using buffers containing 20 mM 

HEPES, 220mM NaCl, pH 7.4, and with either 150 mg/ml ficoll (Lymphocyte Separation 

Medium, Corning, #25–072-CV), or 10% dextran (Sigma-Aldrich #9004–54-0) added as 

molecular crowding agents. A technical consideration is that both labeled and non labeled 

NC proteins can only produce perfectly spherical and homogeneously sized LLPS after one 

round of freezing at 80°C, and thereafter gradually loose this ability as a result of their 

loss of Zn2+ produced by freeze thaw cycles. For the induction of in vitro LLPS using 

cellular homogenate instead of ficoll as crowning agent, HeLa cells were grown in 12-well 

plates, and 9 × 106 cells were washed with PBS, then collected from plates using cell 

scrapers and spun down at 1,500 rpm for 10 mins at 4’C. Cell pellets in Eppendorf tubes 

were resuspended in 50 µL of PBS, and were homogenized using Eppendorf® micropestles 

(Sigma-Aldrich #Z317314). For LLPS experiments, 1 µL of cellular homogenate was added 

to formulations, for an estimated cellular contents of 15,000 cells, and thus approximately 1 

× 1014 proteins per reaction (based on predictions of 101′ proteins per mammalian cell). The 

number of NC proteins per reaction was estimated to be 3.5 × 1013. For imaging of LLPSs 

from purified proteins in LLPS formulations, 6 µL of sample mixtures were loaded onto 

25 × 75 mm × 1mm thick glass slides (Thermo Scientific, # 640–004T, and covered with 

18 mm ø No. 1 cover glasses (VWR VistaVision™, VWR International), and were sealed 

with clear enamel (Revlon). NC-LLPSs were observed by microscopy 10 mins later, for both 

green fluorescence coinciding with clearly discernible spheres using differential interference 

contrast. This was performed using a Leica DM16000B laser confocal microscope equipped 

with a WaveFX spinning disk confocal head (Quorum Technologies), HCX PL APO / 63×, 

Oil / 0.60–1.40 NA BL objective, 525/50 nm ex/em filter to detect Alexa Fluor 488, and 

a Hamamatsu EM-CCD digital camera for image capture. Scanning was performed and 

digitized at a resolution 1,024 × 1,024 pixel. Image processing and analyses were performed 

by Imaris software v. 8.1.2 (Bitplane/Andor). For imaging of dynamic LLPS created using 

cellular homogenate, 525/50 nm ex/em filter was used to detect Alexa Fluor 488 positive 

NC-LLPS spheres, and then DIC and time-lapse microscopy videos were recorded to 

capture their motion and surrounding cell lysate. Imaris imaging software (Bitplane/Andor) 

was used for measurements of LLPS particle sizes, shapes, and displacement distances.
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Cell transfection—For adherent HeLa and HEK293T cells, 4 × 105 cells were seeded 

directly into 12-well plates (VWR) for western blotting, and 1.5 × 105 cells were seeded 

onto sterile coverslips (18 mm ø No. 1 German cover glasses, VWR VistaVision™, VWR 

International) deposited into 12-well plates for imaging. 0.8 × 105 cells were seeded per 

chamber of 4-chamber wells (Lab-Tek®II Chambered #1.5 German Coverglass System; 

ThermoFisher) for live cell imaging microscopy. Cells were transfected 24 hr later with 

2 µg plasmid DNA per well using JetPrime (PolyPlus) according to the manufacturer’s 

instructions. pcDNA3.1 was used as control for transfections with pNL4–3, and pRluc-N1 

was used as control for experiments using p2-p1/Rluc (i.e., NC-RLuc). Jurkat T cells were 

transfected with 3 µg of plasmid DNA per 1 × 106 cells using JetPrime (PolyPlus) for 12 

days prior to treatments or collection.

Reagents used for treatment and Zn2+ chelation and detection—Cells were 

treated with 500 µM sodium arsenite (ARS) (NaAsO2; Sigma-Aldrich # S7400) for 1 

hr prior to collection or fixing onto cover glasses. Cells were treated with indicated 

concentrations of TPEN (N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine) (10, 20, 

or 40 µM) (Sigma-Aldrich # P4413), azodicarbonamide (ADA; 50µM, Sigma-Aldrich 

#A96606) or 2,2′-dithiobisbenzamide-1 (DIBA-1; 100µM, Sigma-Aldrich #PZ0634) for 1hr 

prior to cell harvest. For visualization of Zn2+, cells were loaded with 1 µM FluoZin-3 

AM (Thermo Fisher Scientific) and 0.02% Pluronic F-127 (Thermo Fisher Scientific # 

P3000MP) for 40 min, washed, and given fresh media. NC-LLPSs were treated with 500 

µM ARS, 20 µM TPEN, or 3.5% 1,6-hexanediol (HEX) (Sigma-Aldrich #240117). The 

HIV-1 PR inhibitor saquinavir (SAQ) was obtained from the Division of AIDS, NIH through 

the NIH AIDS Research Reference and Reagent Program, and was used from the time of 

transfection to the time of collection.

Fluorescence in situ hybridization, immunofluorescence—FISH/IF co-analyses 

on adherent and suspension cells were performed exactly as described previously (Monette 

et al., 2009; Vyboh et al., 2012). Briefly, for suspension cells, sterile 18 mm ø No. 1 cover 

glasses (VWR) were treated with 0.1% poly-L-lysine solution (Sigma) overnight at 4°C. 

Cover glasses were dropped into wells, and cells were allowed to settle onto these for 1 

h at 37°C prior to fixing cells onto cover glasses. For fixing or cells onto cover glasses, 

cells were washed once in D-PBS (Wisent) and fixed with 4% paraformaldehyde for 20 

min. Fixed cells were then washed with D-PBS, quenched in 0.1 M glycine for 10 min, 

washed with D-PBS, permeabilized in 0.2% Triton X-100 for 5 min and washed twice 

with D-PBS. A digoxigenin-labeled RNA probe was synthesized in vitro in presence of 

digoxigenin-labeled UTP (Roche). To stain the vRNA, cells were DNase (Invitrogen) treated 

for 15 min (25 U per coverslip), then incubated in hybridization solution for 16–18 h at 42°C 

(50% formamide, 1 mg/ml tRNA, 2 × SSPE, 5 × Denharts, 5 U RNaseOut (Invitrogen), 50 

ng probe). Cells were then incubated in 50% formamide for 15 min at 42°C and incubated 

twice in 2 × SSPE for 5 min each at 42°C. Cells were briefly washed in PBS before 

being blocked in 1 × blocking solution (Roche). Primary antibodies were applied for 1 h at 

37°C, and then washed for 10 min in PBS followed by secondary antibodies for 1 h. Cells 

were washed for 20 min in PBS before being mounted on glass slides using ProLong Gold 
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Antifade Reagent with DAPI (Life Technologies). Negative isotype-matched antibodies were 

used to control staining specificity.

Microscopy and imaging analyses—Laser confocal microscopy was performed using 

a Leica DM16000B microscope equipped with a WaveFX spinning disk confocal head 

(Quorum Technologies) and HCX PL APO / 40 ×, Oil / 0.75–1.25 NA CS and HCX 

PL APO / 63 ×, Oil / 0.60–1.40 NA BL objectives, and images were acquired with 

a Hamamatsu EM-charge coupled device digital camera. Scanning was performed and 

digitized at a resolution 1,024 × 1,024 pixel. For multi-color image capture, AlexaFluor-647, 

−594, 488, conjugated secondary antibody emissions were sequentially captured with 

665–715, 570–620, and 500–550, bandpass filters, followed by 435–485 nm [for 4′,6-

diamidino-2-phenylindole (DAPI) staining], and then DIC image capture. For live cell 

experiments, imaging capture experiments of NC-YFP transfected cells began 4 hr post 

transfection. Multiwell chambered cell culture dishes (LabTek) were transferred to a closed 

stage-top incubator, preheated to 37°C and infused with 5% CO2. Transfected cells were 

located, and still images of YFP (YFP ET540/30 m filter) and DIC were captured. To 

avoid bleaching YFP signal during video recording, signal intensity was first observed 

to set live cell imaging capture to low laser power (i.e., 47%) and exposure time (i.e., 

561 ms), and boosted sensitivity (i.e., 255). Videos were captured using a heated 63 × 

NA 1.40 objective. Images were recorded from laser-scanned cell layers with a thickness 

of 1 µm and were digitized at a resolution of 1024 × 1024 pixels. Raw .liff files were 

exported by the Volocity software (Perkin Elmer) for import into Imaris and ImarisColoc 

software v. 8.1.2 (Bitplane/Andor) used for generation of new colocalization channels, 

and .csv exports of quantitative measurements of mean signal intensity values used for 

downstream data harmonizing and statistical analyses using Excel (Microsoft) and GraphPad 

v6.1 (Prism), respectively. The steady state localization of NC-YFP was first recorded for 9 

minutes. For TPEN experiments, we first, focused on live cells having established NC-YFP 

structures, and took still capture DIC images of starting cell populations, then rapidly 

changed unconditioned medium for medium containing 20 µM TPEN, and begun recording 

live cell videos to observe NC-YFP behavior for 360 s. TPEN containing medium was then 

replaced with unconditioned medium, to again record NC-YFP behavior for another 360 

s. Unconditioned medium was again replaced with medium containing 20 µM TPEN, and 

NC-YFP behavior was recorded again for 360 s. Finally, DIC image were recorded. Videos 

were exported as .avi files from Volocity software (Perkin Elmer).

Western blot analysis—Cells were collected at indicated times post transfection. Cells 

were first washed with D-PBS, then lysed in ice-cold lysis buffer (100 mM NaCl, 10 

mM Tris, pH 7.5, 1 mM EDTA, 0.5% Nonidet P-40, protease and phosphatase inhibitor 

cocktail [Roche]). For cell free virus analyses, cells were washed twice with ice-cold 

D-PBS, treated with 0.1% trypsin–0.02% EDTA 2 × for 5 min at 37°C, and washed 

twice with D-PBS prior lysis buffer (Yao et al., 1998). Cell lysates were quantified using 

the Bradford assay (Bio-Rad), used according to manufacturer instructions, and 20 µg of 

total cell lysates were denatured in Laemmli sample buffer and incubated for 5 min at 

95°C prior to loading into SDS-PAGE protein separating gels. Gels were transferred onto 

polyvinylidene difluoride membranes (company). Membranes were blocked with 5% non-fat 
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milk in Tris-buffered saline and 0.5% Tween 20 (TBST) prior to incubation with primary 

antibodies listed. Membranes were washed 3 times with TBST, and then probed with 

secondary HRP-conjugated secondary antibodies listed. Proteins of interest were detected 

using the Western Lightning Plus-ECL reagent kit (Perkin-Elmer). Signal intensity was 

quantified by ImageJ (NIH).

Virus quantification from supernatants—Culture supernatants from HeLa, HEK293T 

and Jurkat T cells were harvested and passed through a 0.2 µm filter (VWR) to remove 

cellular debris and centrifuged at 3,000 rpm for 20 mins. HIV-1 virus-p24 antigen levels 

in culture supernatants were assessed using the 96-well plate format HIV-1 p24 Antigen 

Capture Assay ELISA kit (Advanced Biosciences Laboratories, #5421).

Infectivity assay—Viral titer in cell supernatants was quantified using the X-gal staining 

assay in TZM-bl cells as described previously (Rao et al., 2019; Xing et al., 2016), where 

TZM-bl cells seeded onto 96-well plates were subjected to dilutions of supernatants from 

each condition for 48 hours, and were then fixed using 1% paraformaldehyde, washed, and 

treated with X-Gal for the detection of β-galactosidase.

Informatics—A Predictor of prion-like domains (PLAAC; http://plaac.wi.mit.edu/), a 

predictor of Natural Disordered Regions (PONDR; http://www.pondr.com/), and a protein 

disorder database (MobiDB; http://mobidb.bio.unipd.it/) were used to identify and validate 

the positions of PrLDs cellular proteins, HIV-1 PR protein, and Gag proteins from various 

retroviruses, and to examine their distributions relative to NC ZnF positioning. For PLAAC, 

the Gag FASTA sequences were obtained from the NCBI protein sequence database and 

applied to the software using default parameters. From software outputs, predicted PrLDs 

having > 0.8 score were mapped out. For PONDR, the Gag FASTA sequences were obtained 

the same way as PLAAC, however the name of the retrovirus was manually typed out in 

the ‘Protein name’ section. In the ‘Predictor’ section, VLXT and VSL2 were selected, but 

the ‘Output options’ remained untouched. For a more stringent cut-off, only the regions 

that peaked above 0.8 on the PONDR Score were considered during the mapping process. 

Several HIV-1 sequences from different strains were analyzed using both PLAAC and 

PONDR. These predictions were subsequently validated using MobiDB. The full name of 

the retrovirus in addition to the key word ‘Gag’ was typed into the search engine. The 

consensus PrLDs in the overview tab were used to validate the PrLD maps that were 

scaled and finalized using Illustrator. Finally, the ZnF placements were determined using the 

NCBI protein sequence database and scaled for each Retrovirus. For Spumaviruses lacking 

traditional ZnF motif, predefined RGG/RG motifs were mapped instead using a protein 

sequence analysis tool perry.

QUANTIFICATION AND STATISTICAL ANALYSIS

All experiments were performed in triplicate with similar results, unless otherwise indicated 

in figure legends as n = #. Statistical analyses for each figure panel are presented 

below. Three independent observers validated phenotypes resulting from all experimental 

conditions tested. Cellular imaging statistics reported for MFI and calculated SG-positive 

cell numbers are from observation of average of n = 120 cells per condition tested. SGs were 
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identified as G3BP1+ foci, and cells were scored as SG-positive when they had at least three 

G3BP1+ foci ranging in size from 200 to 300 nm in diameter (Jain et al., 2016; Thomas et 

al., 2009; Wheeler et al., 2016), as measured using Imaris software. LLPS imaging statistics 

result from counting an average of n = 2,000 LLPS per condition tested, or 10 63× frames 

where LLPSs were diminished or absent as a result of applied treatments. LLPS dynamics 

statistics were calculated from the analysis of an average of n = 20 LLPS per condition 

tested. Statistical analyses were performed using Prism V6.01, GraphPad, where one-way 

ANOVA (with Tukey’s post-test) and 95% CI was used for multiple comparisons, and an 

unpaired 2-tailed Student’s t test with 95% CI was used to compare two groups. Data are 

presented as mean ± SEM or SD, as indicate in figure legends, and P values of less than 0.05 

were considered to indicate a statistically significant difference.

Figure 1A, boxplot: p < 0.0001, 95% CI −250.7 to −161.7

Figure 1B, boxplot: NC -ficoll versus NC -ficoll+cell lysate: p < 0.0001, 95% CI −399.0 to 

−260.5 Figure 1J, boxplot: NC WT versus NC ZnF mutant, p < 0.0001, 95% CI 141.3 to 

264.7

Figure 1K, boxplot: all p < 0.0001, no drug versus TPEN, 95% CI 178.6 to 253.2; no drug 

versus HEX, 95% CI 122.3 to 196.8; no drug versus ARS, 95% CI 53.6 to 117.1. ****, p < 

0.0001, 1-way ANOVA, Tukey post-test.

Figure 2A: boxplots (right) (p < 0.0001; no drug versus 40 µM TPEN; 95% CI 445.3 to 

1271.0); boxplots (bottom right) (p < 0.0001; no drug versus 40 µM TPEN; 95% CI 4.586 to 

12.14).

Figure 2B: drug versus 40 µM TPEN, p = 0.0045, 95% CI −612.2 to −73.33, 1-way 

ANOVA, Tukey post-test)

Figure 2D: boxplot (p = 0.0002, 95% CI 218.8 to 785.6).

**, p < 0.01; ***, p < 0.001; ****, p < 0.0001; 1-way ANOVA, Tukey post-test.

Figure 3A: G3BP1 signal intensity (ARS + versus ARS+TPEN +; p < 0.0001, 95% CI 

−737.8 to −380.7, 1-way ANOVA, Tukey post-test), and vRNA-G3BP1 colocalization (ARS 

+ versus ARS + TPEN +; p < 0.0001, 95% CI −385.8 to −170.9).

Figure 3B: TPEN increases G3BP1 signal intensity (ARS+ versus ARS+TPEN[40 µM]

+; p < 0.0001, 95% CI −2624.0 to −827.3); vRNA-G3BP1 colocalization (ARS+ 

versus ARS+TPEN[40 µM]+; p < 0.0001, 95% CI −1219.0 to −494.1); (ARS+ versus 

ARS+TPEN[40 µM]+; p = 0.0261, 95% CI −911.4305 to −38.66125). *, p < 0.05; **, p < 

0.01; ***, p < 0.001; ****, p < 0.0001; 1-way ANOVA, Tukey post-test.

Figure 4A: Gag expression induced by TPEN treatment (pNL4–3 versus pNL4–3+TPEN; p 

< 0.0001, 95% CI −143.1 to −47.97). Data are mean ± SEM.

Figure 4B: Bar graph pNL4–3 versus pNL4–3+TPEN; p < 0.0001, 95% CI 33.61 to 76.79; 

pNL4–3 versus pNL4–3+HEX, p < 0.0001, 95% CI 33.63 to 81.98; pNL4–3 versus pNL4–
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3+ARS, p < 0.0001, 95% CI 48.20 to 91.55; pNL4–3/pRLuc versus pNL4–3/pNC-RLuc; p 

< 0.0001, 95% CI 42.90 to 86.24). Data are mean ± SD. *, p < 0.05; ***, p < 0.001; ****, p 

< 0.0001; 1-way ANOVA, Tukey post-test.

Figure 5B: Bar graph NC ZnF mutant cannot block SG assembly relative to WT pNL4–3 (p 

< 0.0001, 95% CI −81.97 to −54.97); bar graph (+40 µM TPEN; p < 0.0001, 95% CI −49.91 

to −20.33) Data are mean ± SD.

Figure 5D: boxplots nuclear retention of the vRNA (-drug versus +ADA, p < 0.0001, 95% 

CI −510.0 to −262.3; -drug versus DIBA, p < 0.0001, 95% CI −430.4 to −260.8; -drug 

versus TPEN, p < 0.0001, 95% CI −354.3 to −116.8; pNL4–3 versus pNL4–3 NC-C15S-

C49S, p < 0.0001, 95% CI −523.1 to −247.1). *, p < 0.05; ***, p < 0.001; ****, p < 0.0001; 

1-way ANOVA, Tukey post-test.

Figure 6E: boxplots (right) (HIV-1, -drug versus ADA, p < 0.0001, 95% CI 169.8 to 217.8; 

HIV-1, -drug versus DIBA, p < 0.0001, 95% CI 105.6 to 159.7; SIV, -drug versus ADA, p < 

0.0001, 95% CI 89.49 to 157.0; SIV, -drug versus DIBA, p < 0.0001, 95% CI 71.54 to 141.5; 

MuLV, -drug versus ADA, p < 0.0001, 95% CI 93.35 to 147.1; MuLV -drug versus DIBA, p 

= 0.0300, 95% CI 2.012 to 55.77; HTLV-1, -drug versus DIBA, p < 0.0001, 95% CI 97.48 to 

179.1; RSV, -drug versus DIBA, p = 0.0294, 95% CI 3.053 to 82.06). *, p < 0.05; ****, p < 

0.0001; 1-way ANOVA, Tukey post-test.

DATA AND CODE AVAILABILITY

This study did not generate any unique datasets or code. The retroviral Gag and 

other protein sequences examined for PrLDs and ZnFs were obtained through the 

NCBI Reference Sequence Database (RefSeq) and GenBank: HIV-1: AAD39400.1; SIV: 

AEK79593.1; FIV: CAA48157.1; EIAV: ACT31322.1; HTLV-1: AAB20767.1; RSV: 

CAA48534.1; MuLV, RefSeq: NP_040332; HTLV-2: CAA73488.1; BLV: AAA42784.1; 

MVV: AAB25459.1; HIV-2: AAA76840.1; ALV: AJG42160.1; SRV: BAD89356.1; 

MMTV: AAF31472.1; FFV: AGC11912.1; SFVagm = RefSeq: YP_001956721.2; SFVcpz: 

AAA19977.1; HFV: GenBank: CAA68998.1; FeLV: AAA43054.1; GALV: ALV83305.1; 

PERV: CAA76581.1; BFV: AWK77106.1; SnRV = RefSeq: NP_043925.1; WDSV, RefSeq: 

NP_045938.1; HERV-W: AAF74213.1; HERV-K: CAA69289.1; JSRV: CAA01899.1; 

TIA1, GenBank: EAW99824.1; hnRNPA2B1, RefSeq: XP_005249786.1; hnRNPA0, 

RefSeq: NP_006796.1; hnRNPA1L2, RefSeq: NP_001011725.1; DAZAP1, RefSeq: 

NP_061832.2; RNApolII, GenBank: AAT12524.1; HEWL, PDB: 1LSZ_A; BPT1, RefSeq: 

NP_001001554.2; CALM1, GenBank: AAD45181.1; UB, GenBank: AA36789.1; REV, 

GenBank: AYF56141.1; CRM1, GenBank: CAA69905.2; DDX1, RefSeq: NP_004930.1; 

DDX11, RefSeq: NP_085911.2; DDX17, GenBank: CAG30318.1; DDX18, GenBank: 

CAG33341.1; DDX21, RefSeq: NP_004719.2; DDX24, RefSeq: NP_065147.1; DDX3, 

GenBank: AAC34298.1; DDX4, RefSeq: NP_077726.1; DDX5, RefSeq: NP_001307524.1; 

DHX36, GenBank: AAH36035.1; DHX9, RefSeq: NP_001348.2; Eif5A, GenBank: 

AAH80196.1; PIMT, GenBank: AAH07501.1; RanGTP, GenBank: CAG29343.1; RHA, 

GenBank: AML93444.1; RIP, GenBank: AAH46349.1; Sam68, RefSeq: NP_006550.1.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Retroviral Gag proteins have conserved intrinsically disordered prion-like 

domains

• Pan-retrovirus family nucleocapsid proteins induce liquid-liquid phase 

separation

• Nucleocapsid protein phase separation and stress granule assembly is Zn2+ 

dependent

• Zn2+ chelators and ejectors induce nuclear repositioning of the genomic RNA
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Figure 1. Zn2+-Dependent HIV-1 NC Phase Separation Is Dynamically Influenced by the 
Cellular Microenvironment
(A) LLPS titration of NC protein (green) mixed with phase separation buffer and Ficoll, 

visualized by laser microscopy and DIC, with corresponding boxplots (n = 3).

(B) Ficoll-substituted cell homogenates inducing NC-LLPSs (green), with corresponding 

boxplots (n = 3).

(C) NC-LLPSs (cyan arrows) versus cellular RNP aggregates (black arrows) from cell 

homogenate experiments (n = 3).

(D) Dynamic (strong cyan), interacting (blue), and fusing (yellow) behaviors of cell 

homogenate-induced NC-LLPS (n = 3). (C and D) Colored circles define examples of LLPS 

behaviors.

(E–G) Traced distances traveled by (E) dynamic (strong cyan), (F) interacting (blue, purple), 

and (G) (red, green) fusing (yellow) NC-LLPS (n = 3); x-y distance (µm), linear distance 

traveled; total distance (µm), sum total distances traveled.
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(H) Boxplots of NC-LLPS travel rates colored as in (E) to (G) (n = 3).

(I) Co-condensation of NC-LLPS and mCherry-Gag from cell homogenate (n = 3).

(J) Effect of linker or ZnF mutant NC proteins on NC-LLPSs, with corresponding boxplots 

(right) (n = 3).

(K) Effect of drugs on NC-LLPSs, with supporting boxplots (right) (n = 3).

Statistical analysis details are described in STAR Methods. Boxplot horizontal lines indicate 

median, and whiskers are minimum to maximum.

NC, nucleocapsid; NC-AF488, AlexaFluor 488-labeled NC; DIC, differential interference 

contrast; tot, total; t, time; s, second; avg., average; ns, non-significant.
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Figure 2. HIV-1 NC-SGs and NC-vRNA-Gag RNPs Are Disrupted by Zn2+ Chelation
(A) HeLa cells transfected with pNC-RLuc (p2-p1/Rluc) (red) and treated with TPEN (0–40 

µM), reversing NC-mediated G3BP1+ SGs (cyan), with corresponding boxplots (right) of 

decreased NC-RLuc-G3BP1 colocalization by TPEN (top right) (n = 3), and decreased 

NC-induced SGs by TPEN (bottom right) (n = 3). White dashed cell outlines indicate cells 

that do not express NC-RLuc. Yellow dashed boxes and corresponding close-up images 

(right) demonstrate nuclear NC-RLuc via NC-RLuc-DAPI colocalization.

(B) HeLa cells transfected with pNC-RLuc (red) and treated with TPEN (40 µM), with 

effects on Zn2+ distribution (green, FluoZin-3) and reversal of NC-mediated G3BP1+ SGs 

(cyan) (n = 3).

(C) HeLa cells co-transfected with pNC-RLuc and proviral construct pNL4–3, and treated 

with TPEN (20 µM), for effects on NC (green), Gag (red), and DDX6 (cyan) localization, 

with corresponding boxplots (bottom) (n = 4).
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(D) HeLa cells co-transfected with pNC-RLuc and pNL4–3, and treated with TPEN 

(20 µM), for effects on NC (green), Gag (cyan), and vRNA (red) localization, with 

corresponding boxplots (bottom) showing decreased NC-vRNA colocalization by TPEN 

(n = 4). Statistical analysis details described in STAR Methods. Boxplot horizontal lines 

indicate median, and whiskers are minimum to maximum. µm, micron; RLuc, Renilla 

Luciferase; ∩, colocalization (intersection); MFI, mean fluorescence intensity; ns, non-

significant.
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Figure 3. Zn2+ Chelation Reverses the HIV-1 SG-Blockade and Induces vRNA Localization to 
SGs
(A) Infected Jurkat T cells treated with ARS (500 µM) and/or TPEN (20 µM) for effects 

on SG assembly and localization of G3BP1 (cyan), vRNA (red), and Gag (green), with 

corresponding boxplots (bottom), showing TPEN increases G3BP1 signal intensity (ARS + 

versus ARS+TPEN+), and vRNA-G3BP1 colocalization (ARS + versus ARS+TPEN+) (n = 

3).

(B) HeLa cells transfected with pNL4–3 and treated with ARS (500 µM) and/or TPEN (20 

or 40 µM) for effects on SG assembly and localization of G3BP1 (cyan), vRNA (red), and 

Gag (green), with corresponding boxplots (bottom), showing TPEN increases G3BP1 signal 

intensity (ARS+ versus ARS+TPEN, 40 µM), vRNA-G3BP1 colocalization (ARS + versus 

ARS+TPEN, 40 µM), but that TPEN in ARS-treated cells has a lesser effect on G3BP1-

Gag colocalization (ARS + versus ARS+TPEN, 40 µM) or Gag-vRNA colocalization (ns, 

non-significant) (n = 4). Statistical analysis details described in STAR Methods. Boxplot 
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horizontal lines indicate median, and whiskers are minimum to maximum. RLuc, Renilla 

Luciferase; ∩, colocalization (intersection); MFI, mean fluorescence intensity.
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Figure 4. Zn2+ Chelation Leads to Cellular Retention of HIV-1 Gag and Decreased Virus 
Production
(A) Bar graph from western blots (Figure S2) of effects of drugs on Gag expression, 

showing increased Gag by TPEN treatment (pNL4–3 versus pNL4–3+TPEN) (n = 3).

(B) Bar graph of effects of drugs on virus production or on pNC-RLuc expression (pNL4–

3 versus pNL4–3+TPEN; pNL4–3 versus pNL4–3+HEX; pNL4–3 versus pNL4–3+ARS; 

pNL4–3/pRLuc versus pNL4–3/pNC-RLuc) (n = 4); avg, average. Statistical analysis details 

described in STAR Methods.
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Figure 5. HIV-1 NC ZnF Mutants Reverse the HIV-1 SG-Blockade and Induce vRNA 
Localization to SGs
(A) HeLa cells transfected with pNL4–3 NC ZnF mutant (NC-C15S-C39S) and treated with 

ARS (500 µM) and/or TPEN (40 µM) for effects on SG assembly and localization of G3BP1 

(cyan), vRNA (red), and Gag (green), where NC ZnF mutant cannot block SG assembly and 

restricts the vRNA to SGs and nuclei (n = 4).

(B) Bar graph comparing SG numbers in HeLa cells across conditions tested, including data 

presented in Figure 3B; demonstrating that the pNL4–3 NC ZnF mutant cannot block SG 

assembly relative to WT pNL4–3 transfected cells, which is unaltered by TPEN (40 µM) (n 

= 4).

(C) HeLa cells transfected with WT pNL4–3 and treated with ADA (100 µM) or DIBA-1 

(50 µM) for their effects on localization of G3BP1 (cyan), vRNA (red), and Gag (green), 

where both drugs cause the nuclear retention of the vRNA (n = 3).
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(D) Boxplots of vRNA-DAPI colocalization comparing effects of ADA or DIBA-1 with 

other conditions tested; demonstrating that all Zn2+ drugs cause nuclear retention of the 

vRNA (−drug versus +ADA; −drug versus DIBA; −drug versus TPEN; pNL4–3 versus 

pNL4–3 NC-C15S-C49S) (n = 3). Statistical analysis details described in STAR Methods. 

Boxplot horizontal lines indicate median, and whiskers are minimum to maximum; ∩, 

colocalization (intersection); MFI, mean fluorescence intensity.
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Figure 6. Pan-Retrovirus NC Proteins Condense into Zinc-Dependent LLPSs
(A) Predicted Gag PrLDs (blue), mapped ZnFs (orange), and RRMs (yellow).

(B) Phylogeny of retrovirus subfamily members, NC-LLPS tested, colored; modified from 

Linial (1999) and Weiss (2006).

(C) Boxplots of pan-retrovirus NC-LLPSs (see also Figure S3B) (n = 4).

(D) Sequences, lengths, and ZnF-Zn2+ positions (blue) of NCs tested for LLPS.

(E) Pan-retrovirus NC-LLPSs (left), with boxplots (right) of their disruption by Zn2+ 

depletion treatments, with all highly sensitive to freeze/thaw or TPEN treatment (all p < 

0.0001), but some differently affected by ADA and DIBA-1 (HIV-1, −drug versus ADA; 

HIV-1, −drug versus DIBA; SIV, −drug versus ADA; SIV, −drug versus DIBA; MuLV, 

−drug versus ADA; MuLV −drug versus DIBA; HTLV-1, −drug versus DIBA; RSV, −drug 

versus DIBA) (n = 3). Statistical analysis details described in STAR Methods. Boxplot 

horizontal lines indicate median, and whiskers are minimum to maximum. Retroviruses 
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are defined in the Key Resources Table; PrLDs, prion-like domains; ZnFs, zinc fingers; 

RRMs, RNA-recognition motifs; aa, amino acid; DIC, differential interference contrast; ns, 

non-significant.
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Figure 7. ZnF-Dependent Dynamically Formed Cellular NC-LLPSs Are Zn2+-Chelation 
Sensitive
(A) Still images of NC-YFP experiment videos (see Videos S1, S2, S3, S4, S5, S6, S7, 

S8, S9, S10, S11, and S12) of HeLa cells transfected with WT NC-YFP, with established 

NC-SGs (top), and de novo NC-LLPS assemblies (white arrows, bottom) (n = 3).

(B) Methodology of NC-YFP TPEN treatments.

(C) Video of HeLa cells transfected with WT NC-YFP, where TPEN treatment disrupts 

NC-SGs and is reversible (n = 3).

(D) Locations of TPEN-sensitive NC-SGs (white arrows), and DIC images demonstrating 

morphology is unaffected by treatments.

(E) As in (C), for nuclear phenotype of ZnF-mutated NC-YFP unaffected by TPEN 

treatment (n = 3).

(F) As in (D), where TPEN has no effect on ZnF mutant NC-YFP or morphology.
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(G) As in (C) and (E), for cytoplasmic phenotype of ZnF-mutated NC-YFP unaffected by 

TPEN treatment (n = 3).

(H) As in (D) and (F), where TPEN has no effect on ZnF mutant NC-YFP or morphology.

WT, wild-type; MUT, mutant; YFP, yellow fluorescent protein; t, time; s, second.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-HIV-1 p24 Monoclonal NIH AIDS Reagent Program Cat#3537

Anti-HIV-1 SF2 p24 Polyclonal NIH AIDS Reagent Program Cat#4250

Goat antiserum against NCp7 Robert Gorelick, Institute National Cancer N/A

Rabbit anti-DDX6 Bethyl Laboratories Cat#A300–461A, RRID:AB_2277216

Rabbit anti-G3BP1 Imed Gallouzi, McGill University Gallouzi et al., 1998

Goat anti-G3BP1 Santa Cruz Biotechnology Cat#sc-70283, RRID:AB_2107230

Goat anti-TIAR Santa Cruz Biotechnology Cat#sc-1749,RRID:AB_632508

Rabbit anti-Renilla Luciferase MBL International Cat#PM047, RRID:AB_1520866

Sheep anti-Digoxigenin-AP, Fab fragments Sigma Cat#11093274910, RRID:AB_514497

rabbit anti-phospho-eIF2α Cell Signaling Technology Cat#9721, RRID:AB_330951

rabbit anti-eIF2α Cell Signaling Technology Cat#9722, RRID:AB_2230924

rabbit anti-cleaved caspase-3 Cell Signaling Technology Cat#9661, RRID:AB_2341188

rabbit anti-beta Actin Abcam Cat#ab8227, RRID:AB_2305186

rabbit anti-GFP Novus Biologicals Cat#NB600–308

Donkey anti-Mouse IgG (H+L) Highly Cross-
Adsorbed, Alexa Fluor® 488

Invitrogen Cat#A-21202, RRID:AB_10003058

Donkey anti-Rabbit IgG (H+L) Highly Cross-
Adsorbed Secondary Antibody, Alexa Fluor® 488

Invitrogen Cat#A-21206, RRID:AB_2535792

Donkey anti-Rabbit IgG (H+L) Highly Cross-
Adsorbed, Alexa Fluor® 594

Invitrogen Cat#A-21207, RRID:AB_141637

Donkey anti-Sheep IgG (H+L) Cross-Adsorbed, 
Alexa Fluor® 594

Invitrogen Cat#A-31573, RRID:AB_2716768

Donkey anti-Rabbit IgG (H+L) Highly Cross-
Adsorbed, Alexa Fluor® 647

Invitrogen Cat#A-31573, RRID:AB_2536183

Donkey anti-Goat IgG (H+L) Cross-Adsorbed 
Secondary Antibody, Alexa Fluor® 647

Invitrogen Cat#A-21447, RRID:AB_141844

goat anti-mouse IgG (H+L) Polyclonal Antibody 
(HRP (Horseradish Peroxidase))

Rockland Immunochemicals Cat#ROCK610–1319, RRID:AB_219659

goat anti-rabbit IgG (H+L) Polyclonal Antibody 
(HRP (Horseradish Peroxidase))l

Rockland Immunochemicals Cat#ROCK611–1322, RRID:AB_219723

donkey anti-goat IgG (H+L) Polyclonal Antibody 
(HRP (Horseradish Peroxidase))

Rockland Immunochemicals Cat#ROCK711–703, RRID:AB_840935

Chemicals, Peptides, and Recombinant Proteins

HIV-1/NL4–3 (NCp7-WT) Robert Gorelick, National Cancer Institute Wu et al., 1996

HIV-1/NL4–3 (NCp7-SSHS/SSHS mutant) Robert Gorelick, National Cancer Institute Guo et al., 2000

HIV-1/NL4–3 (NCp7-linker mutant) Robert Gorelick, National Cancer Institute Wu et al., 2014a

EIAV (NCp11-WT) Robert Gorelick, National Cancer Institute Stewart-Maynard et al., 2008

FIV (NCp10-WT) Robert Gorelick, National Cancer Institute Wu et al., 2014b

HTLV-1 (NCp15-WT) Robert Gorelick, National Cancer Institute Stewart-Maynard et al., 2008

MuLV (NCp10-WT) Robert Gorelick, National Cancer Institute Stewart-Maynard et al., 2008

RSV (NCp12-WT) Robert Gorelick, National Cancer Institute Stewart-Maynard et al., 2008

SIV/Mne (NCp8-WT) Robert Gorelick, National Cancer Institute Post et al., 2016

HIV-1 Gag protein Abcam Cat#ab109969

Cell Rep. Author manuscript; available in PMC 2022 March 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Monette et al. Page 49

REAGENT or RESOURCE SOURCE IDENTIFIER

FluoZin-3, AM, cell permeant Thermo Fisher Scientific Cat#F24195

Alexa Fluor 488 Microscale Protein Labeling Kit Thermo Fisher Scientific Cat#A30006

DMEM GIBCO / Thermo Fisher Scientific Cat#11965–118

RPMI 1640 Invitrogen Cat#11875–119

FBS Wisent Cat#080–150

Penicillin-streptomycin Wisent Cat#450–201-EL

HEPES VWR Cat#CA-EM5320

Ficoll (Lymphocyte Separation Medium) Corning Cat#25–072-CV

Dextran Sigma Cat#1179741

JetPrime (PolyPlus) VWR Cat#CA89129–924

Sodium Arsenite (NaAsO2) Sigma Cat#S7400

TPEN (N,N,N′,N′-Tetrakis(2-pyridylmethyl) 
ethylenediamine)

Sigma Cat#P4413

1,6-hexanediol Sigma Cat#240117

Saquinavir NIH AIDS Reagent Program Cat#4658

Trypsin/EDTA Thermo Fisher Scientific Cat#25200056

Pluronic F-127 Thermo Fisher Scientific Cat#P3000MP

Poly-L-lysine solution 0.1% (w/v) in H2O Sigma Cat#P8920

D-PBS, 1X Wisent Cat#311–425-CL

Formamide VWR Cat#CAFX0420–8

Sodium Chloride EMD Chemicals Cat#Sx0420–5

Tris Bioshop Canada Cat#TRS001.5

EDTA-free Protease inhibitor tablets Roche Cat#11873580001

Paraformaldehyde Polysciences, Inc. Cat#18814

tRNA Invitrogen Cat#15401–021

Triton-X OmniPur, EMD Millipore Cat#9400

Denhardt’s Solution (50X) Thermo Fisher Scientific Cat#750018

DNasel Invitrogen Cat#18047–019

RNase OUT Invitrogen Cat#10777019

Fluorescent Antibody Enhancer Set for DIG 
Detection #4 (blocking solution)

Roche Cat#1768506

ProLong Gold Antifade Mountant with DAPI Invitrogen / Thermo Fisher Scientific Cat#P36931

DIG RNA Labeling Kit Sigma Cat#11277073910

Transcription T7 RNA Polymerase Invitrogen Cat#18033–019

Critical Commercial Assays

Pierce ECL Plus western blotting Substrate Thermo Fisher Scientific Cat#32132

Bradford protein assay BioRad Cat#500–0006

HIV-1 p24 Antigen Capture Assay ELISA kit Advanced Biosciences Laboratories Cat#5421

Deposited Data

HIV-1 NCBI protein sequence database GenBank: AD39400.1

SIV NCBI protein sequence database GenBank: AEK79593.1

FIV NCBI protein sequence database GenBank: AA48157.1

EIAV NCBI protein sequence database GenBank: ACT31322.1
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REAGENT or RESOURCE SOURCE IDENTIFIER

HTLV-1 NCBI protein sequence database GenBank: AAB20767.1

RSV NCBI protein sequence database GenBank: AA48534.1

MuLV NCBI protein sequence database RefSeq: NP_040332.

HTLV-2 NCBI protein sequence database GenBank: AA73488.1

BLV NCBI protein sequence database GenBank: AAA42784.1

MVV NCBI protein sequence database GenBank: AAB25459.1

HIV-2 NCBI protein sequence database GenBank: AAA76840.1

ALV NCBI protein sequence database GenBank: AJG42160.1

SRV NCBI protein sequence database GenBank: AD89356.1

MMTV NCBI protein sequence database GenBank: AAF31472.1

FFV NCBI protein sequence database GenBank: GC11912.1

SFVagm NCBI protein sequence database RefSeq: YP_001956721.2

SFVcpz NCBI protein sequence database GenBank: AAA19977.1

HFV NCBI protein sequence database GenBank: CAA68998.1

FeLV NCBI protein sequence database GenBank: AAA43054.1

GALV NCBI protein sequence database GenBank: ALV83305.1

PERV NCBI protein sequence database GenBank: CAA76581.1

BFV NCBI protein sequence database GenBank: AWK77106.1

SnRV NCBI protein sequence database RefSeq: NP_043925.1

WDSV NCBI protein sequence database RefSeq: NP_045938.1

HERV-W NCBI protein sequence database GenBank: AAF74213.1

HERV-K NCBI protein sequence database GenBank: CAA69289.1

JSRV NCBI protein sequence database GenBank: CAA01899.1

TIA1 NCBI protein sequence database GenBank: EAW99824.1

hnRNPA2B1 NCBI protein sequence database RefSeq: XP_005249786.1

hnRNPA0 NCBI protein sequence database RefSeq: NP_006796.1

hnRNPA1L2 NCBI protein sequence database RefSeq: NP_001011725.1

DAZAP1 NCBI protein sequence database RefSeq: NP_061832.2

RNApolII NCBI protein sequence database GenBank: AAT12524.1

HEWL NCBI protein sequence database PDB: 1LSZ_A

BPT1 NCBI protein sequence database RefSeq: NP_001001554.2

CALM1 NCBI protein sequence database GenBank: AAD45181.1

UB NCBI protein sequence database GenBank: AAA36789.1

REV NCBI protein sequence database GenBank: AYF56141.1

CRM1 NCBI protein sequence database GenBank: CAA69905.2

DDX1 NCBI protein sequence database RefSeq: NP_004930.1

DDX11 NCBI protein sequence database RefSeq: NP_085911.2

DDX17 NCBI protein sequence database GenBank: CAG30318.1

DDX18 NCBI protein sequence database GenBank: CAG33341.1

DDX21 NCBI protein sequence database RefSeq: NP_004719.2

DDX24 NCBI protein sequence database RefSeq: NP_065147.1

DDX3 NCBI protein sequence database GenBank: AAC34298.1
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REAGENT or RESOURCE SOURCE IDENTIFIER

DDX4 NCBI protein sequence database RefSeq: NP_077726.1

DDX5 NCBI protein sequence database RefSeq: NP_001307524.1

DHX36 NCBI protein sequence database GenBank: AAH36035.1

DHX9 NCBI protein sequence database RefSeq: NP_001348.2

Eif5A NCBI protein sequence database GenBank: AAH80196.1

PIMT NCBI protein sequence database GenBank: AAH07501.1

RanGTP NCBI protein sequence database GenBank: CAG29343.1

RHA NCBI protein sequence database GenBank: AML93444.1

RIP NCBI protein sequence database GenBank: AAH46349.1

Sam68 NCBI protein sequence database RefSeq: NP_006550.1

Experimental Models: Cell Lines

HeLa (ATCC® CCL-2) American Type Culture Collection N/A

HEK293T/17 (ATCC® CRL-11268) American Type Culture Collection N/A

Jurkat, CE6–1 (ATCC® TIB-152) American Type Culture Collection N/A

TZM-bl NIH AIDS Reagent Program Cat#8129 (Platt et al., 2009; Takeuchi et 
al., 2008; Wei et al., 2002; Derdeyn et al., 
2000; Platt et al., 1998)

Recombinant DNA

pcDNA3.1 Thermo Fisher Scientific Cat#V79020

HIV-1 NL4–3 Infectious Molecular Clone (pNL4–3) NIH AIDS Reagent Program Cat#114

Gag-mCherry Paul Bieniasz, Rockefeller University, 
USA

Jouvenet et al., 2008

pG3BP1-GFP Imed Gallouzi, McGill University, Canada Tourriére et al., 2001

pNL4–3 NC-C15S-C49S Robert Gorelick, National Cancer Institute Guo et al., 2000

pRluc-N1 BioSignal Packar Cat#631000

p2-p1/Rluc Mouland Lab Chatel-Chaix et al., 2004

NC-p1R7-YFP Mouland Lab Chatel-Chaix et al., 2008

NC-p1C15–49S-YFP Mouland Lab Chatel-Chaix et al., 2008

pPR-EGFP Rongtuan Lin, McGill University Solis et al., 2011

pEGFP-C1 Clontech Cat#6084–1

Software and Algorithms

Imaris software v. 8.1.2 Oxford Instruments / Imaris https://imaris.oxinst.com/

Volocity v. 6.3 Perkin Elmer https://www.perkinelmer.com/

ImageJ National Institutes of Health (NIH) https://imagej.nih.gov/ij/

GraphPad v. 6.1 Prism https://www.graphpad.com/scientific-
software/prism/

Predictor of prion-like domains (PLAAC) Lancaster et al., 2014 http://plaac.wi.mit.edu/

Predictor of Natural Disordered Regions (PONDR) Molecular Kinetics, Inc.(Peng et al., 2006, 
2005; Romero et al., 2001)

http://www.pondr.com/

MobiDB: a database of protein disorder and mobility 
annotations

Piovesan et al., 2018 http://mobidb.bio.unipd.it/

Protein sequence analysis tool Philipp O. Tsvetkov Garnier, et al. (2017)

Other

Leica DM16000B laser confocal microscope Leica N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

WaveFX spinning disk confocal head Quorum Technologies N/A

Hamamatsu EM-CCD digital camera Hamamatsu N/A

Hybridization Oven Boekel Scientific Model 24100

Nitrocellulose membranes 0.2 µm Bio-Rad Cat#1620112

Quick Spin Columns Roche Cat#11814427001

4-chamber Lab-Tek®II Chambered #1.5 German 
Coverglass System

Thermo Fisher Scientific Cat#155382

12-well plates VWR Cat#CA62406–165

Boil proof 1.5 mL tubes DIAMED Cat#DIATE610–3167

Eppendorf® micropestles Sigma Cat#Z317314

25 × 75 mm x 1mm thick glass slides Thermo Fisher Scientific Cat#640–004T

18 mm ø No. 1 cover glasses VWR Cat#16004–300

0.2 µm Sterile syringe filters VWR Cat#28143–310
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