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Abstract: G protein-coupled receptor kinases (GRKs) are protein kinases that function in concert
with arrestins in the regulation of a diverse class of G protein-coupled receptors (GPCRs) signaling.
Although GRKs and arrestins are key participants in the regulation of GPCR cascades, the complex
regulatory mechanisms of GRK expression, its alternation, and their function are not thoroughly
understood. Several studies together with the work from our lab in recent years have revealed the
critical role of these kinases in various physiological and pathophysiological processes, including
cardiovascular biology, inflammation and immunity, neurodegeneration, thrombosis, and hemostasis.
A comprehensive understanding of the mechanisms underlying functional interactions with multiple
receptor proteins and how these interactions take part in the development of various pathobiological
processes may give rise to novel diagnostic and therapeutic strategies. In this review, we summarize
the current research linking the role of GRKs to various aspects of cell biology, pathology, and
therapeutics, with a particular focus on thrombosis and hemostasis.
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1. Introduction

G protein-coupled receptors (GPCRs) are the largest and most diverse class of signal-
ing proteins that affect an incredible array of physiological processes throughout the human
body. Therefore, one-third to half of all marketed drugs act by targeting GPCRs today.
However, humans alone have nearly 1000 various GPCRs, and single ligand–receptor inter-
action leads to the divergent downstream signaling pathways in cells [1]. The continuous
activation of these receptors may cause alteration in the physiological properties of the
normal cell. Moreover, “druggable GPCRs” may develop drug resistance due to long-term
exposure. These factors suggest that the long-held concept regarding GPCR signaling will
no longer be adequate to design the next generation of therapeutic drugs.

Several mechanisms prevent the hyperactivation of GPCR signaling, among which
GRKs and arrestins are the most important mechanism of terminating the GPCR activa-
tion, and these are therefore gaining popularity among researchers. GRKs initiate the
kinase-dependent homologous desensitization of GPCRs by phosphorylating the activated
GPCRs and allowing arrestin recruitment in a canonical pathway, thereby allowing cells
to adapt to changing extracellular signals and prevent excessive signaling. There is a
rapid loss of receptor responsiveness. GRKs also interact with other protein substrates
and regulate various cellular interactions in a non-canonical manner (the interactions of
GRKs with various proteins are depicted in Figure 1). Nevertheless, the profound data
implicating GRKs in various cell biologies and pathologies suggest that GRK regulation
can be considered as an important target of investigation in multiple aspects of diseases
and their comorbidities, new diagnostic and novel therapeutics that would uncover im-
proved treatments for diseases. Therefore, completely understanding the link between
agonist-induced GPCR phosphorylation and the associated physiological effects is critical
for the efficient targeting of cell signaling pathways in cell biology and diseases of high
clinical importance.
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Figure 1. The complex G protein-coupled receptor kinases (GRKs) reactome. GRKs regulate diverse
signaling pathways by interaction with proteins. GRKs interact with GPCRs in a canonical pathway.
In addition, evidence has suggested that GRKs modulate signaling by interacting with other protein
substrates in a non-canonical manner. They have a regulatory function with Gβγ subunits, other
interacting proteins, MeTransferase, and other protein kinases (PKs).

Here, we will review the current research linking the role of GRKs to several aspects
of cell biology and discuss the therapeutic strategies of targeting specific GRKs in different
diseases, with a particular focus on thrombosis and hemostasis.

2. GRKs and Arrestins in GPCRs Family
2.1. GPCR Signaling Pathway; General Overview

GPCRs are seven-transmembrane (7-TM) receptors constituting a large protein family
that connect intracellular and extracellular environments, and activate inside signal trans-
duction pathways, and ultimately cellular response. There are five subfamilies of GPCRs:
rhodopsin-like, secretin receptor, metabotropic glutamate, adhesion, and frizzled [2]. In
terms of structure, each receptor is characterized by an extracellular region consisting of
an N-terminus and three extracellular loops followed by a 7-TM α-helices region, and
finally the intracellular region which includes three intracellular loops, an intracellular
amphipathic helix, and the C-terminus [3]. Ligands such as light, proteins, ions, or small
chemicals induce conformational changes in GPCRs and activate these receptors by cou-
pling to heterotrimeric G protein complexes that consist of three subunits (Gα, β, and
γ) [4,5]. Upon receptor binding of the ligand, the Gα subunit is activated and exchanges
the active GTP-bound form in place of a GDP-bound form, which in turn triggers the dis-
sociation of the Gα subunit from the Gβγ dimer. These dissociated subunits individually
interact with the other specific intracellular effectors to continue the downstream GPCR
signaling cascade. The βγ complex also interacts with downstream effectors including
phosphoinositide 3-kinase γ (PI3Kγ) to activate GPCR-mediated signaling [6]. Further
signaling depends on the type of G protein (Gq/G11, G12/G13, Gi/Go/Gz, and Gs) each
GPCRs encounters, followed by unique physiological responses [7].

2.2. The GRK and Arrestin Family

Although several proteins have been shown to interact directly with the cell sur-
face 7-TM GPCRs [8], only two protein families besides heterotrimeric G proteins have
the potential to interact with the activated conformation of 7-TM receptors: the GRKs
and arrestins [9]. They are considered as the key modulators of important intracellular
GPCR signaling cascades, as well as GPCR phosphorylation, desensitization, intracellular
trafficking and resensitization [10–13]. GRKs belong to a subfamily of AGC-like kinases
and thus share a conserved AGC sequence necessary for kinase activity [14]. There are
three main types of GRKs based on the sequence homology: rhodopsin/visual kinases
(GRK1 and GRK7), the β-adrenergic receptor kinases (GRK2 and GRK3), and the GRK4
subfamily (GRK4, GRK5, and GRK6). GRK2, 3, 5, and 6 are ubiquitously expressed in
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mammalian tissues, whereas GRK1 and 7 are exclusively expressed in the rod and cone
cells, respectively, and GRK4 is expressed in testis, cerebellum, and kidney [15,16].

These seven different genes share a similar basic protein structure, with an N-terminal,
a central catalytic domain, and a unique variable-length C-terminal domain [17]. Each GRK
has a highly conserved N-terminus and shares a considerable homology, which is believed
to be critical for GPCR recognition, which renders it an important structure for the selective
targeting of GPCRs. Apart from bearing homology, the N-terminal region displays several
other motifs leading to an increase in its kinase catalytic activity. The C-terminal region
contains phosphorylation sites, and key determinants of the cellular location and interaction
with the lipids and/or membrane proteins, such as binding phosphatidylinositol 4,5-
bisphosphate (PIP2) and Gβγ [18,19]. GRKs are also substrates for different kinases that
take part in the modulation of kinase activity, localization, and stability [20]. The structure
of GRKs is depicted in Figure 2.
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Figure 2. Structural domain distribution of the GRK isoforms. All GRKs (60–80 KDa) have a short N-terminal domain
consisting of an α-N-terminal domain followed by an N-terminal regulator of G-protein signaling domain (RH: RGS
homology) where the G protein-coupled receptor (GPCR) binds. A central catalytic domain for GRKs catalysis and a unique
variable-length C-terminal domain (~105 to 230 amino acids) are important for receptor recognition. In contrast to other
isoforms, the β-adrenergic kinase (GRK2 and GRK3) has a pleckstrin homology domain (PH) necessary for terminating
Gβγ complex-related downstream signaling. The numbers above the domains represent amino acid residue as reported by
Lodowski et al. [21].

The arrestins are a small family of soluble proteins that specifically bind with the
GRK-phosphorylated GPCRs and turn off intracellular signaling [22–24]. There are four
members of the arrestin family. The expression of visual arrestins, arrestin 1 and arrestin
4, is restricted to retinal rod and cone cells, respectively. By contrast, non-visual arrestins,
arrestin 2 and arrestin 3 (known as β-arrestin1 and β-arrestin 2), are expressed ubiqui-
tously [25]. The amino acid sequences of the arrestin isoforms are 78% identical with most
of the coding differences at the C terminus of the protein [26]. Mice lacking either arrestin
2 or arrestin 3 are shown to be viable [27,28], but arrestin 2/arrestin 3 double knockout
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mice die in utero [29]. Although it is not clear, arrestin isoforms might substitute each other
functionally to some degree.

2.3. Cell Biology of GRKs and Arrestins in Signaling, Desensitization, Internalization, and Sorting
of GPCRs

Upon the ligand-binding activation of GPCR, G protein coupling, and signal trans-
duction, GRK comes and phosphorylates the cytoplasmic serine and threonine residues
of activated GPCR, enabling arrestin recruitment. The recruited arrestin then binds to
the phosphorylated GPCR, inhibits further G-protein coupling and terminates the down-
stream signaling, a process termed desensitization [30]. These arrestin-bound receptor
complexes are then targeted to clathrin-coated pits, where arrestin forms a multicomponent
complex with the key elements of internalization machinery, such as clathrin [31] and
adaptor protein-2 (AP-2) [32], and phosphoinositides, promoting endocytosis by budding
inwardly from the membrane, thus resulting in receptor internalization. Finally, internal-
ized GPCRs are sorted either into degradation or recycling compartments (Figure 3). This
phenomenon was first demonstrated by the Kuhn group by showing that the phosphory-
lation of rhodopsin was necessary to stop its signaling [33]. Later, the Lefkowitz group
reported that the β2-adrenergic receptor (β2-AR) is phosphorylated and desensitized by a
cAMP-independent kinase [34]. It was verified that there is a general mode of two-step
homologous GPCR desensitization where the active receptor is phosphorylated by one or
more GRKs, and further arrestin binding stops the receptor signaling by direct competition
with the G protein [35–38]. Various studies have been carried out showing that the GRKs’
kinase activity is regulated by interacting with multiple proteins, such as caveolin, RKIP,
calmodulin, clathrin, actin, PI3K, Akt, etc.
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Figure 3. Model depicting GRKs and arrestins in the signaling, desensitization and internalization.The activated 7-TM
receptor/GPCR is phosphorylated by GRK enabling arrestin recruitment and terminating G-protein coupling, finally
desensitizing GPCR downstream signaling by mediating the arrestin–receptor complex to clathrin-coated pits. This
promotes receptor internalization. The internalized receptor is finally sorted either by degradation or recycling. Refer to the
text for a detailed mechanism. Modified from Mohan et al. [39].
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There is a distribution of potential and established phosphorylation sites of GRKs in
the selected GPCRs. These phosphorylation sites may be localized at the cytoplasmic region
of the receptor. However, the potential GRK phosphorylation sites, their number, positions,
and arrestin-binding capacity may vary among the same as well as various receptor
subtypes. As the substitute of receptor desensitization, receptor internalization is often used
as a readout for arrestin recruitment. However, these two processes are separate and have
differential mechanistic requirements. In some cases, the phosphorylation of the receptor
may not be necessary or have an insignificant role in binding arrestins to the receptor, as
several arrestin-associated receptors do not require coated pits for internalization, while
other arrestins might appear to only mediate receptor internalization, not desensitization.
Usually, arrestin binding depends on the receptor’s C-cluster, which includes Thr307-Ser311
phosphorylation sites, and internalization is promoted by the phosphorylation of either
the N-cluster that includes Ser286-Ser290 residues, or the C-cluster [40,41]. It has also been
shown that some receptors do not recycle following internalization [42,43]. Therefore, there
are multiple modes of not only the GRK-mediated phosphorylation of receptor subtypes,
but also the succeeding arrestin recruitment, binding, and further downstream signaling,
and thus the classical model does not necessarily apply to overall GPCR signaling.

Moreover, there are substantially more types of GPCRs compared to GRKs that might
play a role in the interaction and phosphorylation of multiple GPCRs [44]. GRKs might
exhibit substrate specificity with selective GPCRs, despite their domains’ structural simi-
larity. Therefore, the biological function of each GRK isoform may differ remarkably [45].
Interestingly, GRKs can also substitute phosphorytable regions of their targeted GPCR
when the interacting domain is mutated [46]. It has been shown that agonist-induced
specific receptor conformation should be favorable for GRK binding and/or activation for
a receptor to be phosphorylated by GRKs [47]. Among other things, GPCRs have plenty of
promising serine and threonine phosphorylation sites. This suggests that these sites are not
likely to be targeted all at once. It has been suggested that the order of phosphorylation may
be either barcoded (where receptors responding to specific agonists will be phosphorylated
by various GRKs at distinct sites, thus establishing a “barcode”), sequential (where a higher
number of serine/threonine residues will be phosphorylated first) or hierarchical (where a
particular sequence of serine and threonine will be preferentially targeted) [48–51]. How-
ever, the role of GRKs during GPCR activation and how GRKs recognize conformational
changes in GPCR are still undetermined [52].

The cell type-dependent mechanisms of these GRKs on GPCRs, and how the specific
phosphorylation of protein residues would control the consequent physiopathology of
cell-biology and diseases, have just started to be untangled. The recent research in this area
is discussed below.

3. The Role of GRKs and Arrestins in Regulation of GPCRs Family
3.1. The Role of GRKs in Immune Cells and Inflammation

Chemotaxis plays a significant role in inflammatory signaling by enabling the immune
cells to appear at the site of inflammation. Chemokines-producing cells initiate the chemo-
taxis via chemokine receptor-mediated signaling (mainly GPCRs) through the integrated
modulation of different steps, including receptor sensing, cell polarization, membrane pro-
trusion, adhesion, or de-adhesion [53,54]. It has been demonstrated that chemokine GPCRs
undergo desensitization upon constant stimulation of the receptors. Immune cells express
high levels of GRK2, 3, 5, and 6, and are known to play a critical role in the modulation
of immune cell response by involvement in the regulation of various cellular responses,
such as scavenging, arrestins recruitment, signaling, and the desensitization of various
chemokine receptors. The detailed function of GRKs in immune cells and inflammation is
listed in Table 1.

Among various GRKs, GRK2 has been extensively studied in terms of chemotaxis and
has been shown to negatively regulate chemotactic responses via canonical negative GPCR
signaling [55–57]. It was shown to be involved in the regulation of cell type and stimulus-
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dependent immune cell migration [58,59]. Myeloid-specific GRK2 KO exhibited increased
circulating neutrophils and macrophages mobilization to inflammatory sites, suggesting
the desensitizing effect of GRK3 on chemokine receptors [60]. In malaria and sepsis,
neutrophils showed an increased expression of GRK2 levels associated with decreased
CXCR2 expression and reduced responses to IL-8 [61,62]. In contrast, it was shown that
chemotactic responses in few other cell types are positively mediated by GRK2 [63]. GRK2
also plays a non-canonical role in cell motility, as it was shown to phosphorylate proteins
such as ezrin, radixin and ERK1/2 in a kinase-independent manner [64,65]. Similarly,
although in very few cell types, GRK5 has also been reported to regulate GPCRs such as
CCR2 and CXCR4, which are critical in chemotaxis in both canonical and non-canonical
manners [66–69]. Several chemokine receptors such as CXCR2, CXCR4, and LTB4 were
found to be regulated by GRK6 in a canonical manner [70–72]. GRK6 was shown to
modulate neutrophil and lymphocyte recruitment in vivo in various disease models [73–75].
The non-canonical role of GRK6 in immune cell chemotaxis is yet to be understood.

GPCRs have also been known to play a major role in the pathophysiological events
in sepsis, a severe inflammatory response, via cardiovascular, immune, and coagulatory
responses. It was shown that GRK2 and GRK5 play a notable role in the pathogenesis of
human sepsis by regulating neutrophil chemotaxis, and modulate the outcomes of septic
shock via the NF-κB1p105-TPL2-MEK-ERK pathway [61,76–79]. However, these GRKs
have no role in immune cell infiltration, the presence of bacteria, or patient survival. It
was shown that GRK5 deficiency leads to decreased cytokine levels, decreased thymocyte
apoptosis and immune suppression, and reduced plasma corticosterone levels, leading
to sepsis-induced mortality even in the presence of antibiotics in both endotoxemia and
polymicrobial sepsis models [77,80].

All these results indicate the important roles of GRKs in immune cell chemotaxis
and inflammatory signaling, and indicate that the identification of the small-molecule
compounds that regulate GRK isoforms could be a plausible therapeutic approach in
inflammatory disease management.

Table 1. GRK isoforms and their established functions in immune cells and inflammation.

GRK Isoform Interacting Partner(s) Associated Signalling Pathway/Cellular Response References

GRK2

NF-kB p105 subunit and inhibitor (IkB-α)
phosphorylation

TLR4-induced and Tumor Necrosis Factor-α (TNF-α)
pathways [79,81,82]

p38 phosphorylation
Raf1, MEK1, ERK2, RhoA, RKIP, GIT

P38 mitogen-activated protein kinases (MAPK)
pathways

Extracellular signal-regulated kinase (ERK)
pathways

[83–85]

Serine-threonine kinase Akt phosphorylation Akt-nitric oxide (NO) pathways [86,87]

Ezrin/radixin/moesin phosphorylation Actin cytoskeleton [64,65]

ADP ribosylation factor (ARF)-specific
GTPase-activating proteins (GIT) Focal adhesion dynamic [63,88]

Histone deacetylase 6 (HDAC6) phosphorylation Microtubules network [89]

Heat shock protein 90 (Hsp90) Regulation of GRK expression [90]

Receptor-regulated Smads
(R-Smads) phosphorylation Transforming growth factor β (TGF-β) pathways [91,92]

GRK3 HSP90 Regulation of GRK expression [90]

GRK5

ERM (moesin phosphorylation) Actin cytoskeleton [69]

GIT1 Regulation of receptor endocytosis [88]

HSP90, HSP70 Regulation of GRK expression and CXCR4
endocytosis

NF-kB p105 subunit and IkB-α phosphorylation TLR4-induced and TNF-α pathways [90,91]

Src Tyrosine kinase GRK phosphorylation and neutrophils exocytosis [93]

GRK6 HSP90 Regulation of GRK expression [90,94]
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3.2. The Role of GRKs in Cardiovascular Diseases

Although significant improvements have been made with the drugs targeting GPCRs
to treat cardiovascular patients, the treatments remain insufficient. The disease-causing
effect of GPCRs can initially be mitigated by negative feedback via GRKs, as GRKs have
widely established themselves as having a primary role in modulating GPCR signaling.
GRKs have been thoroughly studied as possible diagnostic or therapeutic targets in the
cardiovascular system. GRK activity and expression were shown to be altered in var-
ious cardiovascular system diseases, including congestive heart failure, hypertension,
myocardial infarction, and cardiac hypertrophy [95]. GRK2, GRK3, and GRK5 play a
well-established role in the progress of diseases of the cardiovascular system [96,97]. GRK2
and GRK5 have been associated with heart failure in humans and their increased expres-
sion/activity was shown to induce β-adrenergic receptor desensitization [98,99]. GRK2
expression was shown to be enhanced in hypertension, cardiac hypertrophy, and myocar-
dial infarction, and the inhibition of GRK2 was observed to have beneficial effects on these
diseases [100–103]. GRK5 has been found to regulate the vascular endothelial growth factor
(VEGF) receptor in the endothelial cells of the coronary artery [104]. The overexpression of
GRK2 and GRK5 in vivo has been shown to decrease adrenergic receptor-induced myocar-
dial contractility and cardiac output, which were counteracted by GRK2, GRK3, and GRK5
inhibition [96,98,103,105]. It was shown that hypertensive patients display enhanced GRK2
activity and protein expression with no any changes in GRK5, GRK6, PKA or arrestins,
suggesting disease-dependent variation in GRK2 [101]. GRK2 and GRK5 have also been
associated with the development of atherosclerosis [60,66].

Overall, studies indicate that GRK inhibition has direct advantageous effects in cardio-
vascular disease conditions by promoting survival signals, but the pathophysiological role
of GRKs in cardiovascular diseases is still incompletely understood. Therefore, increasing
the understanding of GRKs’ molecular and cellular processes is of critical importance in
order to improve therapeutic strategies.

3.3. The Role of GRKs in Neurodegeneration and Autoimmune Diseases

GRKs have been shown to play a role in the pathogenesis of neurodegenerative
diseases, including Alzheimer’s disease (AD), multiple sclerosis (MS), and Parkinson’s
disease [106–108]. GRK2 levels were increased in the human brain and this was reported
to serve as a marker for early hypoperfusion-induced brain damage in AD patients [109].
During hypoxic-ischemic injury, GRK2 was shown to exacerbate brain damage via p38-
dependent TNFα production [83], regulate the metabotropic glutamate receptor function
and expression implicated in the pathogenesis of AD and MS, and cause neurodegeneration
via the over-activation of group I mGLuTs [110,111]. GRK2 was also shown to reduce
inflammatory hyperalgesia by inhibiting microglial activation via the inhibiting of p38-
dependent TNFα production and PGE2-mediated pathways [112]. Nociceptor function
leading to chronic pain was shown to ause a long-lasting neuroplastic change with the
inhibition of GRK2 levels [113]. Similarly, GRK5 was shown to be involved in the regulation
of the desensitization of muscarinic receptors, specifically M2 and M4 [114]. GRK5-deficient
mice have been shown to increase the incidence of AD-like pathology. Mice-deficient in
GRK6 were shown to develop an autoimmune disease, such as arthritis and colitis, by
modulating the infiltration of immune cells [73,75,115].

Together, these studies reveal that GRKs do play a critical role in the pathogenesis of
neurodegenerative as well as autoimmune disease, and thus can be targeted for therapeutic
development.

3.4. The Role of GRKs in Cancer

The evolving evidence shows that GPCRs are being used as an early diagnosis
biomarker, as GPCR signaling plays integral roles in regulating various aspects of cancer
biology, including vascular remodeling, invasion, cell proliferation, apoptosis and migra-
tion, by regulating cancer-associated signaling pathways [116,117]. Developing drugs
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targeting GPCR and its signaling pathway has potential as a new therapeutic strategy for
the treatment of cancers. As GRKs have established themselves as a negative regulator of
GPCR activity, several studies have displayed the function of GRKs in cancer progression
in a cell type-dependent manner [118,119]. An overview of the established roles of GRKs
in different types of cancer is summarized in Table 2.

Table 2. An overview of established roles of GRK isoforms in various types of cancer.

GRK Subtype Type of Cancer Interacting
Partner (s)

Molecular
Mechanism Function Biological Model References

GRK2 Thyroid
carcinoma TSHR ND

Decrease
proliferation

through rapid
desensitization

Differentiated
thyroid carcinoma
patients and cell

lines

[120]

Hepatocellular
carcinoma cell IGFI-R

Decrease
proliferation

and migration
[121]

Human
hepatocellular

carcinoma
(HepG2)

IGFI-R
Decrease cell

cycle
progression

[122]

Pancreatic
cancer N/A ND

–T-stage and
poor survival
rate, increased
proliferation

Pancreatic
carcinoma patients,

ductal
adenocarcinoma
patients and cell

lines

[123]

Breast
carcinosarcoma NGFR Decrease bone

cancer pain [124]

Kaposi’s
sarcoma-

associated
herpesvirus

infected tumor
cell

CXCR2
Desensitization

and AKT
signaling

Decrease
migration and

invasion

Patients and cell
lines [125]

Basal breast
cancer with

Her-2 amplifica-
tion/infiltrating

ductal
carcinoma

Her-2/ER-α

Increase the
promoting of

mitogenic,
anti-apoptic

activities-
survival and
progression

[126]

Luminal and
basal breast

cancer
HDAC6/Pin1 AKT/ERK

cascades

Increase
sensitivity of
breast cancer

cells to
traditional

chemothera-
peutic

treatment

Invasive ductal
carcinoma patients,
cell lines orthotopic

and
xenograftmouse

models

[127]

Breast cancer CXCR4 Desensitization
and signaling

Decrease
metastasis

Breast cancer
patients, cell lines
orthotopic mouse

models

[128]
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Table 2. Cont.

GRK Subtype Type of Cancer Interacting
Partner (s)

Molecular
Mechanism Function Biological Model References

Human gastric
carcinoma cell
line (MKN-45)

H2 receptor –poor
differentiation [129]

Human breast
cancer N/A

Increase tumor
growth and

decrease
angiogenesis

[130,131]

Prostrate ND Differentiation Adenocarcinoma
patients [132]

Prostrate ND ND ND

Neuroendocrine
prostrate and

metastatic
castrastion-

resistant prostate
cancer patients

[133]

Glioblastoma ND ND
Mesenchymal
glioblastoma

patients.
[134]

GRK2/4 Ovary ND ND Granulosa cell
cancer patients [135]

GRK2/5/6 Gastric cancer
(SSTW-2) recoverin

–tumor
progression,
metastasis

[136]

GRK2/6 melanoma Melanocortin 1
receptor

–determinant
for skin cancer [137]

GRK3
Breast cancers
(MDA-MB-231,
MDA-MB-468

CXCR4

Decrease
metastasis

increase
migration

Breast cancer
patients, cell lines
orthotopic mouse

models

[138]

Prostate cancer
(PC3) N/A

Downmodulation
of angiogenesis

inhibitors

Increase
metastasis,

tumor
progression,
angiogenesis

Metastatic
castration-resistant

prostate cancer
patients, cell lines

and orthotopic
mouse models

[139]

Retinoblastoma
(Y-79) CRFI receptor Increase stress

adaptation [140]

Oral squamous
carcinoma

β2-adrenergic
receptor

–tumor
malignancy and

invasion
[128]

Glioblastoma
CXCR4

desensitization
and signaling

desensitization
and signaling

Increased
proliferation

Classical
Glioblastoma

patients
[134]

GRK4

Ovarian
malignant

granulosa cell
tumor

FSHR

–benign and
malignant

transformation
in tumor

development

[135]

Breast cancer Arrestin2
receptor

Mediated ERK
& JNK

signaling

Increase
proliferation

Ductal carcinoma
patients and cell

lines
[141]
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Table 2. Cont.

GRK Subtype Type of Cancer Interacting
Partner (s)

Molecular
Mechanism Function Biological Model References

GRK5 glioblastoma N/A
Proliferation

rate and WHO
grade

Glioblastoma
multiform patients

and cell lines
[142]

Thyroid
carcinoma TSHR

TSHR
desensitization
and signaling

Decrease
proliferation
through slow

desensitization,
increase

proliferation

Differentiated
thyroid carcinoma

patients
[120]

Prostate cancer
(PC3) Cyclin D1 G2/M

progression

Decrease
proliferation,

cell cycle

Cell lines and
xenograft mouse

tumors
[143]

Prostate cancer
(PC3, DU145,

LNCaP)
Moesin Moesin phos-

phorylation

Decrease
migration,
invasion

Increase cell
adhesion

Cell lines and
xenograft mouse

tumors
[69]

Prostate cancer N/A

Increase tumor
growth,

invasion, and
metastasis

[144]

Osteosarcoma
(U2OS, Saos-2) P53

Phosphorylation
and

degradation

Decrease cell
apoptosis and

radiosensitivity
Cell lines [145]

Colon PGE2 Desensitization
and signaling

Increased
proliferation Cell lines [146]

Kaposi’s
sarcoma KSHV-GPCR Desensitization

and signaling
Increased

proliferation Cell lines [147]

GRK6 Heptocellular
carcinoma N/A

–proliferation
maker in early

diagnosis
[148]

Hypopharyngeal
squamous cell

carcinoma
(FaDu)

Methyl
transferase

Methylation of
GRK6

–cancer
progression

Decrease
invasion

[149]

Medulloblastoma CXCR4/ EGFR/
PDGFR-Src

Increase
migration [143]

Lung cancer CXCR2 Decrease cancer
development [150]

Lung ND ND Decreased
survival

Adenocarcinoma
patients [151]

Medullo-
Blastoma CXCR4 Desensitization

and signaling
Increased
migration

Medulloblastoma
patients and cell

lines
[143]

Myeloma STAT3 phosphorylation Increased
survival

Primary multiple
myeloma patients

and cell lines
[94]

GRK1/7 recoverin
–cancer-

associated
retinopathy

[152]

N/A: not provided by the research, –: has association with.
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Briefly discussing the role of GRKs in cancer, GRK1 and GRK7 were shown to play a
role in embryogenesis, while interacting indirectly with Rho GDP-dissociation inhibitor
(RhoGDI) and phosphodiesterase γ (PDEγ), both of which are shown to be abnormally
regulated in cancer [153,154]. GRK1/7 might play a role in the development of cancer-
related retinopathy in lung cancer patients by interacting with a calcium-binding protein
called recoverin [152]. GRK2, but not GRK5, is more highly expressed in differentiated
thyroid carcinoma than normal thyroid tissue, and is involved in the rapid desensitization
of thyroid-stimulating hormone receptor (TSHR), which desensitization can be further
inhibited by GRK5. A study found out that cancer cell proliferation was increased due to the
activation of TSHR in thyroid carcinoma [120]. GRK2 has been shown to negatively regulate
the insulin-like growth factor-1 receptor (IGF1-R) signaling involved in proliferation and
migration by decreasing cyclin in human hepatocellular carcinoma HepG2 cells [121].
GRK2 also plays an important role in suppressing cell cycle progression, regulating early
growth response 1 (EGR1) expression, and the progression of breast, gastric, and skin
cancer by modulating GPCR signaling [122]. Furthermore, clinical studies have revealed
a correlation between high GRK2 expression and a high tumor (T) stage, as well as the
poor survival rates of patients suffering from pancreatic cancer. Interestingly, nerve growth
factor (NGF) in combination with GRK2 promotes opioid receptors phosphorylation whilst
amplifying the pain, and when treated with anti-NGF therapies, there was significant relief
in cancer bone pain by mediating the outcome of GRK2 and arrestins. GRK2 acted as a
negative regulator of the chemokine receptor CXCR4 (C-X-C chemokine receptor type 4),
which is responsible for mediating metastasis and is generally applied as a patient prognosis
indicator [155]. Several studies showed that GRK3 inhibited breast cancer metastasis by
regulating CXCR4 signaling [44,139]. GRK3 was abnormally expressed in oral squamous
carcinoma cells probably via the activation of the β2-adrenergic receptor [128]. Arterial
angiotensin type 1 (AT1) and dopamine D receptor signaling have been shown to be
modulated by GRK4 [156,157]. Several studies found that GRK4α/β desensitizes the
follicle-stimulating hormone receptor (FSHR) and its expression was significantly lower
in malignant ovarian granulosa cells compared to benign granulosa cells, suggesting the
crucial function of GRK4α/β in the course of ovarian granulosa cell transformation [135].
GRK5 expression is associated with a worse prognosis in patients that are suffering from
stage II-IV glioblastoma. GRK2 and GRK5 are known to work oppositely in thyroid
cancer [120]. GRK5 could be responsible for the direct phosphorylation of P53 tumor
suppression in U2OS and Saos-2 osteosarcoma cells degradation promotion, consequently
inhibiting tumor cell apoptosis [145]. A positive association was found between GRK6 and
Ki-67 expression, pathological disease stage, metastasis, and survival rate in the patients
with hepatocellular carcinoma, and GRK6 was hypothesized as a biomarker for the early
diagnosis of hepatocellular carcinoma [148].

3.5. The Role of GRKs in Thrombosis and Hemostasis

Platelets develop from bone marrow, and are anucleated discoid cells of approximately
2 to 4 µm in diameter [158]. The resting platelet consists of an organelle zone formed by
alpha granules, dense granules, lysosomal granules, and it glycogen granules, and contains
more than 800 different proteins involved in major platelet functions [159,160]. Platelets are
primarily responsible for the aggregation process and contribute to coagulation. During a
vascular lesion, platelets are activated, and their granules release factors that are involved
in the coagulation.

The activation of platelets is important in hemostasis and thrombosis [161]. Initial
platelet activation signals are greatly amplified by a series of rapid positive feedback loops,
enabling robust platelet recruitment and thrombus stabilization. The detailed mechanism of
platelet activation has been reviewed elsewhere [162]. In brief, upon the vascular injury or
high shear stress of the blood flow, circulating platelets come into contact with the exposed
sub-endothelium, causing the release, generation, or exposure of agonists, which in turn
can activate platelets, resulting in the onset of the thrombus formation process. Platelets
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are activated by adhesion to adhesive proteins (von Willebrand factor (vWF), collagen) or
soluble agonists (ADP, thrombin, thromboxane A2 (TxA2), serotonin, epinephrine) via their
respective adhesion receptors or GPCRs, respectively [163–165].

The key initiators of the platelet activation at the sites of endothelial damage are the
adhesion receptors, while GPCRs play a critical and central role in platelet activation and
thrombus formation [165]. Interestingly, despite significant variations in functions and
downstream signaling pathways, important platelet receptors share a lot of similarities in
their signal transduction mechanisms. For example, the complex of adhesion receptors GP
Ib–IX–V, glycoprotein VI (GPVI), and integrins all involve Src family kinases (SFKs), PI3Ks,
and the immunoreceptor tyrosine-based activation motif (ITAM) signaling pathway, while
GPCRs involve phospholipase C (PLC), Ca2+, diacyl gylcerol (DAG), protein kinase C
(PKC), and the PI3Ks signaling pathway. These receptor-specific platelet activations signal
pathway cross-talk and merge into common signaling events that trigger platelet shape
change, granule secretion, and TxA2 generation, activating integrin αIIbβ3. Ligand binding
to integrin αIibβ3 causes platelet adhesion and aggregation, leading to the activation of
“inside-out” signaling. Inside-out signaling triggers the “outside-in” signaling, leading to
the spreading of platelets, additional granule content secretion and clot retraction, finally
stabilizing the platelet adhesion and aggregation.

It has been reported that human platelets can become refractory to activation after
major surgery, possibly leading to an increased risk of post-surgical bleeding [166]. This
clearly demonstrates that, like platelet activation and aggregation, the desensitization
mechanism plays an equally critical role in regulating platelet responsiveness. There
are several mechanisms by which GPCR- and G-protein-dependent signaling is turned
off in various cells, including GRKs- and arrestin-induced desensitization, RGS protein-
regulated turning off, and the internalization of receptors by forming endosomes. Platelets
express GRKs and arrestins, and it is well known that the signaling of platelets largely
occurs through GPCRs. Platelet GPCRs regulate platelet function by coupling to their
respective G-protein, such as Gq-coupled PARs, thromboxane A2 receptor (TP), P2Y1,
5HT; Gi-coupled P2Y12; Gz-coupled adrenergic receptors; and Gs-coupled IP, upon the
stimulation of platelets with various agonists, including ADP, TxA2, thrombin, serotonin,
epinephrine, and prostacyclin.

Platelet GPCRs are clinically relevant GPCRs, which are targeted by multitudinous
drugs of therapeutical importance for bleeding disorders or anticoagulation. Considering
the critical roles of GRKs in GPCR functions in other cells, very little is known about
the regulation and mechanisms of GPCR signaling and GPCR desensitization by GRKs
in platelets. Very recently, we and others have unveiled the interesting features of the
GRK system in platelet GPCR signaling. Using GRK6 KO mouse platelets, we showed
that the platelet aggregation and dense granule secretion induced by GPCR agonists,
including 2-MeSADP, U46619 (TxA2 analog), AYPGKF, and thrombin, is significantly
potentiated compared to WT platelets [167]. However, GPVI agonist collagen-related
peptide (CRP)-induced platelet aggregation and dense granule secretion are not affected
in the GRK6-deficient platelets, indicating that GRK6 does play a role in the regulation
of P2Y1, P2Y12, TPα, and PARs-mediated signaling in platelets, and does not regulate
non-GPCR-mediated platelet activation. We found that the U46619-induced aggregation
response curve shifts left, but the extent of potentiation was not as significant as it was for
the other GPCR agonists. This may be due to the shorter C-terminus of the platelet TxA2
receptor TPα that has lesser phosphorylatable serine residues, leading to the decreased
affinity of GRK6 towards it compared to other GPCRs in platelets. Similar to our study,
it was demonstrated that the GRK phosphorylation sites for β1AR and β2AR are in their
C-termini, whereas β3AR lacks GRK targets and it has a very short C-terminus [168].
GRK6 also affects GPCR-mediated integrin αIIbβ3 activation and P-selectin expression in
platelets [167]. Most recently, Chen et al. showed that GRK6 has a role in ADP-induced
P2Y12 receptor desensitization, but not P2Y1 receptor desensitization in platelets [169].
Hardy et al. also reported that GRK2 and GRK6 mediate P2Y12, but not P2Y1, receptor
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desensitization in astrocytoma cells [170]. In contrast to their study, we observed that GRK6
is critical in regulating both ADP-induced P2Y1 and P2Y12 receptor desensitization. GRK’s
kinase activity has been shown to vary according to cell type, and the same GRK isoform
may have a role in desensitization and activation, or show no response at all to a specific
receptor.

Interestingly, in contrast to ADP-induced aggregation, GRK6 is not involved in
serotonin-induced Gq-coupled 5HT2A receptor and epinephrine-induced Gz-coupled α2A
adrenergic receptor-mediated platelet activation, although the co-stimulation of serotonin
and epinephrine mimics the ADP-induced P2Y1 and P2Y12 receptor-mediated platelet
activation pathway, further suggesting that the kinase activity of GRKs varies with varying
ligands, receptors and proteins. Since platelet GPCRs have been the topmost target for
anti-thrombotic drug development, research should be done as such, instead of following
the “model” concept and predicting the functional mechanism. We also found that the
re-stimulation of platelets with ADP and AYPGKF could restore platelet aggregation in
GRK6-deficient platelets, suggesting the role of GRK6 in the desensitization of ADP and
PAR4 receptors [167]. Moreover, Gq- and Gi-mediated signaling events were regulated by
GRK6 in platelets. GRK6 -/- mice are more susceptible to thrombosis, and thus, GRK6
plays a critical role in platelet function in vivo [167].

It remains unknown whether other GRK isoforms except GRK6 phosphorylate the
platelet GPCRs when stimulated with various agonists, and whether or how this phos-
phorylation will change the behavior of the receptor. It is important to know the potential
phosphorylation sites, and evidently the number of absolutely phosphorylated sites, in
order to establish the receptor’s behavior in platelets. Neither the putative phosphorylation
sites nor their specific function is determined in platelet GPCRs. Which GRK isoform
is involved in each phosphorylation event during platelet signaling remains unknown.
It would be fascinating to see whether or not the platelet agonists promote the receptor
conformation in the same way for GRK binding and activation, subsequent receptor phos-
phorylation, and arrestin recruitment/binding, or whether there is the involvement of
some other mechanisms.

Arrestins have been shown to play crucial roles in terminating GPCR-mediated signal-
ing in various cells. Platelets also express arrestin 2 and arrestin 3. Despite the importance
of arrestins in GPCR-mediated signaling, the mechanism of GPCR desensitization by
arrestins in platelets has not been clearly elucidated yet. Li et al. first showed that the
PAR4 and ADP receptor signaling in platelets is differentially regulated by arrestin 2, as
only thrombin-, but not ADP-, induced PI3K-Akt phosphorylation and fibrinogen binding
was arrestin 2-dependent [171]. Later, Schaff et al. reported that neither arrestin 2 nor
arrestin 3 deficiency altered platelet activation, suggesting that arrestins are not involved
in platelet GPCR desensitization [172]. They further reported that the deletion of arrestin 2
in mice, but not arrestin 3, is critical for thrombus formation. In contrast, very recently, a
study demonstrated the negative regulatory role of arrestin 3 downstream of PAR4- and
P2Y12-mediated signaling pathways in mouse platelets [173]. It is not clear which arrestin
plays what functional role in platelets, and further study is required to determine the
functional differences of arrestin 3 versus arrestin 2 in the regulation of GPCR signaling
and the molecular basis of GPCR desensitization in platelets.

Evaluating the functional significance of the individual GRK and β-arrestin isoforms
in platelets, and characterizing the novel mechanisms involved in GPCR desensitization
and trafficking in platelets using knockout mice for each isoform, will help us to seek a
novel approach to developing drugs in the area of vascular pathobiology.

Contribution of Platelet Beyond Thrombosis and Hemostasis

Platelets were believed to have only hemostatic activity. In recent years, scientific
research and technology have come up with a new perspective on platelets and their func-
tions due to their abundant granular content of growth factors (GFs), cytokines, and other
biological modulators that, upon release, can affect wound healing, inflammation, angio-
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genesis, stem cell migration, and cell proliferation. These factors also have a paracrine effect
in different cell populations, including mesenchymal cells, osteoblasts, fibroblasts, and
endothelial cells, which are all involved in various pathophysiological processes [174,175].

Platelets have been shown to play a significant role in inflammation and immunity.
Activated, adherent platelets at the vascular injury site can recruit leukocytes to the injury
or inflammatory sites, and largely mediate the signaling involved in initial and sustained
platelet–leukocyte interactions by regulating receptors including the epithelial neutrophil-
activating peptide, glycoproteins, growth-related oncogenes, interleukins, intercellular
adhesion molecules, junctional adhesion molecules, platelet-activating factor, and P-selectin
glycoprotein ligands. Platelets are capable of changing their surface expression and release
their granule content through their TLRs, P-selectin, RANTES, TGF-β, etc., thereby engag-
ing different endothelial and immune cells, including neutrophils, monocytes, eosinophils,
B cells and T cells, dendritic cells, natural killer cells, etc., and potentially leading to the
activation of the innate and adaptive immune responses. Similarly, platelets can increase
the endothelial permeability and mediate leukocyte trafficking to the inflamed endothelium
by activating endothelial cells [176]. Besides this, platelet-originating TxA2 form a positive
feedback loop upon platelet activation that facilitates the further release of their substantial
repertoire of stored cytokines, including IL-1α, IL-1β, Macrophage Inflammatory Protein
(MIP)-1α, CD40 ligand (CD40L), and polyphosphate (polyp), which have been shown
to contribute to multiple inflammation-related diseases. Importantly, it was shown that
platelets play a major role in netosis.

Platelets express diverse mediators, such as PDGF, TGF, and VEGF, that integrate
various cascades governed by multiple cytokines, and are released after activated platelets
become entrapped within the fibrin matrix. These mediators have been shown to play
crucial roles in remodeling and wound healing by stimulating the mitogenic responses
required for tissue repair [177].

In the early phase of infection, platelets can limit parasite growth by killing plas-
modium falciparum through the release of platelet factors [178,179]. Platelets can interact
with various strains of bacteria including the staphylococci family, Neisseria gonorrhoeae,
Porphyromonas gingivalis, and Helicobacter pylori [180–182]. During bacterial infections,
platelets actively mediate the host response through interactions with circulating leuko-
cytes. Platelet α-granules contain various antimicrobial compounds such as platelet connec-
tive tissue-activating peptide 3 (CTAP-3), platelet basic protein, thymosin β-4 (Tβ-4), and
fibrinopeptide (A and B), which are known to target various bacterial organisms [183,184].
Platelets are also known to interact with various types of viruses through TLR2, IL-1β, and
VEGF. Recently, platelets were shown to play a major role in the pathological consequences
of COVID-19 as well [185]. Therefore, platelets are beneficial in infections, but consistent
viral or bacterial infections can cause arterial thrombosis or venous thromboembolism, a
process termed immune thrombosis, leading to cardiovascular disease. Recently, it has
been suggested that antiplatelet medications may lower mortality rates related to infections
and sepsis.

Platelets also participate in neural diseases associated with pathogen-induced and ster-
ile inflammation, including AD, MS, and migraine, suggesting its role in CNS inflammatory
and immune response [186,187]. It has been shown that IgE stored in platelet α-granules
upon release has the potential to amplify allergic responses [188]. It was shown that there
is a significant interconnection between the activation of platelets and eosinophils, platelets
and leukocytes in asthma, and lung allergic inflammation, respectively [189–191]. Overall,
platelets play important roles in diverse inflammatory diseases, and targeting platelet
signaling could be a promising approach to modify platelet responses to inflammation.

It is now generally accepted that platelets play a major role in the early stage of
endothelial disturbance in the atherosclerotic process and subsequent CVD [192]. As the
markers for predicting the clinical fate of CVD, the molecules activating platelets have
been suggested, and may be targeted to minimize thrombosis and atherosclerosis. The
variability in platelet activation would also affect the formation of atherosclerosis, thereby
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affecting CVD. Conversely, limiting platelet activation and aggregation, and inhibiting the
molecules involved, can regulate platelet interactions, thrombosis, and CVD.

Much of the recent data has indicated that platelets play a serious role in the patho-
genesis of malignant cancers. Using animal models, it has been demonstrated that platelets
make a major contribution to tumor cell proliferation, metastasis, and tumor angiogenesis
in various types of cancers, such as carcinomas of the breast, colon, lung, and ovary, as well
as in melanoma [193,194]. It has been shown that circulating platelet properties contribute
to some hallmarks of cancer, including resisting cell death, inducing angiogenesis, metasta-
sis, and evading immune detection, assisting cancer stem cells, and sustaining proliferative
signals. Besides this, patients with metastatic cancer have higher chances of thrombosis.
Platelets interact with tumor cells, resulting in platelet activation, P-selectin expression, and
the development of platelet–tumor microthrombi, which may protect tumor cells from the
innate immune system [195]. Therefore, some have developed anti-platelet antibodies to
recognize the activated platelet and then further fragment the platelet, potentially reducing
metastatic potential [196,197]. Aspirin was also shown to be associated with a reduced risk
of distant metastasis in patients with cancer, particularly of colorectal origin [198].

In conclusion, since platelets are involved in other disease conditions beyond throm-
bosis and hemostasis, the identification of GRKs and their functional receptors in platelets
will serve to design novel drug targets and receptor blockers, contributing to the improved
treatment of patients with platelet-associated diseases. Therefore, current research is fo-
cused on possible therapeutic interventions targeting platelet activation, desensitization, or
its surface receptors.

4. The Implications of GRKs in Pharmacology

The chronic or acute use of drugs that target GPCR is associated with an increasing
level of GRK expression. A study was carried out that investigated GPCR-targeted drug
tolerance in the brain, which demonstrated that an increase in GRK expression could
be responsible for drug resistance [199,200]. Likewise, there is a correlation between
several pathological conditions such as heart failure, depression, Alzheimer’s disease and
Parkinson’s disease, and modulated endogenous GRK expression [108,201–203]. Due to
scientists’ continuous efforts to gain more knowledge about GPCR/GRK signaling biology,
new treatment strategies have been developed for diseases by targeting GRKs. Presumably,
the development of highly selective GRK inhibitors will either target their specific kinase
domains or reduce the expression of GRK by using selective RNA aptamers [204]. So far,
none of the effective GRK inhibitors have been permitted for use in clinical practice [205].
GRKs belong to the AGC kinases subfamily whose kinase domains are nearly identical
in structure; there is a possibility of cross-reactivity in the nonselective GRK inhibitors
with other AGC kinases [206]. Nevertheless, Takeda Compound 103A, which is a highly
selective GRK2 inhibitor that has been shown to inhibit GRK2 activity 50-fold compared
to other AGC kinases, has been developed by Takeda Pharmaceuticals [207]. Meanwhile,
other highly selective GRK-targeted drugs, for instance paroxetine, GSK180736A, balanol,
Takeda Compound 101, and sanigivamycin, which target GRK2, GRK3, GRK5, GRK2, and
GRK6, respectively, are also being extensively investigated [208]. Even though these drugs
are rather selective for GRKs, all of them demonstrate cross-reactivity with other kinases
that limit the drug’s therapeutic potential. Each GRK isoform plays a variety of roles
in disease progression due to their structural heterogeneity. Investigating the divergent
roles of specific isoforms may allow us to develop potential drugs that would guarantee
a selective inhibitory effect on specific isoforms for better disease control. The selective
knockdown of specific GRKs and understanding the pharmaceutical properties using
various cellular ligands would allow us to design and develop drugs more practically and
efficiently, and unveil novel concepts in therapy.
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5. Conclusions

In conclusion, GRKs along with arrestins play a central role, as well as controlling
hundreds of unique GPCRs and their signaling in almost every facet of cell biology and
diseases, making it difficult to fully perceive their mechanism of cellular signaling. GRKs
act as important regulators to prevent cells from hyper-stimulation, and could directly
modulate the physio-pathological functions of cell biology. As such, GRKs help in main-
taining homeostasis by mediating inter- and intra-cellular communication in response to
the surrounding environment. As several GPCR-targeted disease treatments are becoming
more attractive topics, GRKs could be propitious molecular targets for controlling GPCR
responsiveness. It is important to identify the full mechanism involved in GPCR–GRK
interactions. Which GRK isoform and how it is involved in each phosphorylation event,
the specific effects of these phosphorylation events on subsequent arrestin binding, and
cell type-dependent GPCR desensitization/internalization, are still aspects that are yet
to be understood. It would be interesting to investigate if GPCR agonists fail to uphold
the receptor conformation that is suitable for GRK binding or activation, and consequent
receptor phosphorylation as well as arrestin recruitment, or whether they function via
some other mechanism.
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Abbreviations

GRK G protein-coupled receptor kinase
GPCR G protein-coupled receptor
7-TM Seven-transmembrane
PI3K Phosphoiositide 3-kinase
PIP2 Phosphatidylinositol 4:5-bisphosphate
RGS Regulator of G protein signaling domain
PH Pleckstrin homology
AP-2 Adaptor protein-2
β2-AR β2-adrenergic receptor
VEGF Vascular endothelial growth factor
AD Alzheimer’s disease
MS Multiple sclerosis
RhoGDI Rho GDP-dissociation inhibitor
PDE Phosphodiesterase
TSHR Thryoid-stimulating hormone receptor
IGF1-R Insulin-like growth factor-1 receptor
EGR1 Early growth factor 1
NGF Nerve growth factor
CXCR Chemokine receptor
AT1 Angiotensin type 1
FSHR Follicle-stimulating hormone receptor
vWF Von Willebrand factor
TxA2 Thromboxane A2
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PLC Phospholipase C
DAG Diacyl glycerol
PKC Protein kinase C
TP Thromboxane A2 receptor
GPVI Glycoprotein VI
SFKs Src family kinases
ITAM Immunoreceptor tyrosine-based activation motif
CRP Collagen-related peptide
GF Growth factor
MIP Macrophage inflammatory protein
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