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Abstract 

Background:  Microbes are closely related to human health and diseases. Identification of disease-related microbes 
is of great significance for revealing the pathological mechanism of human diseases and understanding the interac-
tion mechanisms between microbes and humans, which is also useful for the prevention, diagnosis and treatment of 
human diseases. Considering the known disease-related microbes are still insufficient, it is necessary to develop effec-
tive computational methods and reduce the time and cost of biological experiments.

Methods:  In this work, we developed a novel computational method called MDAKRLS to discover potential 
microbe-disease associations (MDAs) based on the Kronecker regularized least squares. Specifically, we introduced 
the Hamming interaction profile similarity to measure the similarities of microbes and diseases besides Gaussian inter-
action profile kernel similarity. In addition, we introduced the Kronecker product to construct two kinds of Kronecker 
similarities between microbe-disease pairs. Then, we designed the Kronecker regularized least squares with different 
Kronecker similarities to obtain prediction scores, respectively, and calculated the final prediction scores by integrat-
ing the contributions of different similarities.

Results:  The AUCs value of global leave-one-out cross-validation and 5-fold cross-validation achieved by MDAKRLS 
were 0.9327 and 0.9023 ± 0.0015, which were significantly higher than five state-of-the-art methods used for com-
parison. Comparison results demonstrate that MDAKRLS has faster computing speed under two kinds of frameworks. 
In addition, case studies of inflammatory bowel disease (IBD) and asthma further showed 19 (IBD), 19 (asthma) of the 
top 20 prediction disease-related microbes could be verified by previously published biological or medical literature.

Conclusions:  All the evaluation results adequately demonstrated that MDAKRLS has an effective and reliable predic-
tion performance. It may be a useful tool to seek disease-related new microbes and help biomedical researchers to 
carry out follow-up studies.
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Background
With the fast development of advanced analytical tech-
niques and high-throughput methods for exploring 
complex microbial communities, in human disease and 
health, the role of the microbiome has gained widespread 
attention over the past decade [1, 2]. The microbial com-
munity is complex and immensely diverse, research 
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showed that about 100 trillion archaeal and bacterial cells 
in the human gut which belong to more than 1000 spe-
cies, tenfold the number of human cells [3, 4]. Microbes 
are closely related to human health and disease. Gener-
ally, most of the gut microbes are either harmless or 
even beneficial to the human body, such as which can 
contribute to normal immune function, improve meta-
bolic capability and protect against enteric pathogens [5, 
6]. Therefore, microbes are also considered as “forgotten 
organs” in host [7]. But, if the normal balance between 
the host and microbiota is broken, which may possibly 
induce many diseases, including asthma [8], inflamma-
tory bowel disease (IBD) [9], brain disorders or neurode-
velopmental deficits [10] and even cancer [11], and so on.

Unquestionably, it has a great significance to identify 
microbes related to diseases for revealing the pathologi-
cal mechanism of human diseases and understanding the 
mechanisms of microbe-host interactions. Some large-
scale projects have been initiated, such  as the Human 
Microbiome Project (HMP) [12] and Metagenomics of 
the Human Intestinal Tract of European Union Project 
(MetaHIT) [4, 13]. It can help us to initially understand 
the significance of medicine and biology, functional 
states and healthy composition of the human micro-
biome [5]. It is still a challenge to understand how the 
microbiome influences human diseases, since the micro-
bial community is complex and diverse. Effective compu-
tational methods could significantly reduce the time and 
cost of traditional culture-based microbial experiments. 
Researchers could select potential MDAs for experimen-
tal verification. In 2016, Ma et al. [14] manually collected 
and developed a human microbe–disease association 
database (HMDAD), which provided the foundation for 
identifying the MDAs through computational methods.

In general, we could transform this biological problem 
of predicting disease-related microbes into a link pre-
diction task. In fact, some computational methods have 
been widely developed to solve the association or inter-
action problem such as miRNA-disease [15], drug-target 
[16], lncRNA-protein [17] and protein–protein interac-
tion [18] prediction problems, and so on. However, to 
the best of our knowledge, until 2016, there are almost 
no related MDAs prediction researches from a computa-
tional point of view. Thereafter, in 2016, Chen et al. [19] 
designed the first computational method called KATZH-
MDA for the prediction of MDAs. It is a KATZ measure-
based network prediction method to solve the problem 
of MDAs prediction by calculating the Gaussian interac-
tion profile (GIP) kernel similarity. Beyond that, in recent 
years, some network-based methods were also proposed 
only using the GIP kernel similarity for prediction, which 
are primarily based on the fusion of known associa-
tions and heterogeneous data to construct the network, 

including random walking-based methods [20, 21], label 
propagation-based method [22], path-based method [23]. 
In 2017, Huang et  al. [24] presented the NGRHMDA 
method by integrating two single recommendation meth-
ods (graph‑based scoring and neighbor‑based collabo-
rative filtering prediction model), and achieved a good 
prediction result. With the fast development of machine 
learning technology [25, 26], some machine learning-
based methods were also presented for MDAs predic-
tion. For example, in 2017, Wang et  al. [27] proposed a 
semi-supervised method called LRLSHMDA based on 
the Laplacian regularized least squares method. In addi-
tion, in 2018, He et al. [28] and Shi et al. [29] developed 
machine learning-based method named GRNMFHMDA 
and BMCMDA for MDAs prediction, respectively, based 
on the graph regularized non-negative matrix factoriza-
tion and binary matrix completion.

In recent years, the above computational methods 
mainly utilized a basic assumption that microbes with 
similar functions will share similar non-interaction or 
interaction patterns with phenotype diseases [30, 31]. 
With the fast development of machine learning tech-
nology, the regularized least squares algorithm is a use-
ful tool and has been widely used in the recommended 
system [32–34]. Although some computational methods 
have been developed, most disease-related microbes 
remain unknown and effective methods are still scarce 
[5, 35]. We could address or reduce some limitations to 
improve the prediction performance of the computa-
tional method. For example, some existing methods only 
used the GIP kernel similarity for extracting the effi-
cacious information, which may lead to the algorithm 
inevitably biased against well-researched microbes and 
diseases, multivariate information fusion will be more 
helpful for prediction. Beyond that, some existing meth-
ods did not consider that the effective contribution of 
diseases and microbes is uneven due to the number of 
diseases and microbes is different in the database [36]. 
It is necessary to improve calculation speed since some 
methods integrate multiple calculation methods which 
may be complex and time-consuming. Some methods 
used many model parameters which may reduce robust-
ness and do not apply to new data.

In this paper, considering some of the above limita-
tions, we developed a novel computational method 
called MDAKRLS based on the Kronecker regularized 
least squares method to identify potential MDAs. It is a 
machine learning-based method and uses fewer model 
parameters, which can save time and obtain robust 
performance. First, we calculated Kronecker Gaussian 
similarity and Kronecker Hamming similarity of microbe-
disease pairs based on the known microbe-disease asso-
ciation network. Then, the Kronecker regularized least 



Page 3 of 12Xu et al. J Transl Med           (2021) 19:66 	

squares algorithm used two different Kronecker similari-
ties to obtain prediction scores, respectively. Finally, we 
obtained the final prediction results by integrating the 
contributions of different similarities. The experimen-
tal results of 5-fold cross-validation (5-CV) and global 
leave-one-out cross-validation (LOOCV) indicated that 
MDAKRLS can achieve superior performance by com-
paring it with five state-of-the-art methods. In addition, 
case studies further demonstrated that MDAKRLS is a 
useful tool that can effectively identify potential MDAs.

Materials and methods
In this work, we proposed a novel method called 
MDAKRLS for inferring latent MDAs. Figure 1 describes 
the overall flow chart of MDAKRLS for prediction. The 
framework of prediction method consists of three steps. 
First, we constructed Kronecker Gaussian similarity KG 
and Kronecker Hamming similarity KH of microbe-dis-
ease pairs by fully exploiting Gaussian interaction profile 
(GIP) kernel similarity and Hamming interaction pro-
file (HIP) similarity from known microbe–disease asso-
ciation matrix, respectively. Second, we introduced the 
Kronecker regularized least squares algorithm based on 
two Kronecker similarity to construct loss function for 
prediction. Third, we used an integration strategy to get 
the final predicted association matrix. Finally, the final 
possibility score of each microbe-disease pair can be 
calculated.

Human microbe–disease association data set
In this study, we used a widely-used benchmark data set 
(HMDAD) to evaluate the reliability and effectiveness of 
MDAKRLS. It was manually collected by Ma et  al. [14] 
and can be available at http://www.cuila​b.cn/hmdad​. The 
database contains a total of 483 verified associations, 
292 human microbes and 39 diseases. The microbe-
disease association data set adopted by us was down-
loaded from HMDAD in June, 2020. We finally obtained 
450 verified associations after we removed repetitive 
associations. In fact, we represented the advantages of 
MDAKRLS through the overall HMDAD data set. For a 
better description, we constructed an adjacency matrix 
AǫR39×292 to express the associations network.

Similarity measures
For a better description, in this study, set D =

{

d1, d2, . . . , 
di, . . . dnd

}

 and M =
{

m1,m2, . . . ,mj , . . . ,mnm

}

 denote 
the sets of diseases and microbes, respectively. We intro-
duced an adjacency matrix AǫRnd×nm to express the asso-
ciations network, where variable nd denotes the numbers of 
diseases; nm represents the numbers of microbes. Besides, 
the adjacency matrix AǫRnd×nm is defined as follows:

Set A(di)ǫ{0, 1}1∗nm represents the i th row of A , 
which is a binary vector and denotes the interaction 
profile of the disease di . Similarly, A

(

mj

)

ǫ{0, 1}nd∗1 
denotes the j th column of A , which represents the 
interaction profile of the microbe mj . According to the 
basic assumption, microbes with similar functions will 
share similar non-interaction or interaction patterns 
with phenotype diseases, which is widely used in the 
related studies. To integrate more effective informa-
tion and uncover potential associations, we calculated 
the GIP kernel similarity and HIP similarity of human 
microbes and diseases, respectively.

GIP kernel similarity for microbes and diseases
To mine conveniently the topological structure infor-
mation of association matrix A , we used the GIP ker-
nel similarity [19, 37] for measuring similarity of 
human microbes. Specifically, for two given microbes 
mi and mj , we first extracted their interaction profiles 
A(mi) and A

(

mj

)

 from the training adjacency matrix A , 
respectively. Subsequently, the GIP kernel similarity of 
microbes can be calculated as follows:

where SmG  is defined as the microbe GIP kernel similar-
ity matrix; σ ′

m is a trade-off parameter and we set σ ′

m = 1 
in the experiments; parameter σm is applied to tune-up 
bandwidth of GIP kernel, which can be updated by the 
Eq. (3).

Similarly, we also obtained the disease GIP kernel 
similarity as follows:

where SdG is defined as the disease GIP kernel similar-
ity matrix; σ ′

d is a trade-off parameter and we set σ ′

d = 1 
in the experiments; parameter σd is applied to tune-up 
bandwidth of GIP kernel, which can be updated by the 
Eq. (5).

(1)

A
(

i, j
)

=

{

1, if disease di is related tomicrobemj

0, otherwise

(2)SmG
(

mi,mj

)

= exp
(

−σm||A(mi)− A
(

mj

)

||
2
)

(3)σm = σ
′

m/

(

1

nm

nm
∑

k=1

||A(mk)||
2

)

(4)SdG
(

dp, dq
)

= exp
(

−σd ||A
(

dp
)

− A
(

dq
)

||
2
)

(5)σd = σ
′

d/

(

1

nd

nd
∑

k=1

||A(dk)||
2

)

http://www.cuilab.cn/hmdad
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HIP similarity for microbes and diseases
In this work, inspired by the Jiang et al.’ s work [38], we 
introduced HIP similarity to measure the interaction 
profile similarity between microbe pairs from the train-
ing adjacency matrix A . For HIP similarity, two microbes 
will have a lower similarity if they have more different 
corresponding values in the interaction profiles. Further, 

the HIP similarity of microbes mi and mj is defined as 
follows:

where SmH  denotes the microbe HIP similarity matrix; |·| 
denotes the number of elements in the interaction profile.

(6)SmH
(

mi,mj

)

= 1−

∣

∣A(mi)! = A
(

mj

)∣

∣

|A(mi)|

Fig. 1  Overall workflow of MDAKRLS applied to human MDAs prediction
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Similarly, based on the interaction profiles of diseases, 
the HIP similarity of diseases can be calculated as follows:

where SdH denotes the disease HIP similarity matrix.

MDAKRLS for microbe‑disease association prediction
Regularized least squares (RLS) and its extended versions 
are popular machine learning methods. In this work, to 
boost the predictable performance, a novel predict model 
called MDAKRLS is proposed to calculate the relevance 
scores between microbes and diseases by integrating the 
Kronecker product and RLS method.

We first obtained the Kronecker Gaussian similar-
ity between microbe-disease pairs by the GIP similarity 
matrix of microbes and diseases. Specifically, we use the 
following equation to define the similarity between the 
microbe-disease pairs (m(i), d(p)) and 

(

m
(

j
)

, d(q)
)

:

where SmG  and SdG represent the GIP similarity matrix of 
microbes and diseases defined above, respectively. Let 
N = nd × nm which represents the number of microbe-
disease pairs. The above equation can be represented by 
the Kronecker product as follows:

where KGǫR
N×N is defined as the Kronecker Gaussian 

similarity of microbe-disease pairs. In the same manner, 
the Kronecker Hamming similarity matrix KHǫR

N×N of 
microbe-disease pairs can be measured:

For a better description, in this work, we set 
X = (x1, x2, . . . , xi, . . . , xN ) , where xi denotes the i th 
microbe-disease pair.  vec(Y ) =

(

y1, y2, . . . , yi, . . . , yN
)

 , 
where Y ǫRnd×nm denotes the training microbe-dis-
ease adjacency matrix in the process of forecasting; 
vec(·) is a vector operator that stacks the elements of 
all columns into a vector; yiǫ{0, 1} denotes the cor-
responding label of microbe-disease pair xi . The bio-
logical problem of predicting disease-related microbes 
can be transformed to learn a mapping function fG 
and calculate a corresponding association score. 
vec(FG) =

(

fG(x1), fG(x2), . . . , fG(xi), . . . , fG(xN )
)

 , where 

(7)SdH
(

dp, dq
)

= 1−

∣

∣A
(

dp
)

! = A
(

dq
)∣

∣

∣

∣A
(

dp
)∣

∣

(8)KG

(

(m(i), d(p)),
(

m
(

j
)

, d(q)
))

= SmG
(

m(i),m
(

j
))

∗ SdG(d(p), d(q))

(9)KG = SmG ⊗ SdG

(10)KH = SmH ⊗ SdH

FG denotes the prediction score matrix based on the 
Kronecker Gaussian similarity; fG(xi) represents the pre-
diction score of microbe-disease pair xi obtained by pre-
diction function fG.

In further work, first, we constructed the Kronecker 
regularized least squares [39] based on the Kronecker 
Gaussian similarity to solve the microbe-disease predic-
tion problem. The objective function based on the Tik-
honov minimization problem is formulated as follows:

where σG > 0 is a regularization coefficient used to adjust 
the regularization term and loss function of the objective 
function; ‖ fG ‖k is the norm of mapping function fG in 
Reproducing Kernel Hilbert Space (RKHS) [40] associ-
ated to the kernel k . Based on the classical Representer 
Theorem [41], the solution of the Tikhonov regulariza-
tion problem exists in the RKHS and can be calculated 

as follows:

According to the previous studies [37, 42], the optimal 
solution of the objective function can be further calculated 
as follows:

where I denotes the identity matrix.
Eigen decompositions were implemented on the 

GIP similarity matrix SmG  of microbes and GIP similar-
ity matrix SdG of diseases. We can get SmG=Vm

G �m
GV

m
G

T 
and SdG=Vd

G�
d
GV

d
G

T , respectively. According to the 
property of the Kronecker product, we can obtain the 
KG = SmG ⊗ SdG = VG�GVG

T , where VG = Vm
G ⊗ Vd

G and 
�G = �m

G ⊗�d
G . Then, we can transform the Eq.  (13) as 

follows:

According to another property of the Kronecker prod-
uct [43], 

(

NT⊗M
)

vec(C) = vec(MCN ) , Eq.  (14) can be 
rewritten as follows:

(11)J
(

fG
)

=
1

2

N
∑

i=1

(

yi − fG(xi)
)2

+
σG

2
� fG �

2
k

(12)fG(xi) =

N
∑

j=1

αjKG

(

xi, xj
)

(13)vec(FG) = KG(KG + σGI)
−1vec(Y )

(14)

vec(FG) =VG�GVG
T
(

VG�GVG
T + σGI

)−1

vec(Y )

=VG�G(�G + σGI)
−1VG

Tvec(Y )
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Finally, we will obtain the score matrix based on the Kro-
necker Gaussian similarity by the following equation:

where vec(XG) =

(

�m

G
⊗�d

G

)(

�m

G
⊗�d

G
+ σGI

)−1

vec

(

V
d

G

T
YV

m

G

)

.

In addition, we also can get another objective function 
and optimal solution based on the Kronecker Hamming 
similarity in a similar manner:

We implemented eigen decompositions on the HIP simi-
larity matrix SmH of microbes and HIP similarity matrix SdH 
of diseases, and obtained the second score matrix based on 
the Kronecker Hamming similarity:

where vec(XH ) =

(

�m
H
⊗�d

H

)(

�m
H
⊗�d

H
+ σH I

)−1

vec

(

V
d
H

T
YV

m
H

)

.

After obtaining the prediction matrix F∗
G and F∗

H based 
on the two different Kronecker similarities, respectively, we 
obtain the final prediction matrix by integrating their con-
tributions as follows:

where w is a trade-off parameter. Eventually, we will 
obtain the score matrix F∗ . In the future research, the 
association with the high score will have a priority to be 
verified by biological experiment.

Results and discussion
Evaluation metrics
To measure the reliability and effectiveness of the pro-
posed method, in the same experimental conditions, we 
implemented our method and reran the other five state-
of-the-art computational methods for comparison, under 

vec(FG) =(Vm

G
⊗ V

d

G )

(

�m

G
⊗�d

G

)(

�m

G
⊗�d

G + σGI

)−1

(Vm

G

T
⊗ V

d

G

T
)vec(Y )

= (Vm

G
⊗ V

d

G )

(

�m

G
⊗�d

G

)(

�m

G
⊗�d

G + σGI

)−1

vec(Vd

G

T
YV

m

G
)

= (Vm
G ⊗ Vd

G)vec(XG)

(15)= vec
(

Vd
GXGV

m
G

T
)

(16)F∗
G = Vd

GXGV
m
G

T

(17)J
(

fH
)

=
1

2

N
∑

i=1

(

yi − fH (xi)
)2

+
σH

2
� fH �

2
k

(18)vec(FH ) = KH (KH + σHI)
−1vec(Y )

(19)F∗
H = Vd

HXHV
m
H

T

(20)F∗ = w · F∗
G + (1− w) · F∗

H

5-CV and global LOOCV framework. Notably, the GIP 
kernel similarity and HIP similarity of microbes and dis-
eases should be recalculated in every round of the global 
LOOCV and 5-CV framework.

Specifically, in the global LOOCV framework, all of the 
microbe-disease pairs without associations were used as 
candidate samples, each of the known MDA was treated 
as a testing sample and the rest of the known MDAs were 
treated as a training set to conduct experiments. We 
can obtain the rank of every testing sample by compar-
ing it with candidate samples. To visualize the predic-
tion performance, 1-specificity (false positive rates) and 
sensitivity (true positive rates) were calculated to plot the 
receiver operating characteristic (ROC) curves by setting 
different thresholds. For convenient observation, we cal-
culated the area under the ROC curve (AUC) values to 
measure the ability of prediction method.

In the validation framework of 5-CV, all observed 
microbe-disease associations are randomly split into 5 
subsets. Each of the 5 subsets is specified as an independ-
ent testing set and the rest of the 4 subsets are regarded 
as training sets. To weaken potential experimental bias 
caused by random sample division, the process of the 
experiment of every method was performed 100 times. 
Furthermore, the corresponding 1-specificity and sen-
sitivity were obtained for plotting the ROC curves. The 
corresponding AUC values were also calculated for eval-
uation. The AUC value of 1 means best prediction, while 
the AUC value of 0.5 indicates random prediction.

Parameter sensitivity analysis
There are three parameters ( σG , σH and w ) in our model. 
In general, the prediction performance of the model 
depends on some parameters, and different scale values 
of the parameter will produce different prediction results. 
Here, to explore the properties of the proposed method 
and the influences of parameter and find the optimal 
parameter, we calculated the AUCs and made some com-
parison experiments with different initial parameters 
under the 5-CV and LOOCV frameworks.
σG and σH are self-tuned parameters of MDAKRLS. To 

promote robust performance and simplify the complex 
problem, we set the same variable value for parameters 
σG and σH . The experimental results of the parameters 
have been shown in Fig. 2a. From the figure, the average 
AUC of MDAKRLS is greatly enhanced when the param-
eter increases from 0 to 5, and the performance remains 
almost unchanged as the value of the parameter increases 
from 5 to 35 under two kinds of frameworks. Finally, the 
values of parameters σG and σH were set as 30 to obtain 
a stable and optimal prediction result. Then, we fixed 
σG and σH , and adjusted the trade-off parameter w . The 
relationship between the AUC value and the parameter 
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w is shown in Fig. 2b. It can be seen that MDAKRLS will 
obtain the highest AUC whn w = 0.8 , indicating that the 
Kronecker Gaussian similarity can provide more effective 
information for prediction. Finally, we obtained the best 
parameters for the following analysis, which can achieve 
better performance. The average AUC value of 5-CV 
achieved by our proposed method based on the optimal 
parameters was 0.9023 ± 0.0015, and the AUC value of 
global LOOCV was 0.9327. The standard deviation and 
evaluation results demonstrate that used parameter val-
ues are reliable and robust for the proposed model.

Comparison with other methods
To validate the effectiveness of MDAKRLS, we com-
pared it with five state-of-the-art computational meth-
ods under the same experimental conditions, including 
KATZ measure (KATZHMDA) [19], Laplacian Regular-
ized Least Squares (LRLSHMDA) [27], Bi-Random Walk 
(BiRWHMDA) [20], Network Topological Similarity 
(NTSHMDA) [21] and Graph Regularized Non-negative 
Matrix Factorization (GRNMFHMDA) [28] for human 
microbe–disease association prediction. Previous studies 
showed that these methods achieved effective prediction 
results. Here, we implemented the above 5 prediction 
methods for comparison under the global LOOCV and 
5-CV frameworks on the same benchmark data set. The 
comparison results are shown in Figs. 3 and 4, respectiv
ely.

Specifically, Fig.  3 shows AUC values and ROC 
curves of different methods under the global LOOCV 
framework. It can be observed from the figure that the 

AUC values of five comparative methods are the fol-
lowing: KATZHMDA (0.8382), LRLSHMDA (0.8916), 
BiRWHMDA (0.8964), NTSHMDA (0.9040) and GRN-
MFHMDA (0.8719). Our method obtained the high-
est AUC value (0.9327), which is superior to the other 
five methods. Similarly, we compared all methods 
in the framework of 5-CV. The corresponding aver-
age AUC values and ROC curves of different methods 
have been shown in Fig. 4. As a result, the average AUC 
value of the proposed method is 0.9023, which per-
forms better than KATZHMDA (0.8324), LRLSHMDA 

Fig. 2  a The relationship between parameters σG and σH and AUC value under the 5-CV and LOOCV frameworks. b The relationship between 
parameter w and AUC value under the 5-CV and LOOCV frameworks

Fig. 3  The AUC values and ROC curves of different methods under 
global LOOCV
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(0.8809), BiRWHMDA (0.8839), NTSHMDA (0.8918) 
and GRNMFHMDA (0.8555). The experimental results 
demonstrate that the proposed method is an effec-
tive and reliable prediction tool in inferring possible 
associations.

Practically, the traditional experiment-based methods 
are time-consuming, some computational methods were 
proposed to save time. It is necessary to improve cal-
culation speed and prediction accuracy for developing 
new reliable computational methods. Thus, calculation 
speed is an important metric for performance evalua-
tion of different computational methods. Therefore, it 
is a fresh perspective and we implemented a runtime 
analysis. Specifically, we compared the calculation speed 
between the proposed method and five state-of-the-art 
prediction methods under the global LOOCV and 5-CV 
frameworks. The comparisons of calculation speed 
analysis are shown in Table  1. Our proposed method 
obtained a faster average running time under the 5-CV 

framework. Moreover, the proposed method can use the 
shortest time for prediction under the global LOOCV 
framework. In brief, these results indicate the proposed 
method is reliable, effective and time-saving. It may be 
a useful tool for seeking disease-related new microbes.

Case studies
To further access the practical effect of the proposed 
method in inferring associated microbes with a disease 
without any known associated microbes, case study anal-
ysis [28, 44] was implemented on the MDAKRLS. For a 
given disease, we removed all known microbe associa-
tions in the HMDAD. Then, the proposed method was 
trained on the rest of the known associations and tested 
on the candidate microbe samples to seek the disease-
related microbes, it can guarantee the independence 
between training data sets and validation data sets. In 
other words, the prediction model only depends on the 
rest of the known association information and the simi-
larity measures of the training data sets. Specifically, in 
the microbe-disease adjacency matrix A , we converted all 
1 to 0 for a given disease and ranked all microbe samples 
based on the prediction scores. The top ranked microbes 
will be further verified by the relevant literature and the 
method will be effective if the top prediction results have 
more verified microbes. To reveal the pathological rela-
tionship of diseases and microbes, in the framework of 
the MDAKRLS, we implemented independent case stud-
ies on two kinds of important human diseases: asthma 
and inflammatory bowel disease (IBD). It should be 
noted that we assume that the genus of this microbe will 
be associated with the disease if the microbe is associated 
with the disease when we validate microbes [21, 45].

Asthma is a common chronic inflammatory disease, 
which has substantial morbidity. According to statistics, 
more than 300 million patients were affected by asthma 
worldwide [8]. In this study, the top 20 prediction results 
of asthma-related microbes are tabulated in Table  2. In 
the prediction list, there are some predictions have been 
validated by the HMDAD, the rest could be validated by 
the previously published biological and medical literature 
for asthma-related microbes. Finally, 19 of the top 20 pre-
diction microbes could be manually verified that they are 
related to asthma patients. For example, Actinobacteria, 
Firmicutes and Bacteroides have lower proportions in all 
sputum samples of asthmatic patients, while Proteobac-
teria and Staphylococcus aureus were higher [46, 47]. 
Moreover, Clostridium difficile colonized at 1  month of 
age, which was closely related to asthma at 6 to 7 years of 
age [48]. The clustering results of bacterial composition 
showed Enterobacteriaceae family were more abundant 
in healthy people, while Lachnospiraceae and Bifidobac-
terium were more abundant in the asthma patients [49]. 

Fig. 4  The average AUC values and ROC curves of different methods 
under 5-CV

Table 1  Comparison of calculation speed between proposed 
method and five state-of-the-art prediction methods

Method 5-fold CV Global LOOCV
Average running time (s) Running time (s)

Proposed method 1.5604 ± 0.1290 7.4807

KATZHMDA 1.7240 ± 0.1190 8.6369

LRLSHMDA 1.8275 ± 0.2236 29.1313

BiRWHMDA 1.6293 ± 0.1057 11.7000

GRNMFHMDA 1.9593 ± 0.1669 30.1469

NTSHMDA 1.8302 + -0.8365 19.4239
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In addition, in a study about children and infants, the 
fecal colonization of Clostridium coccoides subcluster 
XIVa species and Bacteroides fragilis subgroup can be 
served as early indicators, which will be good for the pre-
vention of asthma [50]. Lactobacillus has been shown to 
be beneficial for children with asthma [51].

IBD is a chronic disabling gastrointestinal disease 
with a continually increasing incidence, which is a 
worldwide health-care problem [9]. Similar to asthma, 
the top 20 prediction results of inflammatory bowel dis-
ease (IBD)-related microbes are tabulated in Table 3. In 
the prediction list, based on the HMDAD and recently 
published biological and medical literature for IBD-
related microbes, 19 of the top 20 prediction microbes 
could be manually verified that they are related to the 
IBD patients. For example, previous studies showed 
Bacteroidetes, Prevotella and Firmicutes were associ-
ated with the formation of IBD [52, 53]. Clostridium dif-
ficile can aggravate flares of IBD, resulting in mortality 
and morbidity [54]. There is a negative relevant relation 
between IBD and Helicobacter pylori [55]. Compared 
with healthy people, Clostridium coccoides was less 
represented in active IBD patients [56]. In the salivary 
microbiota of IBD patients, Haemophilus, Veillonella 
and Prevotella were found that can largely contribute to 

dysbiosis [57]. In addition, in the faeces of IBD patients, 
the proportion of Lactobacillus increased, while Bifido-
bacterium decreased [58].

In addition, we also implemented case studies for three 
metabolic diseases including Obesity, Type 1 diabetes 
and Type 2 diabetes (see Additional file 1). Case studies 
indicate if one of the 39 human diseases does not have 
any known related microbes in the HMDAD, MDAKRLS 
can calculate the possibility of association between the 
disease and 292 microbes. The proposed method may 
be an effective tool for seeking disease-related possible 
new microbes. Then we further used MDAKRLS to rank 
all candidate microbes for all the diseases involved in 
HMDAD (see Additional file  2). We hope that the pre-
diction list can provide aid, and more and more potential 
microbe-disease pairs could be verified by clinical or bio-
logical experiment observation.

Conclusion
Identifying of MDAs could help us better understand 
the pathogenesis of human diseases, which is also use-
ful for the prevention, diagnosis and treatment of human 
diseases. In this study, we developed a novel computa-
tional method called MDAKRLS based on the Kronecker 
regularized least squares. Firstly, we not only calculated 
the Kronecker Gaussian similarity of microbe-disease 

Table 2  Prediction results of  the  top 20 associated 
microbes with asthma

Rank Microbe Evidence Score

1 Proteobacteria Confirmed by HMDAD 0.0840

2 Firmicutes PMID:23265859 0.0698

3 Clostridium difficile PMID:21872915 0.0687

4 Bacteroidetes Confirmed by HMDAD 0.0683

5 Prevotella Confirmed by HMDAD 0.0623

6 Helicobacter pylori Confirmed by HMDAD 0.0571

7 Clostridium coccoides PMID:21477358 0.0506

8 Actinobacteria PMID:23265859 0.0503

9 Staphylococcus aureus PMID:18822123 0.0450

10 Lachnospiraceae PMID:28912020 0.0411

11 Lactobacillus PMID:20592920 0.0388

12 Clostridia Unconfirmed 0.0367

13 Enterobacteriaceae PMID:28947029 0.0349

14 Bacteroides PMID:18822123 0.0336

15 Veillonella PMID:25329665 0.0301

16 Haemophilus Confirmed by HMDAD 0.0297

17 Fusobacterium PMID:27838347 0.0285

18 Stenotrophomonas maltophilia PMID:16351036 0.0269

19 Bifidobacterium PMID:24735374 0.0260

20 Bacteroides vulgatus PMID:28966614 0.0250

Table 3  Prediction results of  the  top 20 related microbes 
with IBD

Rank Microbe Evidence Score

1 Proteobacteria Confirmed by HMDAD 0.0820

2 Bacteroidetes PMID:25307765 0.0798

3 Prevotella PMID:25307765 0.0732

4 Firmicutes PMID:25307765 0.0703

5 Clostridium difficile PMID:24838421 0.0692

6 Helicobacter pylori PMID:22221289 0.0684

7 Clostridium coccoides PMID:19235886 0.0508

8 Staphylococcus aureus PNID:19809406 0.0454

9 Haemophilus PMID:24013298 0.0401

10 Lactobacillus PMID:26340825 0.0389

11 Clostridia PMID:25307765 0.0370

12 Actinobacteria Confirmed by HMDAD 0.0370

13 Enterobacteriaceae PMID:24629344 0.0351

14 Bacteroides PMID:25307765 0.0336

15 Staphylococcus PMID:28174737 0.0306

16 Veillonella PMID:28842640 0.0301

17 Lachnospiraceae Confirmed by HMDAD 0.0291

18 Fusobacterium PMID:25307765 0.0282

19 Stenotrophomonas maltophilia Unconfirmed 0.0271

20 Bifidobacterium PMID:24478468 0.0260
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pairs through the GIP kernel similarity of microbes and 
diseases, but also obtained the Kronecker Hamming 
similarity by the HIP similarity. Then, we developed the 
Kronecker regularized least squares based on the Kro-
necker product and RLS method to calculate the correla-
tion scores of MDAs. A comparison of calculation speed 
showed our method has the advantage of fast calculating 
speed. The evaluation results of the 5-CV and the global 
LOOCV framework demonstrated that MDAKRLS 
improved calculation accuracy and had a reliable predic-
tion performance. In addition, case studies of IBD and 
asthma further indicated that MDAKRLS can effectively 
discover potential associations.

Several critical factors that make MDAKRLS has a 
reliable prediction performance. Firstly, different from 
some methods only using the GIP kernel similarity 
for prediction, we also introduced the HIP similarity 
to measure the similarities of microbes and diseases. 
Secondly, we used the Kronecker product to construct 
two kinds of Kronecker similarities of microbe-disease 
pairs, which is complementary and can effectively mine 
the topological structure information of the network. 
Thirdly, In the process of solving the Tikhonov minimi-
zation problem, we introduced eigen decompositions 
to reduce the computational complexity. Kronecker 
regularized least squares is a machine learning-based 
method and uses fewer model parameters, thus saving 
time and improving robust performance. Of course, 
MDAKRLS needs to be improved in future work, such 
as some prior information of microbes or diseases could 
be introduced to improve the prediction performance; 
the insufficient number of experimentally verified 
MDAs limits the performance and development of the 
computational model.

The development of a reasonable and effective calcu-
lation model is conducive to the study of the microbial 
community. MDAKRLS has a good transplantation char-
acter, which is easily implemented to solve similar biolog-
ical problems. The insufficient number of experimentally 
verified MDAs limits the performance and develop-
ment of the computational model. At present, most 
disease-related microbes remain unknown in HMDAD. 
Therefore, it will be feasible and be of great practical 
significance to develop prediction algorithms that can 
effectively overcome the data sparsity problem. In addi-
tion, it is necessary to add more experimentally verified 
MDAs to improve the database, which can provide a 
foundation for improving the performance of computa-
tional method. We hope that our method could help bio-
medical researchers to carry out follow-up studies, and 
more and more potential microbe-disease associations 
could be verified by clinical or biological experimental 
observation.
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