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Abstract

Background
Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat

in the country remains unclear. In this study we investigated potential effects of tempera-

ture, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild

animals, protected areas and forest on the habitat suitability for RVF occurrence in

Tanzania.

Materials andMethods
Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with

potential predictor variables were used to model and map the suitable habitats for RVF

occurrence using ecological niche modelling. Ground-truthingof the model outputs was

conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and

goats sampled from locations in Tanzania that presented different predicted habitat suitabil-

ity values.

Principal Findings
Habitat suitability values for RVF occurrencewere higher in the northernand central-east-

ern regions of Tanzania than the rest of the regions in the country. Soil type and precipita-

tion of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by

livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthingof model outputs

revealed that the odds of an animal being seropositive for RVFV when sampled from areas
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predicted to be most suitable for RVF occurrencewere twice the odds of an animal sampled

from areas least suitable for RVF occurrence (95%CI: 1.43, 2.76, p < 0.001).

Conclusion/Significance
The regions in the northernand central-easternTanzania were more suitable for RVF

occurrence than the rest of the regions in the country. Themodelled suitable habitat is char-

acterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock

density and a bimodal rainfall pattern. The findings of this study should provide guidance for

the design of appropriate RVF surveillance, prevention and control strategies which target

areas with these characteristics.

Author Summary

Rift Valley fever is a viral disease that is transmitted to livestock and humans by mosqui-
toes. Humans get infected mainly through direct contact with blood or aborted materials
from infected animals. In Tanzania, a total of 10 RVF epidemics have been reported from
1930 to 2007. Despite the long history of RVF in Tanzania, the extent of its suitable habitat
remains unclear. As a result, disease prevention measures such as vaccination of livestock
are implemented without informed risk-based resource-allocation decisions. This study
was therefore carried out to identify the locations in Tanzania where RVF is more or less
likely to occur using an ecological niche modelling (ENM) method. Data from 193RVF
outbreak locations were used together with precipitation, elevation, soil type, livestock
density, rainfall pattern, proximity to wild animal protected areas as well as to forest as
inputs for ENM. Our results show that locations at most risk for RVF occurrence were the
northern and central-eastern Tanzania. Areas at highest risk for RVF occurrence are char-
acterised by soils with low water permeability, high amounts of rainfall, high livestock den-
sity and two rainy seasons in a year. The findings of this study provide guidance in the
design of appropriate RVF surveillance, prevention and control strategies that can be
implemented cost-effectively by targeting the areas at most risk.

Introduction
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease of major public health and eco-
nomic concern occurring mainly in Africa [1–6] and the Arabian Peninsula [7, 8]. The poten-
tial for further geographical spread of RVF to other areas of the world has been suggested [9–
11]. The disease is caused by the RVF virus (RVFV) of the genus Phlebovirus and family
Bunyaviridae [12, 13] and affects both humans and livestock. In this study, RVF outbreak was
defined as occurrence in a specific location of laboratory-confirmed RVF cases affecting
domestic ruminants. A RVF outbreak wave (epidemic) referred to sequential reports of the
outbreaks at various locations within Tanzania from date of onset of the first outbreak during a
particular time period of the year until outbreaks were no longer reported in the country. Tan-
zania has a long history of RVF outbreaks, and it is not known how RVFV was introduced to
the country. Between 1930 and 2007, a total of 10 RVF outbreak waves have been reported in
Tanzania with average inter-epidemic period (IEP) of 8 years [14–17]. There also appears to be
spatial heterogeneity in the distribution of RVF. A total of 31/90 (34.4%) districts from 10/14
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(71.4%) regions in the eastern Rift Valley ecosystem have reported RVF outbreaks in the past
compared with 12/69 (17.4%) districts from 5/11 (45.5%) regions in the western ecosystem
[18–20]. The past RVF outbreaks in Tanzania resulted in devastating socio-economic losses
including food insecurity and threatened livelihoods. Notably, the last RVF outbreak in Tanza-
nia in 2006/2007 caused high mortality rates in laboratory confirmed cases amongst domestic
ruminants (37%, n = 136,570) and humans (46%, n = 309) [14]. Animals lost monetary value
by 34% (e.g. price of a bull dropped from US$ 238 to 158), monthly internal market flow
dropped by 37% (e.g. 4,251 to 2,679 cattle) and annual external market flow dropped by 54%
(e.g. 2,594 to 1,183 cattle) [14]. Additionally, the loss due to death of domestic ruminants
was> US$ 6million and the government spent about US$ 4 million in the control of the dis-
ease [14].

It is not known why RVF outbreaks have been reported mainly in the eastern Rift Valley
ecosystem. However, it should be realized that active and well-structured RVF surveillance has
never been conducted throughout the country partly because of financial resources and chal-
lenging logistics. The northern Tanzania, particularly Ngorongoro district, in the eastern Rift
Valley ecosystem has remained the epicentre of all past RVF outbreaks in the country [16]. As
a result, past RVF surveillance and awareness campaign efforts have been concentrated much
more in the northern than other areas of the country. We cannot therefore, discount the possi-
bility that sampling or reporting bias may have contributed to over-reporting of RVF outbreaks
in the eastern rather than the western Rift Valley ecosystem over time. It is probable that some
of the un-sampled locations and locations without reports of RVF outbreaks in the country are
also suitable for disease occurrence. Because the disease control resources are generally limited,
it is interesting to understand if heterogeneity exists in the habitat suitability for RVF occur-
rence in the country, as this will inform allocation of disease prevention and control resources
proportional to the risk.

A number of scientific methods are available that can be used to generate information on
the potential suitable habitat for species and disease occurrence. These include general-purpose
statistical methods of temporal and spatial prediction such as generalized linear models (GLM)
[18, 19], generalized additive models (GAM) [20, 21] and Bayesian estimation methods [22,
23]. However, such models require both disease presence and absence data and inferences
drawn from their outputs are therefore limited to the area covered by the data. Furthermore,
these methods frequently fit linear functions between predictor variables and disease data
although ecological associations are frequently highly complex and non-linear [24, 25].

Ecological niche models (ENMs) that were originally developed for ecological and conserva-
tion purposes are being used increasingly to model the spatial distribution and potential risk of
occurrence of a range of diseases and vector species. For example, they have been applied to
characterize the habitat suitability for leishmaniasis [26], malaria [27–30], RVF [31, 32], blue-
tongue [33], anthrax [34], dengue [30], Chagas disease [35], filovirus disease [36], Marburg
hemorrhagic fever [37], avian influenza [38], plague [39, 40] and lymphatic filariasis [41]. The
main advantage of ENMs, over that of the more traditional regression modelling approaches,
such as generalized linear mixed models, is that they require only presence data [39]. These
data are used, together with a randomly-generated sample of background data points from the
study area (representing the available environment) and a suite of predictor variables, to define
the fundamental niche of the species or disease [42, 43]. In addition, as the results of such mod-
els can be extrapolated beyond the geographical areas defined by the data points used to cali-
brate the model, these predictive risk mapping approaches are useful for identifying other areas
suitable for occurrence of the disease [42]. These presence-only methods illustrate the likeli-
hood of an organism’s presence or the relative ecological suitability of a spatial unit within the
study area [43]. Maximum Entropy (MaxEnt) is one of the presence-only general-purpose
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niche modelling algorithms, which has been described as efficient to estimate the probability
distribution of species and diseases [42–48] and is reported to perform well, even with very
small sample sizes [49–50].

In this study, we investigated the potential effect of bioclimatic variables related to tempera-
ture and precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild
animal protected areas and proximity to forest on the spatial habitat suitability for RVF occur-
rence in Tanzania. We anticipate that generation of evidence-based information on the spatial
dimensions of the potential suitable habitat of RVF occurrence and understanding how much
the potential predictor variables contribute in delineating these suitable habitats, will inform
targeted risk assessment, surveillance and cost-effective-usage of disease control and preven-
tion resources.

Methods

Ethics statement
The domestic ruminants (cattle, sheep and goats) RVF disease outbreak data used in this study
were extracted from reports of the ministry responsible for livestock development in Tanzania.
These data were anonymous, and it was therefore not possible to associate disease data with
specific animal or its owner. Serological data from domestic ruminants (cattle, sheep and
goats) used for ground-truthing of the ecological niche modelling outputs were from the study
that received ethical approval from the Medical Research Coordinating Committee of the
National Institute for Medical Research in Tanzania (ethics certificate number NIMR/HQ/
R.8a/Vol.IX/1296).

Study area
This study was conducted in Tanzania Mainland, located between longitudes 29 and 41° east
and latitudes 1 and 12° south. Tanzania Mainland borders Kenya, Uganda and Lake Victoria in
the north, Rwanda, Burundi and the Democratic Republic of the Congo (DRC) in the west. On
the south it borders with Zambia, Malawi, Mozambique and Lake Nyasa, and to the east it bor-
ders the Indian Ocean (Fig 1). Administratively, Tanzania Mainland has 25 regions with total
land areas of 883,343 square kilometres. The ecological characteristics of the country vary
widely. The north-eastern regions experience a bimodal rainfall pattern (October—December
and March—May) whereas the central, western and southern regions of the country experience
a unimodal rainfall pattern (November—May). Pastoralism is mainly concentrated in Arusha
and Manyara regions and agro-pastoralism in Tabora, Geita, Shinyanga, Mwanza, Dodoma
and Singida regions [51]. The plateau of the northern Tanzania is comprised of relatively
higher livestock densities (cattle� 50, goats� 45 and sheep� 14 head per square kilometre)
than the rest of the country [51].

Data sources and preparation
Presence point records for RVF outbreaks in Tanzania. The definition of habitat suit-

ability was adapted from Franklin [52], and in this study it refers to the ability of a habitat to
support the occurrence of RVF. In this study, we also refer to habitat suitability as probability
of occurrence. A total of 303 locational point data of reported RVF outbreaks for domestic
ruminants (cattle, sheep and goats) in Tanzania were available through the disease reporting
registers from the ministry responsible for livestock development for the period spanning 1930
to 2007, and are presented in Fig 1. Detailed descriptive analysis of these RVF outbreak data is
presented in a recent study by Sindato and others [16]. Data on RVF occurrence were available
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at village and monthly spatial and temporal resolutions, respectively. Villages were identified
by specific geo-coordinates. Only one entry record for RVF outbreaks was retained in the data-
set for those geo-coordinates with multiple entries for a particular month. Duplicate presence
point records for RVF outbreaks were removed using ecological niche modelling tools
(ENMTools) software version 1.4.3 [53] leaving a total of 193 RVF outbreak points, which
were used to calibrate the ecological niche model, together with 10,000 background points ran-
domly generated by the MaxEnt software version 3.3.3k [42]. Background data are sampled
from the whole study area in order to characterize the environmental conditions existing
within it (i.e. both presence and absence grid cells are included in the sampling frame) [54]). In
addition, the sampling frame for background data should ideally include the full range of envi-
ronments in which the species can potentially occur. Constraining the background data sam-
pling frame to exclude specific environmental conditions can unintentionally truncate the
species’ niche and thereby lead to incorrect feature selection, and consequently, incorrect esti-
mates of suitable habitat [55]. Thus, when selecting the extent of the region from which the

Fig 1. Probability of Rift Valley fever occurrence in Tanzania overlaidwith locations of RVF outbreaks in domestic ruminants 1930–
2007.Key for regions: 1- Pwani; 2- Simiyu; 3- Geita; 4- Singida; 5- Iringa; 6- Rukwa; 7- Kagera; 8- Kigoma; 9- Lindi; 10- Dar es Salaam; 11-
Dodoma; 12- Tanga; 13- Mtwara; 14- Njombe; 15- Tabora; 16- Kilimanjaro; 17- Shinyanga; 18- Mara; 19- Ruvuma; 20- Mwanza; 21- Mbeya;
22- Arusha; 23- Morogoro; 24- Katavi and 25- Manyara.

doi:10.1371/journal.pntd.0005002.g001
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background data are sampled, it has been suggested that this should be limited to areas which
are accessible via dispersal [55]. As dispersal of RVF is much dependent on vector dispersal
and uncontrolled animal movement in Tanzania, we reasoned that all regions of the study area
were potentially accessible to the virus and should therefore be included in the background
data sampling frame.

Potential predictors of RVF occurrence. Potential predictors for RVF occurrence were
identified from the literature [14–17, 56–61] and those that can be mapped included elevation,
soil types, livestock density, rainfall pattern, proximity to wild animal (national parks, game
reserves and conservation areas) and forest (closed forest and woodland) protected areas, and
bioclimatic variables related to temperature and precipitation. The 11 bioclimatic variables
related to temperature included annual mean temperature, mean diurnal temperature range,
isothermality, temperature seasonality, max temperature of warmest month, min temperature
of coldest month, temperature annual range, mean temperature of wettest quarter, mean tem-
perature of driest quarter, mean temperature of warmest quarter and mean temperature of
coldest quarter. Eight bioclimatic variables related to precipitation included annual precipita-
tion, precipitation of wettest month, precipitation of driest month, precipitation seasonality,
precipitation of wettest quarter, precipitation of driest quarter, precipitation of warmest quar-
ter and precipitation of coldest quarter. These bioclimatic layers (related to temperature and
precipitation) were downloaded from the World climate website (http://www.worldclim.org/
current) at a resolution of 30 arc-seconds (~1km). Data for livestock (cattle, sheep and goats)
density were obtained from the ministry responsible for livestock development in Tanzania
(available at regional resolution) based on the national sample census of agriculture conducted
in 2007/2008, and is available at http://harvestchoice.org/sites/default/files/downloads/
publications/Tanzania_2007-8_Vol_5g.pdf. Data for wild animal and forest protected areas
(available mainly at district spatial resolution) were downloaded from http://www.tzgisug.org/
wp/spatial-data-sources-for-tanzania. Data on soil type was obtained from the Mlingano Agri-
cultural Research Institute in Tanga (available at regional resolution), Tanzania, and is avail-
able at http://www.kilimo.go.tz/agricultural%20maps/Tanzania%20Soil%20Maps/Webbased%
20Districts%20Agricultural%20maps/Districts%20Soil/Soils%20of%20Tanzania.pdf. ArcGIS
10.2 (ESRI East Africa) was used for all spatial data manipulations. The spatial analysis tool in
ArcGIS 10.2 was used to calculate the Euclidean distance to the feature of interest for the ‘prox-
imity to’ spatial data layers. For modelling purposes, all variable layers were clipped to the
extent of the country with a resolution of 1 km2.

Collinearity analysis. Bioclimatic data contain variables describing patterns in tempera-
ture and precipitation derived from a common set of temperature and precipitation data,
which have been shown to be highly correlated with each other [62–64]. Including highly cor-
related variables in the model would make it difficult to determine exactly how each variable
influences the occurrence of the species or disease [65, 66]. Therefore, preliminary assessment
was made to identify a single optimal temperature or precipitation predictor from the set of 19
bioclimatic variables [67] for inclusion in the model as follows: two ecological niche models
with default settings in the MaxEnt software were run—one incorporating only eight precipita-
tion-related variables and the second incorporating only 11 temperature-related variables. The
single temperature and precipitation variables which best fit the data were selected using the
model area under the curve (AUC). These two predictor variables, mean diurnal temperature
range and precipitation of wettest quarter, were carried forward for evaluation in the model
together with elevation, soil type, livestock density, rainfall pattern, proximity to wild animal
protected areas and proximity to forest. Collinearity between each pairs of these eight predictor
variable layers was assessed using Pearson correlation analyses in ENMTools version 1.4.3
[53]. Two predictor variable layers were considered highly correlated at a Pearson correlation
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coefficient value> 0.70. This threshold value of correlation was set conservatively in view of
other studies that have considered predictor variables to be highly correlated at correlation
coefficient values> 0.35 [66],> 0.75 [68] and> 0.85 [69]. Based on the potential biological
relevance to the occurrence of RVF, only one predictor variable from a set of highly correlated
variables was included in our model.

Modelling habitat suitability for RVF occurrence
Ecological modelling of habitat suitability for RVF occurrence was implemented using the
MaxEnt software version 3.3.3k [42]. There has been no systematic surveillance of RVF in Tan-
zania and therefore, the spatial range of its occurrence was not explicitly known. Prior to con-
ducting our study, we could not differentiate whether more RVF cases were confirmed in the
northern Tanzania because those locations were suitable for disease occurrence or rather
because they received the largest surveillance efforts. Our presence dataset was therefore con-
sidered small and biased because of the fact that most of past surveillance efforts have been
conducted in the northern Tanzania. We assumed that the un-sampled locations of the country
could be suitable for RVF occurrence. For this reason, the MaxEnt default setting seemed more
appropriate because it assumes that the species/disease being modelled is equally likely to be
anywhere in the geographical space of the study area [70]. In addition, the regularization multi-
plier was set to 1 to limit over-fitting of the model and prevent prediction from being inade-
quately large [48]. Regularization multiplier is a parameter that leads to smoothening of the
regression line to minimizing the error function and thus prevents over-fitting of the model. It
does so by penalizing the values of the features that tries to closely match the noisy data points
resulting to balanced optimal solution to avoid making the model complex. The model con-
taining the optimal combination of predictor variables was run with ten replicates and 500 iter-
ations at a convergence threshold of 0.00001, with cross validation replicate type. The output
was set to logistic format, so that the predictions of habitat suitability would assume probability
scores between 0 and 1 [42].

Model performanceand selection criteria
To determine which set of predictor variables best fit the data, performance and selection crite-
ria were implemented using the MaxEnt software [42] and MaxEnt extension, ENMTools [53].
A backward stepwise approach was implemented in MaxEnt using the jackknife test of relative
contribution of the predictor variables in the model as follows. Eight models were run in Max-
Ent, starting with one that included all eight predictor variables. In the process of building the
model, the variable which contributed the least was removed from subsequent models until
only one variable remained. AUC values were recorded for each model. The raw outputs from
MaxEnt were further evaluated using ENMTools [53]. The optimal combination of predictor
variables included in the final model was the one that generated the largest AUC and at least
one of the smallest of Akaike`s information criterion (AIC), sample-size corrected Akaike`s
information criterion (AICc) or Bayesian information criterion (BIC) [71, 72]. The percentage
contribution and permutation importance were computed for each predictor variable. The
magnitude of change in training AUC represented by the average over the 10 replicate runs
was normalized to percentages. The higher the percentage contribution, the more impact that
particular variable had on predicting the most suitable habitat for RVF occurrence [53]. In
order to assess the training gain of each predictor variable, the jackknife of regularized training
gain was produced by running the model in isolation and comparing it to the training gain of
the model including all variables. This was used to identify the predictor variable that contrib-
uted the most individually to the habitat suitability for RVF occurrence. The response curves

Habitat Suitability for Rift Valley Fever Occurrence in Tanzania

PLOSNeglectedTropical Diseases | DOI:10.1371/journal.pntd.0005002 September 21, 2016 7 / 21



describing the probability of RVF occurrence in relation to the different values of each predic-
tor variable were generated using only the variable in question and disregarding all other vari-
ables. The contribution of each predictor variable to the final model was assessed using the
jackknife procedure based on the AUC, which provides a single measure of model performance
[42]. The probability scores (numeric values between 0 and 1) were displayed in ArcGIS 10.2
(ESRI East Africa) to show the locations in Tanzania where RVF is predicted to be more or less
likely to occur.

Ground-truthingof the ecological nichemodelling outputs
Ground-truthing of the ecological niche modelling outputs was conducted by comparing the
levels of antibodies specific to RVFV in domestic ruminants (sheep, goats and cattle) sam-
pled from locations in Tanzania that presented different predicted habitat suitability values.
We assumed that locations with higher proportions of RVFV-seropositive animals repre-
sented higher levels of habitat suitability for RVFV activity than locations with low propor-
tions of seropositive animals. The details of sampling process and laboratory analysis of
serum samples have been described by Sindato and others [73]. In brief, MaxEnt predictive
map of habitat suitability for RVF occurrence (Fig 1) was used as guidance to purposively
identify six villages from six districts in the eastern and western Rift Valley ecosystems of
Tanzania as described elsewhere (73). The district veterinary officers were consulted in order
to identify one district within the region perceived to be at highest risk of RVF occurrence.
Criteria used included presence of shallow depressions/locations that are subject to regular
flooding, ecological features suitable for mosquito breeding and survival/experienceof mos-
quito swarms during the rainy season, relatively high concentration of domestic ruminants,
proximity to forest, rivers, lakes, wildlife and presence of areas with history of RVF occur-
rence. The district within the region that was identified to have most of these epidemiological
characteristics was selected for the study, even if they had never reported RVF outbreaks. Uti-
lizing local veterinary records, only the villages with livestock that have never been vacci-
nated against RVF were targeted. Based on the above criteria for identifying the six study
districts, additional discussions were then held with local veterinary/agricultural staff, com-
munity leaders and livestock keepers to identify one village within each district that was per-
ceived to be at highest risk for RVFV activity. The number of villages surveyed was not based
on statistical considerations, but rather logistical and financial factors. The selected villages
from the eastern Rift Valley ecosystem were Chamae, Malambo and Ninchoka, and all had
reported RVF outbreaks in the past. Selected villages from the western Rift Valley ecosystem
were Bukirilo, Nyakasimbi and Kajunjumele, and all had never reported RVF outbreaks.
Nyakasimbi village is located in Karagwe district in the western Tanzania bordering with
Rwanda, and Kajunjumele village is located in Kyela district in the southern highland border-
ing with Lake Nyasa. Ninchoka and Malambo villages are located in Serengeti and Ngoron-
goro districts, respectively, in the northern Tanzania bordering with Kenya. Bukirilo and
Chamae villages are in Kibondo and Kongwa districts in the western and central Tanzania,
respectively.

Within each selected village a two stage random sampling process was used to select the
herds and domestic ruminants. In each of the selected villages, 20 herds keeping at least one of
the three domestic ruminant species (cattle, sheep and/or goats) were randomly selected from
the list of livestock keepers. Within each herd, a maximum of 20 ruminant animals (not more
than 20 animals were selected from a herd) born after the last RVF outbreak in 2006/2007 in
Tanzania were bled (i.e. 10 cattle, 5 goats and 5 sheep) depending on the herd size and species
composition within the herd at the time of sampling. Collected serum samples were tested for

Habitat Suitability for Rift Valley Fever Occurrence in Tanzania

PLOSNeglectedTropical Diseases | DOI:10.1371/journal.pntd.0005002 September 21, 2016 8 / 21



the presence of anti-RVFV antibodies using IgM-capture ELISA [74] and inhibition ELISA
[75]. The results were interpreted using the cut-off threshold specified by the manufacturer of
the test kit. For IgM capture ELISA method: Sheep, goat and bovine sera producing PP values
�7.9, 9.5 and� 14.3, respectively, were considered to be positive and less than these values as
negative [74]. For RVF inhibition ELISA method: Serum samples with PI equal to or greater
than 41.9, 41.4 and 38.4 were considered seropositive for RVF inhibition in cattle, goats and
sheep, respectively [75]. The data were analysed using logistic regression modelling to investi-
gate the association between various suitability habitat values (potential predictors) and RVFV
seropositivity outcomes in domestic ruminants. Based on the limited resources available and
logistic factors, the study sites for model ground-truthing were not selected using simple ran-
dom sampling approach but rather using a purposive sampling approach. When any sampling
method other than simple random sampling is used, the survey data analysis method is used to
take into account the differences between the design that was used and simple random sam-
pling. This is because the sampling design affects both the calculation of the point estimates
and the standard errors of the estimates (e.g. regression coefficients). When non-independent
sampling process is not accounted for in the analysis the standard errors will likely be underes-
timated, possibly leading to results that seem to be statistically significant, when in fact, they
are not. The svy command was therefore used in the modelling process using Stata version 12
(Statacorp, College Station, TX, USA) to account for sample survey design effect.

Results

Selection of the final model and analysis of variable contributions
Eight predictor variables, namely mean diurnal temperature range, precipitation of wettest
quarter, elevation, soil type, livestock density, rainfall pattern, proximity to wild animal pro-
tected areas and proximity to forest were initially evaluated in the model. The pair-wise corre-
lation matrix for these predictor variables suggested that there was moderate correlation
between mean diurnal temperature range and precipitation of wettest quarter (r = -0.56), pre-
cipitation of wettest quarter and livestock density (r =—0.58) and rainfall pattern and livestock
density (r = 0.62) (Table 1). Of the eight predictor variables evaluated in the initial model, four
—proximity to forest, proximity to wild animal protected areas, elevation and mean diurnal
temperature range—were dropped from the model leaving four predictor variables in the final
model (Model_4; Table 2). This model, which contained the predictor variables soil type, pre-
cipitation of wettest quarter, livestock density and rainfall pattern was selected as the model of
best fit based on the highest mean AUC and lowest BIC, as well as one of the lowest values of
AIC and AICc. All subsequent results refer to this model. Soil type and precipitation of wettest
quarter together accounted for almost two-third (64.8%), while livestock density and rainfall
pattern together accounted for just over one-third (35.2%) of the variation in habitat suitability
for RVF occurrence (Table 2).

Habitat suitabilitymap for RVF
The habitat suitability of RVF occurrence in domestic ruminants in Tanzania was displayed on
continuous probability scores of least to most suitable represented by a brown-green–colour
scale (Fig 1). Probability scores were mapped at district level and the grid size was 1km2. It is
clear from our results that the habitat suitability of RVF occurrence was heterogeneously dis-
tributed throughout the country. About one-third (29%) of Tanzania Mainland area (n =
883,343 Km2) comprising 10 (40%, n = 25) regions (dark-green shades in the northern and
central-eastern areas of the country) represented highest probability scores and were consid-
ered most suitable for RVF occurrence. Almost one-fifth (18%) of the land area comprising
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three (12%, n = 25) regions represented by light-green in the central-southern areas of the
country were considered moderately suitable for RVF occurrence. Over half (53%) of the land
area comprising 12 regions (48%, n = 25) represented by light- and dark-brown in the western
and south-eastern areas of the country were considered least suitable for RVF occurrence. Pre-
dictive performance of the model was considered good with mean test AUC of 0.812 and stan-
dard deviation of the mean probability of 0.014 for the 10 replicate runs.

Table 1. Pearson correlationcoefficient for pairs of predictor variables associatedwith occurrence of RVF.

Predictor variable Soil
type

Mean diurnal
temperature
range (oC)

Precipitation of
wettest quarter
(mm)

Elevation
(metre above
sea level)

Livestock
density (heads
per square km)

Proximity to
forest (km)

Proximity to
protected
areas (km)

Rainfall
pattern

Soil type 1 -0.10 0.20 -0.22 -0.08 0.09 0.01 -0.28

Mean diurnal
temperature range
(oC)

1 -0.56 -0.02 0.25 0.09 0.31 -0.18

Precipitation of
wettest quarter
(mm)

1 0.07 -0.58 -0.23 -0.07 -0.26

Elevation (metre
above sea level)

1 -0.01 -0.06 -0.01 0.09

Livestock density
(heads per square
km)

1 0.22 -0.06 0.62

Proximity to forest
(km)

1 -0.02 0.10

Proximity to
protected areas
(km)

1 -0.13

Rainfall pattern 1

doi:10.1371/journal.pntd.0005002.t001

Table 2. Percentage contribution of individualpredictor variables in eight ecologicalnichemodels describing the spatial distribution of habitat
suitability for RVF occurrence in Tanzania. The number in eachmodel (i.e. 1 to 8) indicates the number of predictor variables that model contained.

Predictors Models

8 7 6 5 *4 3 2 1

Livestock density (heads per square km) 23.1 19.4 25.0 21.2 25.9 29.0 57.9 100.0

Soil type 29.0 30.1 27.0 30.2 32.4 30.0 42.1

Precipitation of wettest quarter (mm) 25.6 34.9 31.0 35.8 32.4 40.9

Rainfall pattern 7.7 5.3 7.6 7.4 9.3

Mean diurnal temperature range (degrees Celsius) 8.4 6.7 6.2 5.4

Elevation (metre above sea level) 4.1 2.1 3.2

Proximity to protected areas (km) 1.3 1.5

Proximity to forest (km) 0.8

AUC 0.772 0.764 0.787 0.799 0.812 0.798 0.797 0.744

AIC 2721 2718 2773 2772 2771 2944 3005 3043

AICc 2740 2731 2782 2776 2772 2946 3007 3044

BIC 2836 2816 2856 2832 2806 2983 3044 3066

*Best fit ecological niche model. Key: AUC: area under the curve, AIC: Akaike’s information criterion, AICc: sample-size corrected Akaike’s information

criterionand BIC: Bayesian information criterion.

doi:10.1371/journal.pntd.0005002.t002
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Jackknife of regularized training gain for RVF habitat suitability
The results of the jackknife regularized training gain indicated that the predictor variable with
the highest gain when used in isolation was livestock density. The predictor variable that
decreased the gain the most when it was omitted was soil type. Values shown are averages over
10 replicate runs (Fig 2).

Jackknife test of variable importance for area under the curve (AUC) of
the final model
Jackknife test of variable importance utilizing the AUC showed that livestock density contrib-
uted the most to the AUC (longest dark-blue bar), followed by precipitation of the wettest
quarter, soil type and rainfall pattern (Fig 3).

Response graphs for habitat suitability of RVF occurrence
The response graphs for the final model showed that probability scores were highest in areas
with impermeable soils (planosols followed by chernozems, andosols, luvisols and acrisols),
while the lowest probability scores were observed in locations with permeable soils (ferralsols,
cambisols and lixisols) (Fig 4). The areas that experienced a bimodal pattern of rainfall had
much higher probability of RVF occurrence than those that experienced a unimodal rainfall
pattern. Probability of RVF occurrence was very low (around 0.26) at minimum values

Fig 2. Jackknife of regularized traininggain for RVF occurrence.

doi:10.1371/journal.pntd.0005002.g002

Fig 3. Jackknife test of predictor variables importance on RVF occurrence as determined by the area under the curve (AUC) of the
finalmodel.

doi:10.1371/journal.pntd.0005002.g003
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livestock density of< 8 heads/km2. It then followed a sigmoidal pattern with an initial increase
in probability occurring between 8 and 46 heads/km2, a rapid increase between 46 and 48
heads/km2and after 150 heads/km2 the probability of RVF occurrence remained constant
(Fig 5). Probability of RVF occurrence was around 0.62 at the precipitation of the wettest quar-
ter of< 275mm. A sharp increase in the probability of RVF occurrence occurred with the pre-
cipitation of the wettest quarter between 275 and 290 mm (Fig 6). The highest probability of
RVF occurrence in relation to precipitation of the wettest quarter was 0.76 that occurred
between 375 and 425 mm. Then there was a sharp rate of decline in the probability between
425 and 430 mm, slower rate of decline between 430 and 590 mm and a further sharp decline
to a probability of 0.60 between 590 and 595 mm. Thereafter there was a further slower rate of
decline in the probability to< 0.55 at around 1,075mm (Fig 6).

Ground-truthingof ecological modelling outputs
According to our ecological niche modelling algorithm; Ninchoka, Malambo and Chamae vil-
lages are located in the northern and central areas of the country considered most suitable for
RVF occurrence while Kajunjumele, Nyakasimbi and Bukirilo villages are in the western and
southern areas of the country considered least suitable areas. A total of 1,435 domestic rumi-
nants from 121 herds (61 herds from western and 60 herds from eastern Rift Valley ecosystem)
in these six villages were tested for antibodies against RVFV. About an equal proportion of
tested serum samples were collected in livestock from the villages in the districts within the
eastern (51.9%) and western (48.2%) ecosystems of the Rift Valley. The number of serum

Fig 4. Probability of RVF occurrence in relation to soil types.The red columns presentmean response of all 10
replicates, while blue and light green indicate standard deviation of themean. The key to soil types: 1, chernozems;2,
andosols; 3, acrisols; 4, ferralsols, 5, luvisols; 6, cambisols, 7, planosols and 8, lixisols.

doi:10.1371/journal.pntd.0005002.g004
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samples from each study village was: Malambo; 243 (16.9%), Ninchoka; 257 (17.9%), Chamae;
244 (17.0%), Nyakasimbi; 233 (16.3%), Bukirilo; 233 (16.3%) and Kajunjumele; 225 (15.7%).
Ground-truthing of model outputs revealed a significant variation in the odds of RVFV sero-
positivity in livestock sampled from locations with different suitability habitat values for RVF
occurrence. The odds of an animal sampled from the most suitable location being seropositive
for RVFV were two times higher than the odds of an animal sampled from least suitable areas
(OR = 2.0, 95% CI: 1.43, 2.76, p < 0.001).

Discussion
Rift Valley fever is becoming increasingly important owing to its socio-economic and public
health consequences. Despite the long history of RVF in Tanzania, the level of disease risk in
various locations of the country remains unclear. As a result, disease prevention measures such
as vaccination of livestock are implemented without informed risk-based resource-allocation
decisions. To be cost-effective, allocation of disease prevention and control resources should be
proportional to the risk of RVF occurrence. The findings of this study provide valuable infor-
mation on the spatial suitability habitat for RVF occurrence in Tanzania, thus greatly assist
informed risk-based surveillance, prevention and control activities. Based on the findings of
this study, it is credible to suggest that an appropriate RVF intervention strategy in Tanzania
should consider implementing disease prevention activities, including pre-emptive vaccination
of livestock, by targeting the areas identified to be most suitable for disease occurrence prior
the predicted times of high environmental risk. Regular surveillance activities for RVF activity
should consider conducting representative sampling of the areas in the country with various

Fig 5. Probability of RVF occurrence in relation to livestock density. The red curved presentmean response of all 10
replicates of themodel, while blue indicates standard deviation of themean.

doi:10.1371/journal.pntd.0005002.g005
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habitat suitability values. For surveillance purposes all the suitability classes should be repre-
sented in the sample to monitor transmission dynamic of RVF. This is because subsequent
RVF outbreaks have expanded to involve new foci in the country over time [16]. This suggests
that areas that are currently considered to be at low risk may in future be at high risk because
of factors such as uncontrolled animal movements and weather variability over time. To
enhance early detection, sentinel surveillance should be conducted in the areas considered to
be at most risk for RVF occurrence.

Our findings suggest that used collectively, four predictor variables (livestock density, pre-
cipitation of the wettest quarter, soil type and rainfall pattern) in the model resulted in the best
model fit. The resulting habitat suitability map of our model suggests that the northern and
central-eastern Tanzania has higher values of suitable habitat of RVF occurrence than the rest
of the country. The locations in Tanzania which are considered most suitable for RVF occur-
rence are characterised by bimodal pattern of rainfall, higher livestock density and predomi-
nantly impermeable soils i.e. soils that do not easily allow water to filter through. Contrary, the
locations in the country which are considered least-moderately suitable for RVF occurrence
are characterised by unimodal rainfall pattern, lower livestock density and predominantly per-
meable soils i.e. soils of poor water holding capacity. Previous studies have shown that the
impermeable soils, persistent heavy rainfall and high livestock density are associated with RVF
occurrence [60, 76–80]. Interestingly, Beck and Sieber [81] have shown that the impermeable
soils are among the soil type associated with high suitability for animal husbandry. The
increased amount of precipitation in locations with impermeable soils is likely to provide suit-
able habitat for mosquito breeding and survival, and long term availability of pastures and

Fig 6. Probability of RVF occurrence in relation to precipitation of wettest quarter. The red curved presentmean
response of all 10 replicates of themodel, while blue indicates standard deviation of themean.

doi:10.1371/journal.pntd.0005002.g006
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water for livestock keeping compared with locations with permeable soils. Permeable soils are
characterized by high proportions of sandy texture [82], and are therefore less likely to favour
water stagnation over extended period of time. In contrast, impermeable soils are characterized
by high proportions of clay and loamy texture which do not easily allow water to filter through
resulting in periodic water stagnation and flooding during periods of prolonged rainfall [82].
Such flooding then leads to the hatching of RVFV infected Aedes mosquito eggs, which are
considered to be the reservoirs and primary transmitters of the RVFV [78]. Colonization of the
flooded areas by secondary vectors including Culex, Anopheles and Mansonia mosquitoes con-
tribute to further virus transmission and spread between animals and humans [83]. The odds
of RVF outbreaks have been shown to be more than eight times higher in locations with imper-
meable soils than locations with permeable soils [16].

Our model shows further that the highest probability of RVF occurrence occurs at the pre-
cipitation of the wettest quarter between 375 and 425 mm. This observation confirms the find-
ings of a recent study in Tanzania that has shown that RVF outbreaks were associated with
cumulative amount of rainfall> 400 mm during the previous two months [16]. These observa-
tions demonstrate the fundamental role of rainfall in the occurrence of RVF. Precipitation of
the wettest quarter has been shown to be the proxy-attribute regulating habitat suitability for
several RVF vectors including Aedes, Culex and Anopheles mosquitoes [31, 84–86]. Although
distances to forest and wild animal protected areas were dropped out during the model build-
ing process, they have been reported to influence transmission dynamics of RVF. Forest has
been reported to support breeding and survival of mosquitoes [87, 88]. Furthermore, wild ter-
restrial small mammals living in the forest have been reported to play role in the maintenance
of RVFV [89]. The animal-mosquito cycling may involve low-level of infections in wild ani-
mals and these animals are likely to remain the reservoirs [78]. These observations suggest that
animals and humans residing in or close to forest and wild animal protected areas are more
likely to suffer from RVF than their counterparts.

The habitat suitability estimates of RVF occurrence presented in this study show a very high
degree of visual agreement with the spatial distribution of RVF outbreaks in Tanzania [16].
Most of areas deemed to be the most suitable for RVF occurrence coincide with those that have
reported RVF outbreaks in the past. Almost half (48.5%, n = 66) of the districts in the areas
with higher suitability values had reported RVF outbreak in the past compared with 11/41
(26.8%) and 1/52 (1.9%) districts in the areas considered moderately and least suitable for RVF
occurrence. A recent study reporting on the potential distribution of vectors responsible for
RVF in Tanzania [32] provides reasonable visual agreement (by looking at the maps) with our
model of habitat suitability for RVF occurrence suggesting, not surprisingly, that RVF suitable
habitat is linked to vector distribution. However, the data on the distribution of potential vec-
tors for RVF in Tanzania is very limited. Generation of more data on mosquito distribution in
the country would be valuable input to improve the habitat suitability map. Furthermore, the
ground-truthing for our model demonstrated that the odds of RVFV seropositivity corre-
sponded with predicted suitability values.

It is worth noting that disease mapping is often limited by the resolution of the data avail-
able. Due to the small sample size of presence data points used to construct the ecological niche
model and risk map in this study, it would be unrealistic to expect this model to describe fully
the niche of RVF occurrence in the study area. Our predictive map shows that most RVF out-
breaks have been reported in the areas predicted to be most suitable. However, we cannot
exclude the possibility of under-reporting and/or sampling/reporting bias resulting particularly
from the fact that most of past surveillance efforts have been conducted in the locations with
known history of RVF occurrence, mainly in the northern Tanzania. This may have affected
the predictive performance as the model was developed using existing presence only records of
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RVF outbreaks. The generated country habitat suitability map should be interpreted cautiously
because most of the predictor variables included in the final model i.e. livestock density, rainfall
pattern and soils were available at regional resolutions, and this may have contributed to the
observed pattern suggesting that changes in the predicted probability of RVF occurrence
largely coincide with regional boundaries. It is possible that the spatial distribution of some
predictor variables considered in this study may have changed over time. For instance, the
most current data for livestock density in Tanzania was available from the last national sample
census of agriculture that was conducted in 2007/2008. Availability of most current data might
have improved the predictive performance of our model.

In addition, the method by which background data are generated may not always provide
the appropriate contrasts necessary for rigorous model calibration [90]. Background data
can be generated in a number of different ways including random sampling and two-step
strategies in which the species ecological niche is first defined using a profile method, and
then data points are randomly generated within this constrained area. However, these differ-
ent strategies can result in varying predicted spatial distribution of the species. Hanberry and
others [91] found that while two-step strategies over-predicted species presence, due to too
much environmental distance between the presence and ‘absence’ data, models based on
random absences under-predicted species presence, due to too little environmental distance
between the presence and absence points. However, based on trials using a simulated
species, Wisz and Guisan [92] argue that, although randomly selected pseudoabsence data
yield models with lower fit to the training data, they generally outperform models based on
psedoabsences selected using a two-step method. They therefore suggest that randomly
selected pseudoabsence data may be a reasonable alternative when real absences are unavail-
able [92].

Although we assumed that locations with higher proportions of RVFV-seropositive ani-
mals represented higher levels of habitat suitability for RVFV activity it is however not well
known if animals that recover from natural RVFV infections are protected from development
of clinical disease should RVF outbreaks occur in the future at a given location. Furthermore,
the effect of herd immunity when a large percentage of animals have recovered with immunity
from natural RVFV infection is not clearly known. Specific studies are needed to test these
hypotheses.

It is also probable that, the inclusion of other potential predictor variables which were not
available for consideration into our model, such as animal movement networks and distribu-
tion of vectors in the country, would have also improved the predictive performance. However,
as this model describes the habitat suitability for RVFV activity, it is still of value. It is of note
that our model predicted areas of suitable habitat in the western and south-eastern areas of the
country that have never reported RVF outbreaks.

Conclusion
The ecological niche modelling implemented in this study illustrates the extent of suitable habi-
tat for RVF occurrence in Tanzania. The results suggest that the northern and central-eastern
Tanzania have a higher probability of RVF occurrence than the rest of the country. Our model
predicted areas of suitable habitat, the western and south-eastern areas of the country, beyond
the known localities of RVFV activity. The modelled most suitable habitat for RVF occurrence
in this study is characterized by high livestock density, moderate precipitation in the wettest
quarter, predominantly impermeable soils and bimodal rainfall pattern. The findings of this
study provide scientific evidence that can inform the design of cost-effective RVF prevention
and control programmes targeting the identified high risk locations.
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