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Abstract
Purpose of Review Clinical factors alone do not enable us to differentiate which patients will maintain treatment-free remis-
sion (TFR) from those who are likely to relapse. Thus, patient-specific factors must also play a role. This review will update 
the reader on the most recent studies presenting biological factors that can help predict tyrosine kinase inhibitor (TKI) 
discontinuation success.
Recent Findings Cellular and molecular factors with a suggested role in TFR include immune factors and leukemic stem 
cell (LSC) persistence; the BCR::ABL1 transcript type, halving time, and BCR::ABL1 DNA and RNA positivity; as well as 
other molecular factors such as somatic mutations, RNA expression, and telomere length.
Summary Our review presents several biomarkers with predictive value for TFR but also highlights areas of unmet need. 
Future discontinuation guidelines will likely include biological factors for the personalization of TFR prediction. However, 
it will be important that such advances do not prevent more patients from making a TKI discontinuation attempt.

Keywords Chronic myeloid leukemia · Treatment-free remission · Predictive biomarker · Leukemic stem cell · Somatic 
mutation · Digital PCR

Introduction

Tyrosine kinase inhibitors (TKIs) have revolutionized the 
treatment of chronic myeloid leukemia (CML), bringing the 
life expectancy of TKI-treated CML patients close to that of 
the general population [1]. However, these drugs are associ-
ated with serious side effects (including off-target toxicities 
such as vascular events, cytopenias, and hepatotoxicity), 
have a high economic cost, and can negatively impact patient 
quality of life [2]. For these reasons, TKI discontinuation 
has become a new objective in the clinical management of 

patients with CML and is increasingly being taken into con-
sideration when making treatment choices [3, 4].

An estimated 40%–60% of CML patients with long-term 
achievement of deep molecular responses (a prerequisite 
for a discontinuation attempt) can successfully discontinue 
TKI treatment and reach treatment-free remission (TFR), in 
other words, continue in major molecular response (MMR, 
BCR::ABL1 (IS) ≤ 0.1%) after treatment is stopped [5, 6]. 
Criteria for TKI discontinuation include clinical factors 
with an effect on the probability of maintaining TFR [3, 
4], encompassing the duration of TKI treatment, as well as 
the duration and depth of molecular response (described in 
greater detail in these recent reviews [7–9]). Other patient-
related factors such as age and Sokal score have been sug-
gested to be important, although their impact is still contro-
versial (Table 1). 

Among patients with similar treatment duration and 
response, some individuals remain in TFR while others 
relapse (defined as the loss of MMR) [10]. Therefore, the 
individual’s biological factors—which may be genetic, 
immune, or both—must have an impact on whether a patient 
retains TFR or not. However, the exact biological factors that 
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determine the success of discontinuation remain unclear and 
are an active area of current research.

This review will present the current studies that are help-
ing to increase our understanding of the biological factors 
(clinical and non-clinical, cellular, and molecular) that may 
determine TKI discontinuation success (summarized in 
Table 1).

Possible Biological Factors with an Impact 
on Successful Discontinuation

Immune Related

Although it has been known for a long time that immune 
dysfunction is relevant in the development of CML [11] 

Table 1  Clinical and biological factors associated with TFR

Type of factor Variable Evidence Association References

Clinical Patient-related Age Lacking • Some studies suggest higher TFR in 
older population

[92]

Sokal score Suggested • Low Sokal score associated with 
better outcomes

[35, 93, 94]

Gender Lacking • Some studies suggest association of 
female gender with higher TFR

[95]

Treatment-related Total TKI duration Strong • Favorable impact of a longer dura-
tion of therapy

[5, 28, 36, 96, 97]

Duration of DMR Strong • Favorable impact of a longer dura-
tion of response

[5, 28, 36, 71, 98]

TKI resistance Lacking • Decreased TFR rate but few studies 
have investigated this

[65, 66]

Biological Immune-related CTLs Suggested • Deficit in the expression of HLA 
class II and CT function in CML

• Proliferation after TKI treatment
• Low levels of  CD8+ TCRγβ + T 

cells seem to be associated with 
relapse after TKI stop

[12•, 13, 21, 26]

Tregs Suggested • Decrease in number with TKI 
treatment

• Lower counts related with TFR

[12•, 14, 25]

pDC Suggested • Lower CD86 + pDC cell ratio was 
found to be predictive of TFR

[12•, 22, 23]

MDSCs Suggested • Decrease in number with TKI 
treatment

• Lower counts related with TFR

[12•, 25]

NK cells Strong • Proliferation with TKI treatment
• Increased activating NK cells asso-

ciated with maintained TFR

[12•, 19–21, 25]

LSC Evidence lacking • LSC intrinsic factors and medullary 
microenvironment implicated in 
residual disease and a possible tar-
get for future therapeutic pathways

[6, 18]

Transcript and 
molecular-related

Type of transcript Conflicting • Superior patient outcomes for e14a2 
vs. e13a2

• Possible technical bias as amplifica-
tion efficiency with qPCR higher 
for e13a2

[41–45, 46••, 47–51]

BCR::ABL1 DNA/RNA positivity Suggested • Positivity for both DNA and RNA 
indicative of a higher rate of relapse 
when TKI was discontinued

• DNA negativity in granulocytes 
indicator of TFR

[59•, 60, 61••, 63••, 71]

Rate of transcript reduction Suggested • Faster decline of BCR::ABL1 tran-
scripts in the first 3 months of TKI 
therapy associated with a higher 
probability of TFR

[52–56]

Somatic mutations Suggested • Various polymorphisms and somatic 
mutations associated with TFR

[21, 65, 66, 69, 70, 72, 73]

RNA expression Suggested • Different expression profiles for 
patients who maintain TFR vs. 
those who relapse

[82•, 83–87]

Telomere length Suggested • Correlates with response to treat-
ment and disease progression

• Shorter length related with higher 
TFR

[76–79]
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(reviewed in [12•]), only recently has it become the epi-
center of research efforts whose aim is to identify the mecha-
nisms of disease development and elucidate their relation-
ship with TFR.

The initiation of TKI treatment has been shown to change 
the immunological state of patients. Before TKI, patients 
have low expression of cells presenting leukemic-associ-
ated antigens (LAA), high myeloid-derived suppressor cell 
(MDSCs), and regulatory T lymphocyte (Treg) counts and 
present a deficit in the expression of HLA class II and cyto-
toxic  CD8+ T lymphocyte (CTL) function [12•, 13]. This 
could facilitate tumor progression and the self-preservation 
of leukemic stem cells (LSC), evading the host’s develop-
ment of an anti-tumoral response. In comparison, once TKI 
treatment is commenced, an immune reconstitution has 
been described, represented by an increase in the number 
and functionality of NK and CTL cells and a decrease in 
MDSCs and Tregs [14, 15].

Despite efficient TKI treatment, the persistence of leu-
kemic stem cells (LSC) that are independent of the activity 
of BCR::ABL1 [16, 17] and not sensitive to TKIs [17] are 
likely to be responsible for relapse after TKI discontinua-
tion. Some LSC-intrinsic factors have been implicated in 
the persistence of residual disease, including metabolism, 
autophagy, and the medullary microenvironment, and are 
currently being explored as putative targets for novel thera-
pies [4, 18].

What is clear is that certain immune effector and sup-
pressor cells have a key role in the maintenance of TFR. 
Here, we will briefly mention some immune cell subtypes 
shown to be predictive of successful TFR and strongly rec-
ommend a recent and definitive review for more information 
on immune dysfunction and surveillance in CML [12•]:

Innate immune system: An increased proportion of NK 
cells was found to be associated with longer relapse-free 
survival [19], an observation confirmed by the EURO-SKI, 
STIM, and DADI discontinuation trials, to name just a few. 
Furthermore, TFR was associated with increased NK cell 
maturity—with higher cytotoxic  CD56dim and memory-like 
CD57 NK cell populations [19, 20]—while relapse after TKI 
interruption was associated with low levels of CD56+ cells 
with low expression of CD16 and CD94/NKG2 receptors 
[21]. Plasmacytoid dendritic cells (pDCs) were shown by 
RNA sequencing (RNA-seq) to have a strong inflammatory 
signature [22], and lower CD86+ pDC counts were associ-
ated with TFR [23].

Immune suppressive cells: Low numbers of both mono-
cytic myeloid-derived suppressor cells (Mo-MDSC) and 
FoxP3+ regulatory T cells have been associated with TFR 
[19, 24, 25].

Adaptive immune system: Increased numbers of CTLs, 
particularly TCRγβ+ T cells, were also associated with TFR 
[21, 26].

Taking all of these observations into account, an immune 
effector-suppressor score was recently developed to predict 
TFR success at TKI stop [25], although it may have limited 
applicability since most standard laboratories do not rou-
tinely measure these cell populations. Furthermore, the use 
of any of these immune-related biomarkers for TFR predic-
tion will need to be tested in longitudinal studies.

One aspect that has aroused particular interest is the 
relationship between the patient’s immune cell composition 
and TKI therapy outcomes. Achievement of deep molecular 
responses (DMR, i.e.  MR4 or better) was shown to be asso-
ciated with high  CD4+ T cell count, low neutrophil count, 
a low proportion of  PD1+  TIM3−  CD8+ T cells, and a high 
response to LAAs [15, 27••]. This evidence suggests that the 
immune recuperation of CML patients upon TKI treatment 
is progressive, which is in accordance with studies that show 
that the global duration of TKI treatment directly influences 
the success of discontinuation [5, 28].

It is also clear that different TKIs have distinct immu-
nomodulatory effects, for example, the number and func-
tion of NK cells increases during treatment with imatinib, 
whereas dasatinib has been shown to increase CTL and NK 
cell numbers [14, 29]. These differences could help to under-
stand why DMR can be achieved with second-generation 
TKIs in a shorter period of time [30, 31]; thus, treatment 
change could accelerate eligibility for a discontinuation 
attempt [3]. However, the precise action of each TKI remains 
unclear, with conflicting results from in vitro and clinical 
data [12•].

Early evidence for the role of the immune response in 
TFR was based on observations from many years ago that 
interferon alpha (IFNα) could improve TKI response due 
to a toxic effect on the LSCs responsible for CML recur-
rence [32, 33] and that prior treatment with IFNα was asso-
ciated with higher rates of TFR [34–37]. These observa-
tions have led to suggestions that IFNα maintenance therapy 
after TKI stop could be a strategy to improve TFR rates 
[38], an approach that is currently under investigation in 
the ENDURE-CML trial (https:// clini caltr ials. gov/ ct2/ show/ 
NCT03 117816), with the IFN + TKI combination trials 
TIGER (nilotinib + IFN) and BOSUPEG (bosutinib + IFN) 
also underway. Similarly, a phase I clinical trial is exploring 
maintenance with lenalidomide to maintain TFR [39].
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Transcript Related

Type of Transcript

The close monitoring of BCR::ABL1 transcript levels by 
real-time quantitative PCR (RT-qPCR) is essential for 
patients who discontinue TKI treatment [3, 4]. However, the 
quantification of transcripts according to the IS [40] is only 
possible for the typical transcripts e13a2 (b2a2) and e14a2 
(b3a2), detected in approximately 98% of CML patients [41].

Studies have long reported a superior outcome for patients 
expressing the e14a2 transcript compared to those express-
ing the e13a2 transcript, including a deeper and more rapid 
molecular response as well as superior progression-free 
and overall survival [42–44]. Moreover, some studies have 
suggested that patients expressing e14a2 transcripts have 
a higher probability of achieving TFR than those express-
ing e13a2 [45, 46••], although others have failed to observe 
statistically significant differences [47].

Importantly, a study comparing amplification of the 
e13a2 and e14a2 transcripts revealed that e13a2 amplifica-
tion efficiency by qPCR was higher than for e14a2, which 
translated to an underestimation of the quantified values for 
e14a2 compared to e13a2 with this method [48]. This techni-
cal efficiency of amplification issue may be due to the larger 
size of the e14a2 transcript (with an additional 75 bp in BCR 
exon 14). In contrast, no such differences in the amplification 
efficiency were detected when transcripts were quantified 
using digital droplet PCR (ddPCR).

The molecular monitoring of rare transcripts is more 
complicated, as atypical fusions are detected inefficiently 
(or not at all) using standard RT-qPCR assays [49]. Thus, 
the use of bespoke RT-qPCR assays [50] or regular FISH 
analysis [3] is required for patient follow-up. As such, most 
guidelines do not recommend the discontinuation of patients 
with rare fusions since transcript quantification cannot be 
expressed on the IS for residual disease monitoring [3] but 
rather as an “individual molecular response” (IMR) [50], 
and so very few studies to date have attempted the discon-
tinuation of patients with atypical transcripts. Nevertheless, 
one retrospective study of 7 patients with atypical transcripts 
(4 with b3a3, 2 with e19a2, and 1 patient with e8a2) reported 
very good results, with 6 patients retaining TFR after a 
median follow-up of 25 months [51].

Although controversial, TKI discontinuation could be 
deemed safe for CML patients with atypical BCR::ABL1 
transcripts as long as transcript-specific regular monitor-
ing can be carried out by a specialized laboratory, and par-
ticularly if a highly sensitive technique, such as ddPCR, is 
available.

Rate of Reduction of BCR::ABL1 Transcripts

An optimal early response to TKI therapy is an important 
determinant for long-term outcome in CML [52, 53], as the 
values of BCR::ABL1 transcripts and the kinetics of their 
descent in the first trimester (also commonly referred to as 
halving time) are predictive of deep MR thereafter [54–56].

Recently, Shanmuganathan et al. observed that a faster 
decline of BCR::ABL1 transcripts in the first 3 months of 
TKI therapy was also associated with a higher probability of 
achieving TFR, with 80% of patients achieving TFR if the 
transcript halving time was less than 9.4 days compared to 
just 4% if the halving time was more than 21.9 days [46••]. 
Therefore, the kinetics of transcript reduction in the first 
trimester of commencing TKI therapy is important to predict 
TKI response and predictive for TFR as well.

Profundity of Molecular Response

Although RT-qPCR is the gold-standard method for the 
molecular monitoring of BCR::ABL1 transcripts [57], 
ddPCR detects these molecules with a higher sensitivity than 
RT-qPCR, permitting the detection of just 1 BCR::ABL1 
molecule in 100⋅000 cells [58]. A study by Nicolini et al. 
suggested that this increased sensitivity can help to dis-
criminate patients who are more likely to relapse after TKI 
discontinuation [59•]. The authors used ddPCR to analyze 
the RNA samples of 175 patients from the STIM2 study 
who had discontinued imatinib and had undetectable tran-
scripts according to the RT-qPCR technique. The median 
transcript value, used as a cut-off, was 0.0026%, converted 
to 0.0023%IS. Patients with a ddPCR value below 0.0023%IS 
had a two-fold lower risk of relapse than those with values 
above this threshold [59•].

Nevertheless, the DESTINY trial reported a thought-
provoking result. The TKI de-escalation trial compared two 
groups of patients whose TKI treatment was reduced to half 
the standard dose for 12 months prior to discontinuation: 
a group who discontinued while in stable MMR versus a 
group who stopped in stable  MR4. The authors reported 
a TFR rate of 36% for the MMR group and 72% for the 
 MR4 group [60]. Although 64% of patients in the MMR 
group relapsed after TKI discontinuation, the authors reflect 
that 36% did maintain TFR and that perhaps this group of 
patients would not necessarily be eligible to make a discon-
tinuation attempt in many centers.

In conclusion, the absolute quantification of BCR::ABL1 
transcripts, both typical and atypical, with the use of ddPCR 
may be useful for the monitoring of residual disease in patients 
attempting a TKI discontinuation and could help prevent the 
inclusion of transcript-related bias in patient outcomes. Nev-
ertheless, despite the superior sensitivity of the ddPCR tech-
nique, particularly when samples are analyzed in triplicate or 
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quadruplicate [58], conversion factors would need to be agreed 
by the CML community to permit the standardization of tran-
scripts on the IS before laboratories could consider replacing 
their method of choice for molecular monitoring.

Presence of BCR::ABL1 RNA and DNA

As previously mentioned, many patients in DMR with unde-
tectable transcripts by qRT-PCR do have residual BCR::ABL1 
RNA if a more sensitive technique is used [59•], as well as 
detectable BCR::ABL1 DNA [61••]. One recent paper devel-
oped a simple traffic light approach to predict patients likely 
to relapse, based on the detection of residual BCR::ABL1 
RNA and DNA using ddPCR prior to TKI discontinuation 
(i.e., while in DMR). The positivity for both molecules was 
indicative of a higher rate of relapse when TKI was discon-
tinued (20% were relapse-free after 18 months), while DNA 
negativity but RNA positivity was associated with an interme-
diate risk (57% were relapse-free after 18 months), and DNA 
and RNA negativity was associated with higher rates of TFR 
(80% were relapse-free after 18 months) [61••]. The authors 
suggested that BCR::ABL1 DNA detection by ddPCR prior 
to a TKI discontinuation attempt could help to predict which 
patients are likely to relapse.

In a second similar study, the separation and isolation of 
specific cell populations were used to increase the sensitivity 
of BCR::ABL1 molecular analysis [62] in order to evaluate 
the lineage of residual CML cells in TFR [63••]. Of the 
20 patients in TFR for at least 1 year, 18 had detectable 
BCR::ABL1 DNA in the total leukocyte population (ana-
lyzed by a sensitive nested qPCR technique), predominantly 
in B cells, but also measurable in T cells and NK cells. In 
contrast, BCR::ABL1 molecules were never observed in the 
granulocyte populations extracted from patients in TFR. 
When analyzed in the sample taken at TKI stop, 100% of the 
patients with granulocyte-positive for DNA relapsed within 
the first 3 months [63••]. Thus, the authors propose that the 
detection of BCR::ABL1-positive granulocytes can predict 
relapse. However, it remains to be seen whether this method, 
requiring the prior separation of cell populations [64], will 
be implementable in standard hematology laboratories.

Other Molecular Factors

BCR::ABL1 Kinase Domain Mutations

In earlier versions of the NCCN and ELN guidelines, TKI 
resistance was among the exclusion criteria for a TKI dis-
continuation attempt. However, TKI resistance is no longer 
excluded in the 2021 NCCN guidelines on discontinuation 
[4], whereas the 2020 ELN guidelines state that TKI dis-
continuation is “allowed” if tolerance is the only reason for 

changing TKI; thus, resistant patients would be excluded 
although not explicitly [3].

Indeed, very few studies have reported cases of patients 
with a previous history of BCR::ABL1 kinase domain muta-
tions that have attempted discontinuation. Of the 60 patients 
recruited in the STOP 2G-TKI trial, designed to evaluate 
the discontinuation of second-generation TKIs, 13 had a 
suboptimal response to imatinib, 4 of which were due to an 
BCR::ABL1 kinase domain mutation that conferred imatinib 
resistance [65]. In univariate analysis, suboptimal response 
to imatinib or TKI resistance was a baseline factor associ-
ated with molecular relapse, although the impact of TKI 
resistant mutations alone was not reported.

However, in one small-scale study, of the 10 patients 
who discontinued TKI treatment (9 of which had detect-
able mutations, including T315I), 5 maintained TFR [66]. 
Therefore, whether patients with a previously reported 
BCR::ABL1 kinase domain mutation can maintain TFR and 
thus safely make a TKI discontinuation attempt remains to 
be confirmed by larger studies.

Somatic Mutations and Polymorphisms

The development of new technologies such as next-genera-
tion sequencing (NGS) has led to significant advances in our 
understanding of the molecular pathogenesis of hematologi-
cal neoplasms. In CML, various mutations associated with 
response to TKI and/or progression to accelerated phase or 
blast crisis have been reported, suggesting a role for addi-
tional mutations besides BCR::ABL1 in the evolution of 
CML disease [67•]. One theory on the biological difference 
between patients with an otherwise similar clinical profile 
who achieve TFR and those who relapse is based on the 
presence of polymorphisms or the accumulation (or disap-
pearance) of somatic mutations during the course of TKI 
treatment associated with maintaining remission following 
TKI discontinuation.

It is known that during TKI treatment, CML patients 
accumulate or lose mutations, which influence the patient’s 
response to TKI [68]. For example, mutations emerged in 
the first 6–12 months after initiating TKI in 37% of CML 
patients, with good responders having a lower frequency of 
acquired mutations. Specifically, mutations in TP53 were 
associated with poor TKI response.

The gain or loss of a mutation might favor activa-
tion of the immune system, which could be sufficient to 
maintain the molecular response when the TKI is retired. 
For example, associations have been reported between 
polymorphisms in the HLA (human leukocyte antigens) 
genes and patients achieving TFR, with polymorphisms in 
HLA-A*02:01, *11:01, or *24:02 significantly associated 
with TFR [69] and HLA-E*01:03 associated with relapse 
[21]. Similarly, a study of polymorphisms in the killer 
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immunoglobulin-like receptor (KIR) genes and patients 
achieving TFR support this hypothesis [70]. In the 36 
CML patients with a  MR4.5 who discontinued TKI treat-
ment, a significantly higher number of patients with the 
KIR A/A haplotype in homozygosis were in TFR com-
pared with those with haplotype B/x (86% vs. 46%), with 
a later study confirming the association of the B/x haplo-
type with relapse after discontinuation [70]. Nevertheless, 
the EURO-SKI study did not observe differences in TFR 
according to the KIR haplotype [71].

Wider genetic studies have identified other variants 
with a putative role in maintaining TFR. In one such 
study, Shen et al. reported that the SNP rs139130389 in 
the folate receptor 3 (FOLR3) gene is an indicator of TFR. 
CML cells harboring this SNP had greater proliferative 
and colony-forming ability due to increased mitochon-
drial activity [72]. Similarly, a 2016 study sequenced the 
exome of 6 CML patients who discontinued TKI treat-
ment (3 who relapsed and 3 in TFR) and identified vari-
ants in the genes CYP1B1, ALPK2, and IRF1 in patients 
who relapsed and a variant in PARP9 in the group with 
TFR [73].

Whether new mutations are acquired in the LSC of 
CML patients on TKI treatment remains to be elucidated 
[74]. However, one recent study, presented in the 2020 
EHA meeting, showed that the DNA damage response 
(DDR) could be a potential biomarker of molecular 
relapse, finding increased DDR in CD45 + CD34 + CD38-
CD26 + LSCs compared to normal hematopoyetic stem 
cells with the CD45 + CD34 + CD38-CD26-immunophe-
notype, with patients in TFR found to have less DNA 
damage at diagnosis [75].

Telomere Length

Numerous early studies showed that the telomere length 
of CML patients (adjusted for patient age, “age-adjusted 
TL”) correlates with response to treatment and disease 
progression [76] (reviewed in [77]). A later study showed 
that age-adjusted TL was also associated with TFR, with a 
higher proportion of CML patients with shorter telomeres 
maintaining TFR after TKI discontinuation than patients 
with longer telomeres (79% vs. 31%) [78]. Interestingly, 
telomere shortening was shown to occur in LSC but not 
in hematopoietic stem cells (HSC) in CML patients [79] 
and to be associated with genetic instability (reviewed in 
[80]) and an inflammatory profile [81].

Expression Changes

Other molecular factors with a possible role in the suc-
cess of a TKI discontinuation attempt include the patient’s 

transcription profile. For example, the level of mRNA 
expression of the ABCG2 efflux transporter was an inde-
pendent predictor of TFR after TKI discontinuation. Spe-
cifically, CML patients with an ABCG2/GUSB transcript 
level below 4.5% had a significantly higher 12-month TFR 
rate than those with high ABCG2 expression (72% vs. 47%) 
[82•].

Moreover, as a result of the development of RNA-seq 
and single cell RNA-seq, global studies have reported a 
distinct gene expression profile for patients who have 
an suboptimal response to TKI, including a signature 
enriched for stem cell phenotype, reduced immune 
response, and cell cycle [83] as well as the existence 
of a  Lin−CD34+CD38−/lowCD45RA−cKIT−CD26+ LSC 
population [84] that persists during TKI therapy. The 
detection of a LSC population with such an expres-
sion profile (i.e., increased proliferation-associated and 
reduced quiescence-associated gene expression) could 
in the future be used as an indicator that the patient 
may not be a suitable candidate for TKI discontinua-
tion [85].

A proof-of-principle study presented in this year’s 
John Goldman ESH congress described how differentially 
expressed genes can be identified between patients who 
maintain TFR versus those who relapse [86], supporting 
the hypothesis that a distinct gene expression profile could 
help predict patients who obtain TFR. However, the RNA-
seq studies reported to date are preliminary and have not 
yet established a signature profile using transcriptome data 
to reliably predict patients who will retain TFR from those 
likely to relapse.

Future Perspectives

Although promising, the application of RNA-seq expres-
sion profiles as a predictive tool for patients who will 
retain TFR still needs to be established. In future expres-
sion studies, it will also be interesting to study the impact 
of microRNAs (miRNA)—non-codifying RNA mole-
cules of 19–25 nts that have a posttranscriptional role and 
can inhibit translation and/or reduce the stability of the 
mRNA molecule by binding to the 3′ UTR of mRNAs—
on TKI response and TFR. For instance, the expression 
of miR-215 was significantly lower in patients in TFR 
versus those on imatinib with undetectable disease [87]. 
Whether differences exist in the expression levels of 
other miRNA molecules in patients who achieve TFR and 
those who relapse, as well as the impact of epigenetic 
changes in TFR remain to be elucidated. One hypothesis 
is that BCR::ABL1-induced epigenetic changes may not 
be fully reversed by TKI and thus could persist [88].
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Although many biological factors have been identi-
fied, to date, little is known about the intra- and inter-
patient differences that exist. In addition, the impact of 
the specific TKI (or series of TKI) taken by the patient 
on biological factors such as somatic mutations and 
gene expression profiles and patient outcomes, includ-
ing TFR, remains to be determined. In this respect, 
there is hope among the international CML commu-
nity that the HARMONY Plus/ELN/iCMLf project will 
help elucidate novel biological factors associated with 
TFR. The big data project’s objectives include “to cre-
ate a better understanding of the clonal evolution of 
CML to improve patient management” and “to help 
understand additional mutations that would allow a 
larger number of patients to remain in therapy-free 
remission after treatment discontinuation” [89].

Importantly, a small group of patients remain who cannot 
reach deep remissions even with prolonged treatment. If cur-
rent guidelines are followed meticulously, these patients might 
never be candidates for discontinuation. Thus, an important 
area of reflection for the CML community to consider is 
whether the introduction of more stringent inclusion criteria, 
such as deeper molecular responses prior to TKI discontinua-
tion, is likely to prevent a significant number of patients from 
attempting to stop treatment (who might retain TFR).

Improvements to the molecular responses of these 
patients also constitute an area of unmet need. A promis-
ing strategy for these patients could be IFN combination 
treatment, since 73% of patients who discontinued while in 
MMR were in TFR after a median follow-up of 7.9 years 
as a result of this approach [38]. Other studies aimed at 
improving the molecular response of this group of patients 

might identify mechanisms of LSC persistence and/or 
prospective therapeutic targets that could benefit all CML 
patients. Besides interferon, many novel therapies are cur-
rently under development for use in combination with TKI, 
including immune-checkpoint inhibitors and even CAR-T 
therapy to target the persistence of LSC [12•, 90, 91].

Conclusions

Clinical factors alone do not enable the accurate strati-
fication of patients with CML according to their risk of 
relapse. Several biological factors have been presented in 
this review as being predictive for TFR in CML (Fig. 1). 
However, there is a real clinical need to continue to study 
both patients who maintain TFR and those who suffer 
relapse in order to understand the mechanisms of LSC 
persistence and the cellular and molecular factors influ-
encing TFR.

The future of TKI discontinuation is to personal-
ize the prediction of TFR by integrating clinical fac-
tors with emerging biomarkers to inform clinicians on 
the candidates with a greater probability of success. 
Greater knowledge of the biological factors associated 
with TFR could lead to the development of more pre-
cise and individual discontinuation criteria, but it is 
important that such criteria allow the majority of CML 
patients to benefit from a TKI discontinuation attempt.
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