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ABSTRACT

Predator pressure is a fundamental force driving changes at all levels of the community
structure. It may protect native ecosystems from alien species. Therefore, resistance to
diverse predators resulting from a universal anti-predator strategy seems crucial for
invasion success. We present a comprehensive review of the responses of an invasive
amphipod Dikerogammarus villosus to sympatric and allopatric predator signals. We
summarize diverse aspects of the gammarid anti-predator strategy, including predator
identification, morphological and behavioural adaptations, effectiveness of shelter use
and resistance to indirect predator effects. The response of D. villosus is independent
of predator species (including totally allopatric taxa), which assures the high flexibility
of its predator recognition system. It has a harder exoskeleton and better capability of
utilizing shelters compared to other gammarids, resulting in relatively high resistance to
predators. Therefore, it can use predator kairomones as indirect food signals (sharing
the diet with the predator) and follow the predator scent. This resistance may allow
D. villosus to reduce the costs of its physiological responses to predators and sustain
growth in their presence. This might facilitate invasion success by increasing its
competitive advantage.

Subjects Animal Behavior, Biodiversity, Ecology, Zoology, Freshwater Biology

Keywords Predator consumptive and non-consumptive effects, Prey—predator interaction,
Invasive species, Anti-predator strategy, Kairomones

INTRODUCTION

Dikerogammarus villosus (Sovinsky, 1894) is a gammarid of Ponto-Caspian origin,
commonly regarded as one of the most invasive freshwater species in the world (DAISIE,
2009). In its native region, it lives in the lower courses of large rivers of the Black, Azov
and Caspian Sea basins, and in limans formed at their outlets (Rewicz et al., 2014). It has
spread in central and western Europe using the southern migration corridor through
the Danube and Rhine rivers (Bij de Vaate et al., 2002), as well as the central corridor,
through the Dnieper, Bug, Vistula and Elbe rivers (Grabowski, Bacela ¢ Konopacka, 2007;
Mastitsky & Makarevich, 2007). At present, it occupies the widest novel range (most of
Europe, excluding the Iberian and Scandinavian Peninsulas, but including Great Britain)
and reaches the highest abundances in invaded areas within the group of several invasive
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Ponto-Caspian gammarid species (Rewicz et al., 20145 Rewicz et al., 2017; Sidagyte et al.,
2017; Gusev, Guseva ¢ Sudnik, 2017).

In novel areas, D. villosus exerts a strong impact on local biota through several
mechanisms (Gergs ¢ Rothhaupt, 2015). Firstly, it is an omnivore with a tendency to
animal food, efficiently preying on many invertebrate species (Krisp ¢ Maier, 2005),
including intra-guild predation on local amphipod species (Dick ¢ Platvoet, 2000;
MacNeil ¢ Platvoet, 2005; Kinzler et al., 2009). D. villosus strongly prefers animal food
over plants (Van Riel et al., 2006; Gergs ¢ Rothhaupt, 2008b) and grows better on it (Gergs
& Rothhaupt, 2008a). However, recent field studies have revealed that it can also act as
a typical herbivore, consuming mainly plant food (Maazouzi et al., 2009; Hellmann et al.,
2015; Koester, Bayer & Gergs, 2016). This points to its high plasticity and ability to use
various available food resources (Mayer, Maas ¢ Waloszek, 2012), depending on local
circumstances, such as the community composition (Hellmann et al., 2017). Moreover,
it efficiently competes with other gammarids, both native and other aliens, for food,
shelters and optimum habitats (Dick, Platvoet & Kelly, 2002; Hesselschwerdt, Necker ¢
Wantzen, 2008; Jermacz et al., 2015a). Competitive tensions and intra-guild predation are
responsible for the reduction in the occupied ranges and abundances of native species,
which are being outcompeted to less suitable habitats and sometimes even locally displaced
(Dick, Platvoet & Kelly, 2002; Muskd et al., 2007; Hesselschwerdt, Necker ¢ Wantzen, 2008;
Platvoet et al., 2009). Furthermore, D. villosus can exert some more subtle effects on
ecosystem functioning. For instance, being a less efficient shredder than other amphipods,
displaced by its appearance, D. villosus may negatively affect food webs by reducing the
numbers of organisms relying on shredded organic material (MacNeil et al., 2011). On the
other hand, D. villosus does not respond to predation risk by reduction in feeding (Jermacz
¢ Kobak, 2017); therefore, it can still be capable of shredding organic material when other
amphipods suffer non-consumptive costs of predator pressure (Abjirnsson et al., 2000;
Jermacz ¢ Kobak, 2017; Richter et al., 2018).

The invasion success of D. villosus is regarded to result from several traits of its biology,
including its fast growth rate, high fecundity, tolerance to wide ranges of abiotic factors, in
particular raised salinity (Devin ¢ Beisel, 2007), as well as high plasticity and omnivory (as
reviewed by Grabowski, Bacela & Konopacka, 2007). Another trait contributing to its spread
is the ability to adhere to various hard substrata and artificial materials, including boat
hulls and diving equipment (Bacela-Spychalska et al., 2013). Although D. villosus is not well
adapted to air exposure (Poznariska et al., 2013), under suitable conditions, e.g., hidden in
a zebra mussel colony, individuals of this species can survive several days without water
(Martens ¢ Grabow, 2008), sufficient for successful transport to another water body.

Yet another important trait which can potentially affect the invasive potential of the
species is an effective strategy of energy saving (Becker et al., 2016) observed also under
predation risk (Jermacz et al., 2017; Jermacz ¢ Kobak, 2017). In recent years, we have
conducted a series of experimental studies on the reactions of D. villosus to predation cues
and their potential implications for its functioning and invasiveness. In this review, we
provide a synthesis of our research on these topics accompanied by the results of other
authors on the biology of D. villosus and related amphipod species.
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Survey methodology

To obtain a comprehensive set of literature reports on interactions between predators
and amphipod prey, we conducted a literature survey in the Scopus database, using the
following keywords: D. villosus or gammarid or amphipod combined with the following:
anti-predator response or predator impact or anti-predator behaviour or predator defence
or predator kairomone or predation risk or prey response. We found 67, 115 and 927
articles, respectively, meeting the criteria, 11 of which were of our own authorship. Among
these articles were chosen key papers related to defence strategies exhibited by native and

invasive amphipods.

Prey—predator relationships in the context of biological invasions
Predation is one of the most powerful forces in nature, affecting the evolution of prey
and predator species and modifying interactions among organisms (Mowles, Rundle ¢
Cotton, 2011; Turner ¢ Peacor, 2012). On the one hand, predators kill and consume
prey individuals, removing them from the population and creating selective pressure,
which results in so called “consumptive effects” of a predator (Werner ¢ Peacor, 2003).
On the other hand, prey species respond to the presence of predators by various
forms of constitutive (permanent) and induced defences, stimulated by the presence

of a predator. These defence mechanisms include behavioural (De Meester et al., 1999;
Gliwicz, 2005), morphological (Pettersson, Nilsson ¢ Bronmark, 2000; Dzialowski et al.,
2003; James & McClintock, 2017), physiological (Slos & Stoks, 2008; Glazier et al., 2011)
and life-history related (Slusarczyk, Dawidowicz ¢ Rygielska, 2005) changes aiming at
reducing the probability and/or efficiency of a predator attack. Defence responses are
displayed by a wide range of taxa, from protozoans (Wiackowski, Fyda ¢ Ciecko, 2004)
through virtually all invertebrate taxa (Koperski, 1997; Lass ¢ Spaak, 2003; Thoms et al.,
2007; Kobak, Kakareko ¢ Poznatiska, 2010) to vertebrates (Gliwicz, 2005). Anti-predation
mechanisms can be quite costly, consuming energy designated for the construction of
defensive structures and compromising the habitat quality and/or food abundance, which
finally leads to the decrease in growth rate and reproduction (Gliwicz, 1994; Gliwicz, 2005;
De Meester et al., 1999; Clinchy, Sheriff & Zanette, 2013). These energetic expenses are called
“non-consumptive effects” of predator presence (Werner ¢ Peacor, 2003) and sometimes
generate losses comparable to those caused by consumptive predator effects (Preisser,
Bolnick & Benard, 2005; Creel ¢ Christianson, 2008). Therefore, the ability to adequately
recognize the danger imposed by predators, depending on their feeding mode (Wudkevich
et al., 1997; Wooster, 1998; Abjornsson et al., 2000), present condition (e.g., satiation level)
(Abjornsson et al., 1997), abundance (Pennuto ¢ Keppler, 2008) and size (Kobak, Kakareko
& Poznariska, 2010) is crucial for avoiding unnecessary (leading to energy wasting) or
maladaptive (increasing the probability of death) responses.

Biological invasions add a new and interesting aspect to predator—prey interactions.
In old systems, where predator and prey coevolve together for a long time, both are
well adjusted to each other. The responses of prey species can be fine-tuned to specific
predators (Wudkevich et al., 1997; Weber, 2003; Boeing, Ramcharan & Riessen, 2006),
but also predator preying modes allow them to feed efficiently on available victims
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(Gliwicz, 2005). However, alien species, just transported to their novel locations, face
completely new, unknown communities, containing new predators and new prey. In
accordance with the Enemy Release Hypothesis (Torchin et al., 2003), as a consequence
of the loss of natural parasites and predators, introduced species suffer lower pressure
than native species. At the same time, local consumers may be unfamiliar with alien prey
and unable to forage on them efficiently (Meijer et al., 2016). On the other hand, alien
species are also not adapted to their new, potential predators which may prevent them
from employing efficient anti-predation mechanisms and lead to an evolutionary trap:
inefficient or even maladaptive responses or the lack of reactions to a danger (Salo et al.,
2007; Zuharah ¢ Lester, 2010).

Recognition of a predator may be based on variable stimuli, including chemical, visual
and/or mechanical cues. In the aquatic environment, due to its relative darkness and
high density of the medium, chemical recognition is regarded as the most important
(Bronmark & Hansson, 2000). This general rule also applies to gammarids detecting
their predators (Wisenden et al., 2009; Hesselschwerdt et al., 2009; Jermacz, Dzierzyriska-
Bialoriczyk ¢» Kobak, 2017). Prey organisms can potentially recognize three sources of
chemical predation cues: alarm cues produced by wounded conspecifics (Czarnofeski et
al., 2010; Kobak & Ryriska, 2014; Jermacz, Dzierzyriska-Biatoticzyk ¢ Kobak, 2017), scents
of consumed conspecifics included in predator faeces (Slusarczyk ¢ Rygielska, 2004;
Jermacz, Dzierzyriska-Bialoriczyk ¢ Kobak, 2017) or other exudates and/or direct predator
metabolites, independent of their diet (Kobak, Kakareko ¢ Poznariska, 2010; Jermacz,
Dzierzyriska-Bialoticzyk & Kobak, 2017). The first two options can be potentially utilized
by alien organisms to detect unknown predators. Moreover, alien organisms can recognize
predators taxonomically related to those living in their native range (Si/ et al., 2010) or use
learning to associate new predator scents with the perceived danger cues (Chivers, Wisenden
& Smith, 1996; Wisenden, Chivers ¢ Smith, 1997; Martin, 2014). The latter approach is
commonly exhibited by fish (Korpi & Wisenden, 2001), whereas in invertebrates predator
recognition is often innate, displayed also by naive individuals (Dalesman, Rundle ¢ Cotton,
2007; Ueshima ¢ Yusa, 2015).

Predator recognition by D. villosus

For a perfect invasive species, the mechanism of predator detection should be universal,
enabling the recognition and subsequent response to a novel predator without a common
evolutionary history. As a consequence of an improper identification of a predator
signal, prey species are exposed to higher predation due to the lack of responses or
maladaptive responses (Abjornsson, Hansson ¢ Bronmark, 2004; Banks ¢ Dickman, 2007).
Such a scenario was presented by Pennuto ¢ Keppler (2008) who demonstrated that a
native Gammarus fasciatus is able to avoid a narrower range of potential predators than
an invasive Echinogammarus ischnus. Moreover, ineffective recognition of danger could
result in costly defence reactions when the predation risk is low (Lima ¢ Dill, 1990; Dunn,
Dick & Hatcher, 2008) as was experimentally shown for Gammarus minus responding to
a predatory fish Luxilus chrysocephalus (Wooster, 1998). Therefore, appropriate predation
risk assessment is crucial for an adequate response and optimization of energy expenditure.
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Laboratory experiments demonstrated the ability of D. villosus to recognize diverse
fish predators, including bottom dwellers: the racer goby Babka gymnotrachelus (Jermacz
et al., 2017; Jermacz, Dzierzyriska-Biatoriczyk ¢» Kobak, 2017), European bullhead Cottus
gobio (Sornom et al., 2012) and spiny-cheek crayfish Orconectes limosus (Hesselschwerdt
et al., 2009), as well as fish swimming in the water column: the Eurasian perch Perca
fluviatilis, Amur sleeper Perccottus glenii (L Jermacz & ] Kobak, pers. obs., 2015-2016) and
red-bellied piranha Pygocentrus nattereri (Jermacz, Dzierzyriska-Bialoriczyk ¢ Kobak, 2017).
Among these species, the goby, bullhead and perch have co-occurred with the gammarid in
its home range, the Amur sleeper and crayfish were met several dozen years ago in its novel
areas, whereas the piranha had no previous contact with D. villosus. The above-mentioned
studies indicate a universal method of predator recognition exhibited by D. villosus, effective
with regard to both native and novel predatory species. A situation when potential naive
prey recognizes and responds to a novel predator can be explained by several mechanisms.
For example, conspecifics can be present in the predator diet, providing information
about predation risk (Chivers ¢~ Smith, 1998), as was demonstrated for another invasive
gammarid Pontogammarus robustoides (Jermacz, Dzierzyriska-Bialoriczyk & Kobak, 2017).
Moreover, the novel predator can be closely related to some native predators (Ferrari et al.,
2007; Sih et al., 2010) and therefore release similar signals.

The avoidance reactions of D. villosus were studied by Jermacz, Dzierzyriska-Bialoriczyk
¢ Kobak (2017) in a flow-through Y-maze allowing gammarids to select an arm with
or without the scent of predators fed on different diets. This study indicated that the
avoidance of predators was induced in the presence of kairomones emitted by hungry
predators (starving for 3 days), including totally allopatric, tropical P. nattereri (Jermacz,
Dzierzyriska-Bialoriczyk ¢ Kobak, 2017). The avoidance response of D. villosus to another
hungry predator, American spiny-cheek crayfish, was noted by Hesselschwerdt et al. (2009).
Thus, the predator identification system of D. villosus seems to be independent of the
presence of conspecifics in the predator’s diet. Nevertheless, it should be noted that
D. villosus did also recognize the predator diet and used it as an additional source of
information about the predator status and current level of predation risk, though its
responses to satiated predators did not include avoidance (see the chapter “Positive
response of D. villosus to the predation cue” below) (Jermacz, Dzierzyriska-Bialoriczyk ¢
Kobak, 2017). Avoidance of a hungry predator, which is most determined to obtain food,
and modifications of the responses to satiated predators suggest that D. villosus is capable of
effective risk assessment and flexible responses, adjusted to the current situation. A similar
relationship between the level of predator satiation and prey response was observed in the
case of a water beetle Acilius sulcatus, responding only to hungry perch, but not to satiated
fish (Abjornsson et al., 1997).

The versatility of the predator detection mechanism of D. villosus could be related to
the fact that active components of kairomones emitted by unrelated predators are often
very similar (Von Elert ¢» Pohnert, 2000). Therefore prey can react to diverse predators,
including those which evolved in isolated ecosystems. In temperate European water bodies,
fish usually have broad diet ranges and most of them feed on invertebrate food at least at
particular life stages (Wootton, 1990; Gerking, 1994). Thus, a general response to hungry fish
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of particular size seems beneficial under such conditions. D. villosus is an invasive species
characterized by a high dispersal rate. During the dispersal, the probability of meeting a
novel predator is high, therefore species exhibiting universal defence mechanisms and/or
the capability of quick adaptations are more likely to be successful invaders.

Anti-predator defence mechanisms of D. villosus
Site selection and shelter occupancy

For a benthic organism, one of the most important elements of the anti-predator strategy
is related to the optimal substratum choice. In general, prey survival rate increases with
the level of substratum complexity and heterogeneity (Crowder ¢ Cooper, 1982; Holomuzki
¢ Hoyle, 1988; Czarnecka, 2016). Therefore, the distribution of benthic invertebrates
depends on the bottom character (Czarnecka et al., 2009; Jermacz et al., 2015b) and their
efficiency in using available substrata as shelters (Holomuzki & Hoyle, 1988; Kobak, Jermacz
& Plachocki, 2014; Kobak et al., 2016).

Compared to other gammarids, D. villosus is regarded as a sit-and-wait animal, spending
most of its time in a shelter (Kinzler & Maier, 2006; Kley et al., 2009; Platvoet et al., 2009;
Beggel et al., 2016). It prefers the substratum consisting of large gravel or stones (>6 cm
in diameter), which provides it with suitable protection and enough empty space to
move (Kley et al., 2009; Boets et al., 2010; Kobak, Jermacz ¢ DzierZyrska-Bialotriczyk, 2015).
Perhaps due to its low activity (Van Riel et al., 2007; Beggel et al., 2016), changes in shelter
occupancy in the presence of predators observed in various studies are ambiguous. In the
presence of benthivorous fish (European bullhead), D. villosus was observed to reduce
its presence in the open field (i.e., outside shelters) and activity considerably, from ca.
55% under control conditions to only 20% of the total experimental time (Sornom et al.,
2012). However, in other studies, the reduction in open field occupancy or activity in the
presence of predatory fish was only slight, though significant (Beggel et al., 2016; Jermacz et
al., 2015a; Jermacz & Kobak, 2017), or no response was observed at all Jermacz et al. (2017).
These discrepancies might have resulted from the varying quality of shelters that could be
occupied always or only in the presence of danger, as well as from the location of food.
Sornom et al. (2012) found that in the presence of predators D. villosus decreased its activity
and stayed more often in shelters made of holes in the solid substratum, whereas mesh
shelters were always occupied irrespective of predator presence (>80% of the total time).
In the studies by Jermacz et al. (2015a) and Jermacz ¢ Kobak (2017) gammarids spent more
than 95% of the total experimental time in gravel substratum under predator absence,
which allowed for only a small, though still significant change in response to predators.
Jermacz et al. (2017) and Beggel et al. (2016) found that gammarids spent most of their
time in gravel shelters even in the absence of predators. Jermacz ¢ Kobak (2017) observed
gammarids to limit their occupation of the open space in the presence of predators when
food was present in the direct vicinity of their shelters, whereas they kept exploring the
unsheltered area in search of distant food sources. Thus, the presence of food can increase
gammarid activity, which in turn can be reduced by the predation cue when the food is
available at a short distance.
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D. villosus often occurs on hard and complex substrata, difficult to access by predators.
Stone substratum was found to offer it more protection against fish predation compared
to Gammarus fossarum and G. pulex, but this advantage disappeared on sand (Kinzler
¢ Maier, 2006). In the wild, D. villosus was often found associated with zebra mussel
(Dreissena polymorpha) colonies (e.g., Devin et al., 2003; Boets et al., 2010). Kobak, Jermacz
¢ Plachocki (2014) demonstrated that living dreissenids provided D. villosus with the most
effective shelter against fish predators (the racer goby and Amur sleeper), compared to
stones, macrophytes and shell litter. It should be noted that this shelter was also useful
against a species without a common evolutionary history and exhibiting a different
feeding strategy than the sympatric gobies (the Amur sleeper). This study demonstrated
the positive effect of dreissenids on prey survival only in the case of D. villosus, but not
for other invasive (P. robustoides) and native (Gammarus fossarum) species. However, in
contrast to our studies, Beekey, McCabe ¢» Marsden (2004) showed that also native prey,
including amphipods, experiences lower predation pressure in dreissenid beds.

Dreissenid beds can offer more effective protection than other substrata (Kobak, Jermacz
¢ Plachocki, 2014), to less active species, such as D. villosus (Kobak et al., 2016), spending
most time in the shelter (Beggel et al., 20165 Jermacz ¢ Kobak, 2017). This indicates that the
presence of gregarious bivalves may promote the establishment of D. villosus. Dreissenid
colonies, in contrast to other substratum types, form aggregations of objects bound with
one another by byssal threads, hard to penetrate by fish (Kobak, Kakareko ¢» Poznatiska,
2010) which, in association with the high attachment ability of D. villosus compared to
other gammarids (Bacela-Spychalska, 2016) may make a mussel bed a perfect shelter for
this species. Moreover, the hard substratum which supplies not only shelter and clinging
opportunity, but also food resources, such as a colony of D. polymorpha, seems to be an
optimal habitat for the invasive gammarids and may allow them to limit their exploration
activity (Jermacz & Kobak, 2017). Mussels provide both effective anti-predator protection
(Beekey, McCabe & Marsden, 2004; McCabe et al., 2006; Kobak, Jermacz ¢ Ptachocki, 2014)
and valuable food resources, such as organic-rich pseudofaeces and macroinvertebrate
prey of increased abundance (Gergs ¢ Rothhaupt, 2008b; Kobak et al., 2016).

When shelters are limited (e.g., on sandy unvegetated nearshore bottoms in the wild),
D. villosus exhibits an avoidance response to the predator cue, as shown by Hesselschwerdt et
al. (2009) and Jermacz, Dzierzyriska-Bialoriczyk ¢~ Kobak (2017) in a Y-maze. This response
was observed in the presence of hungry predators (starving for 3 days), likely to pose the
highest danger to their potential prey. Thus, in the absence of suitable shelters and the
presence of a direct danger, a temporary increase in activity and active avoidance seems
to be an optimum response. In natural conditions, such a response is likely to result in
leaving the predator area or finding the nearest shelter, after which the activity is reduced
as the predation risk decreases.

Aggregation forming

Shelter choice depends not only on the substratum quality but also the presence or absence
of conspecifics and heterospecifics gammarids (Jermacz et al., 2015a; Jermacz et al., 2017).
Laboratory experiments showed that D. villosus preferred shelters occupied by conspecifics
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over empty shelters and conspecifics located apart from shelters (Jermacz et al., 2017).
Moreover, D. villosus exhibited a preference for shelters inhabited by conspecifics over
those occupied by heterospecifics gammarids (P. robustoides), thus forming single-species
aggregations (Jermacz et al., 2017). Nevertheless, in the presence of predators, the selectivity
of gammarids was reduced and they grouped alike with conspecifics and heterospecifics.
The choice of the substratum already inhabited by other prey individuals is an example
of aggregation behaviour combined with the benefits of sheltered conditions. The main
advantage of the aggregation strategy is a reduction in the individual risk of predation
(Hamilton, 1971). On the other hand, the weakness of this strategy is the facilitation of
detection by a predator, especially by species using vision for prey detection (loannou ¢
Krause, 2008). However, when gammarids are aggregated under sheltered conditions, their
detection seems to be difficult.

Notwithstanding the protective role of gammarid aggregations against predators,
D. villosus did not increase the intensity of its grouping in shelters in the presence
of predators (Sornom et al., 2012; Jermacz et al., 2017), in contrast to its relative,
Pontogammarus robustoides (Jermacz et al., 2017). However, also in contrast to
P. robustoides, D. villosus exposed to predation cues formed conspecific aggregations
in open places, in the absence of shelters (Jermacz et al., 2017). The effectiveness of such a
response as a protection against predators was demonstrated under laboratory conditions
in which the racer goby avoided aggregated prey and consumed it less efficiently than
singletons (Jermacz et al., 2017). This may be a consequence of the aforementioned clinging
abilities of D. villosus (Bacela-Spychalska et al., 2013) and/or the hardness of its exoskeleton
(Btoriska et al., 2015), which are greater than those of other gammarids, such as G. fossarum
or P. robustoides (Bacela-Spychalska et al., 2013) and increase predator handling costs, thus
contributing to the resistance of such aggregations against predators. On the other hand, the
easiest prey for predators were single inactive individuals (Jermacz et al., 2017), indicating
that this state should be avoided by gammarids seeking protection against predation.

Depth selection

For an aquatic organism, the choice of an appropriate habitat is also related to water
depth. Fish predation pressure at shallow nearshore locations can be significantly lower
than at deeper sites (Gliwicz, Son ¢ Szynkarczyk, 2006; Perez et al., 2009). An experiment
conducted by Kobak et al. (2017) in a 1 m deep tank with a depth gradient demonstrated
that D. villosus in the presence of the racer goby relocated from the deepest zone, occupied
preferentially under safe conditions, to the shallower bottom. Moreover, it also climbed
upwards along the vertical tank walls and attached near the water surface (Kobak et al.,
2017). Gobies are bottom-dwelling predators, rarely swimming freely in the water column;
therefore the escape to the water column seems to be an effective response against them
(Pinchuk et al., 2003). Our experimental results are reflected in field observations made in
Lake Balaton occupied by Ponto-Caspian Gobiidae (Ferincz et al., 2016), where D. villosus
occurs mainly on the stones near the water surface (Muskd et al., 2007).
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External factors affecting gammarid responses to predators

The responses of D. villosus to predator cues are modified by environmental pollution,
such as increased heavy metal concentration (Sornom et al., 2012). The gammarids exposed
to the solution of 500 ug of cadmium per litre of water were observed to hide less often
and be more active than the control individuals. Moreover, they no longer changed their
behaviour in response to the presence of predators (Sornom et al., 2012).

Yet another potential factor that can potentially affect prey responses to predators is the
presence of parasites, modifying host activity and it refuge use (Lafferty & Morris, 19965
Perrot-Minnot, Kaldonski ¢ Cézilly, 2007; Kaldonski et al., 2008). D. villosus in European
waters is parasitized by a microsporidian Cucumispora dikerogammari (Bacela-Spychalska
et al., 2012). This parasite was found to affect the behaviour of its host, making it more
active (Bacela-Spychalska, Rigaud ¢ Wattier, 2014), which could increase the detection
probability and in consequence the survival chance of infected prey. Activity increase could
potentially expose parasitized individuals to predator attacks and reduce their defence
capabilities, though at present no evidence exists for that and further studies are needed
on this topic.

Finally, it should be noted that not all responses of D. villosus to predators can be
considered as anti-predator defences (Table 1). The predator diet can strongly modify
the behaviour of gammarids and switch their responses from typical avoidance to even
preference for predator scents (Jermacz, Dzierzyiiska-Bialoriczyk ¢ Kobak, 2017). See the
chapter “Positive response of D. villosus to the predation cue” below for the details.

D. villosus as prey

Prey selection is a universal process, in which predators must choose among prey that
differ in density and defence strategy. To optimize their fitness, predators should select
those prey species whose abundance is high and hunting cost is low (Emilen, 1966). Many
variables can influence prey choice. Some of them are related to prey characteristics such as
prey defence mechanisms, including behavioural (Andersson et al., 1986), morphological
(Bollache et al., 2006), and physiological adaptations (Clinchy, Sheriff ¢ Zanette, 2013) or to
environmental factors, such as habitat structure, food- quantity and temperature (Crowder
& Cooper, 1982). Effective predation also depends on predator hunting strategy and its
flexibility (Grabowska et al., 2009).

Under experimental conditions D. villosus exhibited higher survival than other
gammarids, including both native and invasive species, in the presence of diverse predators,
such as the sympatric Ponto-Caspian gobies or the allopatric European bullhead and Amur
sleeper (Kobak, Jermacz & Ptachocki, 2014; Blotiska et al., 2015; Blotiska et al., 2016; Beggel
et al., 2016). Moreover, Kley et al. (2009) observed that the turbot (Lota lota) consumed
fewer D. villosus compared to Gammarus roeselii. A similar result was shown by Bloriska et
al. (2015), who demonstrated that the racer goby always consumed preferentially native G.
fossarum over D. villosus even if the gammarids were immobilized and unable to defend
themselves. However, the goby did not exhibit any selectivity towards the waterborne
chemical signals of native and invasive amphipods in a Y-maze (Bloriska et al., 2015).
On the other hand, Bloriska et al. (2016) demonstrated that immobilized D. villosus and
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Table 1 Anti-predation mechanisms of D. villosus and other changes induced by the presence of predators.

Trait

Comments

References

Constitutive traits (not changing in the presence of predators, but potentially protective)

Staying inactive in the shelter

Aggregation in shelters

Hard exoskeleton

High clinging ability

Changes induced by predators

Increase in shelter occupancy time

Utilization of coarse substrata (stones or zebra
mussel colonies) as shelters
Active defence

Activity reduction

Active avoidance

Active preference

Selection of shallower depth
Aggregation in the open field
Reduction in selectivity towards conspecifics

Reduced consumption of food

The species is less active than other gam-
marids

No increase in the presence of predators,
but can contribute to the anti-predator pro-
tection

Compared to other gammarids

Potentially may facilitate forming aggrega-
tions resistant to predators

Ambiguous results:
Shown in hole shelters, not shown in mesh
shelters

Shown in the vicinity of food, not shown
when food was distant

Weak but significant effect

More efficient compared to other gammarid
species

Better survival than that of G. fossarum in
the presence of fish and without shelters

Shown in the presence of hole shelters, but
not with mesh shelters

The scents of hungry predators (crayfish
and fish), starving for 3 days, in a Y maze

The scents of predators fed with
conspecifics, other gammarids or
chironomid larvae in a Y maze

In a 1-m depth gradient, in the presence of a
benthic predator

Gammarids stop preferring conspecifics and
form groups independent of species

Shown when food had to be searched for,
not shown when food was present directly
in the shelter

Kley et al. (2009), Beggel et al. (2016) and
Kobak, Rachalewski & Bacela-Spychalska
(2016)

Sornom et al. (2012), Jermacz et al. (2017)
and Jermacz, Dzierzytiska-Bialoriczyk &
Kobak (2017)

Bloriska et al. (2015)
Bacela-Spychalska (2016)

Sornom et al. (2012)
Jermacz & Kobak (2017)

Jermacz et al. (2015a), Jermacz et al. (2015b)
and Beggel et al. (2016)

Kinzler ¢ Maier (2006), Kobak, Jermacz &
Ptachocki (2014)

Bloriska et al. (2016)
Sornom et al. (2012)

Hesselschwerdt et al. (2009), Jermacz et al.
(2017) and Jermacz, Dzierzyriska-Biatoriczyk
& Kobak (2017)

Jermacz et al. (2017) and Jermacz,
Dzierzytiska-Bialoticzyk & Kobak (2017)

Kobak et al. (2017)

Jermacz et al. (2017) and Jermacz,
Dzierzytiska-Bialoriczyk & Kobak (2017)

Jermacz et al. (2017) and Jermacz,
Dzierzyriska-Bialoticzyk ¢ Kobak (2017)

Jermacz ¢ Kobak (2017)

native G. fossarum were equally selected by other goby species (the round goby Neogobius

melanostomus and the tubenose goby Proterorhinus semilunaris) and the European bullhead,

whereas mobile D. villosus specimens were avoided, irrespective of the presence or absence

of shelters. This indicates that the effective behavioural anti-predator responses of D.

villosus determined its survival under the pressure of these predator species (Bforiska et al.,

2016). The coarse and complex substratum (gravel, stones and zebra mussel colonies) also

improved the survival of D. villosus compared to fine substrata and other gammarid species
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(Kinzler & Maier, 20065 Kobak, Jermacz & Plachocki, 2014). These results suggest that the
mechanisms of the resistance of D. villosus to different predators may vary depending on
their hunting mode, size and/or other traits.

The effectiveness of goby predation on D. villosus was described in detail by Jermacz et al.
(2017). They demonstrated that under particular conditions, for example when gammarids
were active or aggregated, the percentage of successful gobiid attacks was lower than
25%. The predation efficiency exceeded 50% only in the case of single inactive gammarid
individuals. Moreover, even when a fish already had a gammarid in its mouth, the prey
was still able to escape without any visible damage. Such a low effectiveness of predation
forces predatory species to multiply their effort to achieve the desired satiation level or
choose alternative prey species if available. The necessity of feeding on prey generating high
handling costs is unfavourable for the predator condition. For example, under laboratory
conditions Bloriska et al. (2015) demonstrated that gobiids fed with native G. fossarum or
chironomid larvae grew significantly better than individuals forced to feed on D. villosus,
and the latter group of fish exhibited weight loss after a 4-week exposure.

These observations confirm that D. villosus is a comparatively poor food item for its
potential predators, and is likely to be avoided in the presence of alternative prey species,
which can make it relatively safe in the natural environment. Generally, amphipods
are considered as one of the most important elements of the diet of many fish species
(MacNeil, Dick ¢ Elwood, 1999), however experimental results demonstrated that the role
of D. villosus as food for the fish community could be significantly different from that of its
native counterparts (Kobak, Jermacz & Plachocki, 2014; Bloriska et al., 2015; Bloriska et al.,
2016; Beggel et al., 2016), often replaced by the alien species (Dick ¢ Platvoet, 2000; Dick,
Platvoet & Kelly, 2002; Grabowski et al., 2006).

Positive response of D. villosus to the predation cue

In general, a chemical signal indicating predator presence induces a defence response
responsible for the reduction in predation risk (Brénmark ¢ Hansson, 20005 Ferrari,
Wisenden ¢ Chivers, 2010). However, in the case of omnivorous species, capable of feeding
on predator faeces or their dead bodies, or partly sharing their diet, a predation signal
does not always indicate only a danger and, as a consequence, does not always induce

a defence response. Such a unique situation takes place in the case of D. villosus as it
actively avoided the scent of hungry predators in a Y-maze, but did not exhibit an
avoidance reaction to the predation cues emitted by predators fed with chironomids

or other gammarids (including conspecifics) (Jermacz, Dzierzyriska-Bialoriczyk ¢» Kobak,
2017). On the contrary, it showed an active preference, moving towards the scent of satiated
predators in a Y-maze (Jermacz, Dzierzyriska-Bialoriczyk ¢ Kobak, 2017). A similar response
was induced by the presence of cues released by crushed conspecifics and other gammarid
species. This reaction suggests that this omnivorous and cannibalistic species is able to use
such a signal not as a predation cue, but as a source of information about the location of a
feeding ground. As shown in the above sections of this review, D. villosus is characterized
by an effective defence strategy (Kobak, Jermacz ¢» Plachocki, 2014; Bloriska et al., 2015;
Btoriska et al., 20165 Jermacz et al., 2017), therefore being relatively safe in the presence of
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predators, especially when alternative prey items are available in the vicinity (Jermacz et
al., 2015a; Blotiska et al., 2016). In such a situation, D. villosus may follow a predator to
feed on its faeces or sense wounded invertebrates as being its potential prey. A similar
trade-off between predator avoidance and foraging was observed in the case of Gammarus
pulex, which in the presence of food did not respond to the predation signal, contrary
to the situation when it was exposed only to predator kairomones (Szokoli et al., 2015).

Costs of the anti-predator responses of D. villosus

Anti-predatory defences of prey organisms usually result in considerable energetic costs of
the development of additional structures, selection of suboptimal habitats and/or decreased
feeding due to the higher vigilance focused on predator detection (Hawlena ¢ Schinitz,
20105 Sheriff & Thaler, 2014). This may result in growth reduction (Janssens ¢ Stoks, 2013),
weaker condition (Slos & Stoks, 2008) and/or finally even mortality (McCauley, Rowe &
Fortin, 2011). The impact of the presence of predators on the feeding of D. villosus was
checked by Jermacz ¢ Kobak (2017). The gammarids considerably limited their feeding in
the presence of predators (by 95% and 74% depending on the location of food, placed in the
direct vicinity of shelters or away from them, respectively). Surprisingly, this response was
even stronger than that of the related species P. robustoides (77% and 33%, respectively),
though the latter seems to be more susceptible to predation pressure. On the other hand,
no decrease in feeding was observed when single gammarids did not have to search for
their food, having it available directly in their shelters. This shows that the aforementioned
limitation of feeding in the open field resulted from the limited activity of gammarids
(when food was located close to the shelter) or their increased vigilance in the open field
(when food was distant from the shelter and no reduction in the search time was observed).

Nevertheless, the most important result of the study by Jermacz ¢~ Kobak (2017) was
the demonstration that the growth rate of D. villosus supplied with food in their shelters
(over a period of 2 weeks) was unaffected by the presence of predators. On the other
hand, P. robustoides under the same conditions significantly reduced its growth rate by ca.
60% when exposed to predation cues (Jermacz ¢ Kobak, 2017). Reduction in growth under
predation risk was also observed in an amphipod Hyalella azteca, accompanying its induced
morphological adaptations resulting in lower predator pressure (James & McClintock,
2017). This confirms the relatively high resistance of D. villosus to non-consumptive
predator effects and shows that it may thrive in a good physiological condition under
predatory pressure.

Resistance of D. villosus to predator non-consumptive effects was also confirmed by
Richter et al. (2018), who did not observe any disturbance of gammarid feeding behaviour
under the pressure of a benthivorous fish, the European bullhead (Cottus gobio). In
contrast, another gammarid species (G. pulex) reduced its consumption in the presence of
C. gobio kairomones (Abjornsson et al., 2000). Lagrue, Besson ¢ Lecerf (2015) have shown
that the abundance of armoured detritivore prey did not decrease in the presence of
predators, in contrast to that of non-armoured species. D. villosus is more armoured than
other gammarids (Bloriska et al., 2015), and thus the consequence of trade-offs between
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behavioural and morphological defences, such as the cost of the anti-predator responses of
D. villosus seems to be less pronounced than that of other gammarids.

Ecological significance of the anti-predator strategy of D. villosus

We have shown that D. villosus is capable of flexible predator recognition (Jermacz,
Dzierzyniska-Biatoriczyk & Kobak, 2017) allowing the species to respond to both novel and
known dangers. It seems unlikely that it may benefit from the naivety of local predators
in central and western Europe, as they are used to preying on native gammarids (MacNeil,
Dick & Elwood, 1999; MacNeil, Elwood & Dick, 1999) and not very selective with regard to
their benthic food, consuming also large quantities of alien amphipods (Rezsu ¢ Speczidr,
20065 Eckmann et al., 2008). Moreover, predators of Ponto-Caspian origin, sympatric to the
gammarids, such as several species of gobiid fish, have also invaded the same regions and
co-occur with D. villosus in most of its current range, and include it in their diet (Grabowska
& Grabowski, 2005; Borza, Eros & Oertel, 2009; Brandner et al., 2013). Therefore, its ability
to easily recognize potential dangers may be one of the traits facilitating its establishment
in invaded areas.

The efficient defence mechanisms of D. villosus make this species relatively resistant to
predation (Kobak, Jermacz & Ptachocki, 2014; Jermacz et al., 2017; Jermacz, Dzierzytiska-
Bialoriczyk & Kobak, 2017), which may help it in its competition with other gammarids
(Jermacz et al., 2015a; Beggel et al., 2016). Other, less resistant and more often consumed
species are preferentially removed from the environment by predators and must spend
more energy and time on anti-predator vigilance, whereas D. villosus, as the least preferred
potential food, may thrive in the presence of predators with no negative effect on its
growth (Jermacz & Kobak, 2017). Moreover, its aggressive behaviour may force competing
gammarid species to less suitable habitats (Platvoet et al., 2009; Jermacz et al., 2015a) or
make them swim more often in the water column, which further exposes them to fish
predation (e.g., Jermacz et al., 2015a; Beggel et al., 2016). In addition to direct intra-guild
predation and competition for food, this displacement from shelter is likely to be another
factor making D. villosus an efficient competitor displacing other species from the areas in
which it appears. Negative interactions with D. villosus make other gammarids avoid the
presence of the stronger competitor, increasing their migrations to new areas and switching
to different habitats (Dick, Platvoet & Kelly, 2002; Hesselschwerdt, Necker ¢» Wantzen, 2008;
Platvoet et al., 2009; Jermacz et al., 2015a; Kobak et al., 2016).

Nevertheless, the nature of interactions between D. villosus and its related species is far
more complex. The presence of predators does have an impact on D. villosus behaviour
(Jermacz, Dzierzyriska-Bialoticzyk & Kobak, 2017; Kobak et al., 2017; Jermacz et al., 2017)
and may reduce its interspecific aggression, allowing the competing species to stay in its
presence. Jermacz et al. (2015a) have demonstrated that another gammarid P. robustoides
is easily displaced from habitats preferred by both species in a safe environment, but the
presence of predatory fish changes the situation, allowing P. robustoides to stay in the
area co-occupied by D. villosus. It is difficult to distinguish whether this is due to the
reduction in D. villosus aggression or the higher substratum affinity of P. robustoides in the
presence of predators (selecting the vicinity of the stronger competitor as the lesser evil),
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or both. Nevertheless, individuals of both species can take advantage of staying in a group
and reduce the probability of a successful predator attack (Jermacz et al., 2017). This also
shows how important it is to consider the effect of predators when studying competitive
interactions between species because the consequences of competition in a predator-free
situation, which is very unlikely in the wild, may be easily overestimated.

Moreover, as the reduction in the feeding rate of D. villosus in the presence of predators
was observed by Jermacz & Kobak (2017), it is likely that the predatory impact of this
gammarid on the local community can also be lower than expected on the basis of
experiments conducted in fishless conditions. This confirms the results of the field studies
in the River Rhine (Hellmann et al., 2015; Hellmann et al., 2017; Koester, Bayer ¢» Gergs,
2016) and can explain their discrepancy with some laboratory experiments, indicating the
strong predatory impact of D. villosus on invertebrates (Dick ¢ Platvoet, 2000; MacNeil &
Platvoet, 2005).

Unexpectedly, despite the high consumption of D. villosus commonly observed
in the field (Kelleher et al., 1998; Grabowska ¢ Grabowski, 2005; Eckmann et al., 2008;
Borza, Eros ¢ Oertel, 2009; Brandner et al., 2013; Czarnecka, Pilotto ¢ Pusch, 2014), it was
experimentally demonstrated that its dominance may in fact decrease the quality of food
conditions for fish due to the higher difficulty of capturing and handling, leading to poor
growth on a diet based on this species, compared to the diets consisting of native gammarids
or chironomid larvae (Bloriska et al., 2015). Thus, although fish feed on D. villosus in the
areas invaded by this species, it seems they would have thrived much better if this invasion
had not occurred and other gammarid species (usually displaced by the invader) had been
available as alternative food (Bforiska et al., 2015).

CONCLUSION

We have shown D. villosus as a species with efficient anti-predation mechanisms (both
behavioural modifications and constitutive traits), relatively safe from predators and
bearing lower costs of their non-consumptive effects (as indicated by its growth unaffected
by the presence of fish), compared to related taxa. It can recognize sympatric and novel
fish predators independent of their diet, though its precise responses are fine-tuned on
the basis of food consumed by a predator, and can range from avoidance to preference.
Sometimes D. villosus can even be attracted to a predator scent, probably utilizing their
presence to locate potential food sources. Defence mechanisms of this species include
activity reduction, aggregation and migration. In general, single immobile individuals
outside the shelter are the most susceptible to predation. Therefore, threatened individuals
try: (1) to stay in the shelter, at best co-occupied by other specimens; (2) if this is not
possible, to move in search of a shelter; (3) if shelters are difficult to find, to aggregate with
conspecifics, used as a substitute shelter; (4) if conspecifics are also difficult to locate (e.g.,
at a low density), to relocate to safer areas, e.g., away from the predator scent or to the
shallower bottom. These traits are likely to give it a strong advantage in competition with
similar species, both natives and other invaders, and contribute to its invasive potential.
Moreover, we have demonstrated the strong importance of predator effects on interactions
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among gammarid species involving D. villosus, which cannot be neglected in future studies
on this topic. It is likely that under predatory pressure the competitive impact of D. villosus
on other gammarids as well as its predation on zoobenthos organisms are reduced, altering
its impact on local communities.
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