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Organisms living outside the tropics measure the changes in the length of the day to adapt
to seasonal changes in the environment. Animals that breed during spring and summer are
called long-day breeders, while those that breed during fall are called short-day breeders.
Although the influence of thyroid hormone in the regulation of seasonal reproduction has
been known for several decades, its precise mechanism remained unknown. Recent stud-
ies revealed that the activation of thyroid hormone within the mediobasal hypothalamus
plays a key role in this phenomenon. This localized activation of the thyroid hormone is
controlled by thyrotropin (thyroid-stimulating hormone) secreted from the pars tuberalis
of the pituitary gland. Although seasonal reproduction is a rate-limiting factor in animal
production, genes involved in photoperiodic signal transduction pathway could emerge as
potential targets to facilitate domestication.

Keywords: seasonal reproduction, mediobasal hypothalamus, ependymal cell, pars tuberalis, thyrotropin, thyroid
hormone, iodothyronine deiodinase

INTRODUCTION
Orbiting of the earth around the sun causes changing seasons.
To adapt to the seasonal changes in the environment, animals
alter their physiology and behavior, which is characterized by the
changes in growth, metabolism, immune function, reproductive
activity, migration, hibernation, and molting. Most of the organ-
isms use the changes in the length of the day (photoperiod) as a
calendar,because temperature and precipitation varies throughout
each year and are unreliable when compared with the length of the
day. This phenomenon is called “photoperiodism” (1). Among the
various seasonally regulated phenomena, the mechanism of sea-
sonal reproduction has been extensively studied. Small mammals
and birds breed during the spring and summer. Therefore, they are
called long-day (LD) breeders. The gestation or incubation period
of these animals last only a few weeks and their offspring are born
during the spring and summer. In contrast, larger mammals, such
as goats and sheep, breed during fall. Therefore, they are called
short-day (SD) breeders. These animals have a gestation period of
approximately 6 months. Therefore, their offspring are also born
and raised during spring and summer. Accordingly, the offspring
of both LD and SD breeders grow when the climate is moderate
and food is abundant (Figure 1).

Seasonal reproduction of vertebrate species is regulated by
the hypothalamic–pituitary–gonadal (HPG) axis. The secretion
of gonadotropin-releasing hormone (GnRH) from the hypothala-
mus induces the secretion of gonadotropins [luteinizing hormone
(LH) and follicle-stimulating hormone (FSH)] from the anterior

pituitary gland, which in turn activates gonadal activity. In other
words, the HPG axis of seasonally breeding animals is only acti-
vated during the breeding season. Among the various vertebrate
species, birds show the most dramatic changes in gonadal size (typ-
ically more than a 100-fold) (2). Therefore, birds have a highly
sophisticated photoperiodic mechanism in comparison to other
vertebrate species (3). In addition to the robust gonadal responses,
most of the birds have very short breeding seasons, as the HPG axis
is automatically switched off and their gonads start to regress even
though the length of the day is still increasing. This phenomenon
is known as photorefractoriness (4, 5). The length of the breeding
season tends to be shorter in higher latitude due to the short benign
season in higher latitude. Among mammals, hamsters and sheep
are extensively studied, because they show dramatic photoperiodic
responses. However, the magnitude of the seasonal gonadal devel-
opment and regression is less robust in mammals than in birds, as
their gonads change only by a few-folds.

INFLUENCE OF THYROID HORMONE IN THE SEASONAL
CHANGES
It has been known for many decades that thyroid hormone is some-
how involved in the regulation of seasonal reproductive function in
various organisms including fish, birds, and mammals (2, 6, 7). In
some species, thyroidectomy prevents the transition to reproduc-
tive state (i.e., seasonal testicular development and/or regression)
(8–11), and thyroxine (T4) treatment mimics the effects of a
long photoperiod (12–14). However, photo-stimulated gonadal
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FIGURE 1 | Calendar of seasonal breeding animals. Most animals mate in a specific time of a year. Small animals with short gestation or incubation period
mate in spring and summer, while large animals that have a 6-month gestation period mate in fall to give birth in spring.

maturation appears to have been largely unaffected by thyroidec-
tomy in some species (2). Therefore, the reported effects of thy-
roidectomy on seasonal breeding are often contradictory and the
role of T4 is thought to be permissive. Although the requirement
of T4 for an appropriate response to photoperiod has been docu-
mented (15), the mechanism by which thyroid hormone regulates
seasonal reproduction remained unknown for several decades.

PHOTOPERIODIC CHANGES IN TYPE 2 AND TYPE 3
DEIODINASES WITHIN THE HYPOTHALAMUS
The Japanese quail (Coturnix japonica) is an excellent model
for studying photoperiodism, because of its rapid and robust
responses to changing photoperiods (3). Local illumination of
the mediobasal hypothalamus (MBH) by radioluminous-painted
beads induce testicular growth (16), and lesions of MBH blocks the
photoperiodic response of LH secretion and gonadal development
(17, 18). In addition, expression of c-Fos, a marker of neuronal
activation, is induced in the MBH by LD stimulus (19). The MBH
is therefore considered central for the seasonal reproduction in
quail. By using differential subtractive hybridization analysis, LD-
induction of type 2 deiodinase gene (DIO2) and LD-suppression
of type 3 deiodinase gene (DIO3) were observed in the ependy-
mal cells (also known as tanycytes) that line the ventrolateral walls
of the third ventricle within the MBH [Ref. (20, 21), Figure 2].
DIO2 encodes the thyroid hormone-activating enzyme that con-
verts the prohormone T4 to bioactive triiodothyronine (T3) (22),
while DIO3 encodes thyroid hormone-inactivating enzyme that
metabolizes T4 and T3 to inactive reverse T3 (rT3) and 3,3′-
diiodothyronine (T2), respectively. The reciprocal switching of
DIO2 and DIO3 appears to regulate the local thyroid hormone

concentration precisely within the MBH. Moreover, T3 concentra-
tion within the MBH is about 10-fold higher under LD conditions
than under SD conditions, even though plasma concentrations
are similar to both photoperiods (20). The functional significance
of this locally activated thyroid hormone has been demonstrated
by pharmacological analyses. Intracerebroventricular (i.c.v.) infu-
sion of T3 in SD conditions induced testicular development while
infusion of a DIO2 inhibitor (iopanoic acid) in LD conditions
attenuated testicular development (20). Photoperiodic regulation
of DIO2 and/or DIO3 has also been confirmed in a number of
other avian species, such as the tree sparrow (23), chicken (24),
great tits (25), and canary (26). Similarly, photoperiodic regu-
lation of thyroid hormone metabolism in the MBH has been
confirmed in various mammalian species, including LD breed-
ers like Siberian hamsters (27–30), Syrian hamsters (31, 32), rats
(33, 34), mice (35), and SD-breeding goats (36) and sheep (37).
Activation of thyroid hormone within the MBH decodes the LD
information. Therefore, daily T3 subcutaneous injections induce
testicular development (28) and chronic replacement of T3 in the
hypothalamus prevents the onset of testicular regression (27) in
LD-breeding Siberian hamsters. In contrast, in the SD breeders,
LD-induced DIO2 appears to convert T4 to T3 to terminate the
breeding season (37). In addition, LD stimulus induces the expres-
sion of DIO2, and T4 administration terminates the breeding
season via a decrease in serum LH (38, 39).

THYROID HORMONE TRANSPORT TO THE EPENDYMAL
CELLS
Due to their lipophilic nature, thyroid hormones are believed
to traverse plasma membranes by passive diffusion. However,
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FIGURE 2 | Photoperiodic signal transduction pathway in mammals
and birds. In mammals, light information is received by the eye and
transmitted to the pineal gland via the circadian pacemaker, the
suprachiasmatic nucleus (SCN). The duration of the pineal melatonin signal
encodes the length of night and regulates TSH secretion in the pars
tuberalis. The pars tuberalis TSH acts on TSH receptor expressed in the
ependymal cells lining ventrolateral walls of the third ventricle (VIII) to
induce DIO2 and reduce DIO3. Local thyroid hormone activation within the
mediobasal hypothalamus (MBH) by DIO2/DIO3 switching plays a key role
in the regulation of seasonal reproduction. In contrast, light information
received by deep brain photoreceptors induces TSH secretion from the pars
tuberalis in birds. Nevertheless, melatonin is not involved in the seasonal
reproduction of birds. The schematic is a modified version of illustration
published by Ikegami and Yoshimura (40).

involvement of a membrane transport system for thyroid hor-
mone has been reported recently and a mechanism that facili-
tates the transport of thyroid hormone into the ependymal cells
was examined. Some members of the organic anion transporting
polypeptide (Oatp) family have been shown to transport thyroid
hormones in mammals (41, 42) and the involvement of a mem-
ber of this family in transporting T4 into the quail brain has been
investigated (43). Oatp1c1, which is expressed in the ependymal
cells within the MBH, has been demonstrated to be a highly spe-
cific transporter of T4. In addition to Oatp1c1, another thyroid
hormone transporter, monocarboxylate transporter 8 (MCT8),
has been found in the ependymal cells within hamster MBH (29).
Although MCT8 appears to be involved in the regulation of pho-
toperiodism, its expression is upregulated under SD conditions,
which does not require thyroid hormone.

REGULATION OF HYPOTHALAMIC DEIODINASES BY THE
PARS TUBERALIS TSH
When quail are transferred from SD conditions to LD conditions,
an increase in plasma gonadotropin (LH) is observed 22 h after the
dawn of the first LD (3, 44, 45). As discussed previously, reciprocal
switching of DIO2 and DIO3 plays a critical role in the regula-
tion of seasonal reproduction in birds and mammals. In quail, the
reciprocal switching of DIO2 and DIO3 precedes photoperiodic
induction of gonadotropin release by roughly 4 h (21). Genome-
wide gene expression analysis during the transition from SD
conditions to LD conditions in Japanese quail (45) identified the
induction of two genes 4 h prior to DIO2/DIO3 switching (i.e., 14 h
after dawn) in the pars tuberalis of the pituitary gland. The pars
tuberalis consists of thin layers of cells surrounding the median
eminence (Figure 2). One of these genes encode the thyroid-
stimulating hormone β subunit (TSHB) and the other encode
the transcriptional co-activator eyes absent 3 (EYA3). Although
EYA3 is a transcriptional co-activator, the expression sites of EYA3
and DIO2/DIO3 are different (i.e., EYA3 in the pars tuberalis and
DIO2/DIO3 in the ependymal cells). Therefore, it appears that
EYA3 is not involved in the regulation of DIO2/DIO3 switch-
ing. On the other hand, the expression of TSH receptor (TSHR)
and binding of 125I-labeled thyroid-stimulating hormone (TSH)
were observed in the ependymal cells where DIO2 and DIO3 are
expressed. In addition to these, i.c.v. TSH administration induced
DIO2 expression and reduced DIO3 expression in the ependy-
mal cells even under SD conditions, while passive immunization
against TSH attenuated LD-induction of DIO2 expression (45).
The involvement of TSHR-Gsα-cAMP signaling pathway in this
TSH regulation of DIO2 expression was demonstrated by the
promoter analysis. Considering that the magnitude of testicular
growth induced by i.c.v. TSH infusion was almost similar to that
observed in birds exposed to LD stimulus, the LD-induced pars
tuberalis TSH appears to be a major factor regulating the seasonal
reproduction in birds.

In birds, eyes are not necessary for the regulation of seasonal
reproduction because deep brain photoreceptors are involved in
this process (46, 47). Although pineal organ is a photorecep-
tive organ in non-mammalian vertebrates (48, 49), pineal organ
is not involved in the regulation of seasonal reproduction (50,
51). In contrast, local illumination of the septal region of the
telencephalon or the MBH using radioluminous-painted beads
caused testicular growth in quail, suggesting the existence of deep
brain photoreceptors in these regions (16). Localization of sev-
eral rhodopsin family proteins (rhodopsin; OPN4: melanopsin;
OPN5: neuropsin and VA opsin: vertebrate ancient opsin) are
reported in these brain regions and projections that link some
of these photoreceptor cells to the pars tuberalis have also been
reported (52–62). These photoreceptors are therefore thought to
be involved in the seasonal regulation of reproduction in birds
(Figure 2).

In a marked contrast to avian species, eyes are the only photore-
ceptive organ in mammalian species (63–69). Therefore, removal
of the eyes abolishes the photoperiodic response (64, 68). Light
information received by the eye is transmitted to the pineal gland
through the suprachiasmatic nucleus (SCN), where the circadian
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pacemaker is localized (68, 70–74). The duration of night corre-
sponds to the nocturnal secretion profile of melatonin, which plays
a crucial role in the regulation of seasonal reproduction in mam-
malian species. For example, in both LD and SD breeders,pinealec-
tomy abolishes seasonal responses, while melatonin administra-
tion restores them (68, 74, 75). Melatonin acts via melatonin recep-
tors and there are two subtypes of melatonin receptors (MT1 and
MT2) in mammals (76, 77). However, these melatonin receptors
are not expressed in the ependymal cells where DIO2 and DIO3
are expressed (78, 79). The MT1 receptor is reportedly expressed
in the thyrotroph cells of the pars tuberalis (80, 81). Therefore,
pars tuberalis TSH likely mediates the influence of melatonin
in the DIO2/DIO3 switching in mammalian species. Although
it is generally considered that laboratory mice are non-seasonal
breeders, many researchers noticed that mice do not breed well
during the winter (e.g., small litter size) even though they are kept
under standardized conditions. To determine whether pars tuber-
alis TSH mediates the influence of melatonin in the DIO2/DIO3
switching, laboratory mice were analyzed as experimental models.
Two key enzymes, arylalkylamine N -acetyltransferase (AA-NAT)
and hydroxyindole-O-methyltransferase (HIOMT) are involved
in melatonin biosynthesis from serotonin (74). However, most
inbred mice genetically lack the ability to produce these enzymes,
resulting in minimal melatonin generation (82, 83). Therefore, it
was predicted that melatonin-producing strains would have the
capacity to respond to photoperiodic changes, while melatonin-
deficient strains would be resilient to such changes. As expected,
clear photoperiodic regulation of TSHB, DIO2, and DIO3 was
observed in the melatonin-producing CBA strain, while such
responses were not observed in the melatonin-deficient C57BL
strain (35). In addition, daily intraperitoneal (i.p.) melatonin
injections mimicked the effect of SD conditions on the expres-
sion of these genes (35). To test the involvement of the TSH–
TSHR signaling pathway in the melatonin-mediated regulation
of DIO2/DIO3 expression, the effects of melatonin administra-
tion were examined in TSHR-null mice (35). The TSHR-null mice
failed to respond to melatonin administration. This result clearly
suggested the involvement of a TSH–TSHR signaling pathway in
the melatonin-mediated regulation of DIO2/DIO3 in mammals.
In addition, the analysis of mice that lacked the MT1 and MT2
melatonin receptors revealed the involvement of MT1 melatonin
receptors in this regulation (84). It is also interesting to note that
TSH is involved in the LD-induction of DIO2 in SD-breeding
sheep (37). Thus, pars tuberalis TSH appears to relay the seasonal
information in both LD and SD-breeding animals and sensitize
them for spring.

THYROID HORMONE ACTION WITHIN THE HYPOTHALAMUS
Thyroid hormone is involved in the development and plasticity
of the central nervous system (22). The expression of thyroid
hormone receptors (THRα, THRβ, and RXRα) in the median
eminence suggested that the median eminence is the target site
of action for the photo-induced increase in T3 in the quail MBH
(20). To understand the action of thyroid hormone within the
MBH, the ultrastructure of the median eminence was examined
under SD and LD conditions using electron microscopy. Dynamic
morphological changes were observed between the GnRH nerve

FIGURE 3 | Neuro–glial interaction between GnRH nerve terminals and
glial endfeet. Locally activated thyroid hormone within the MBH regulates
neuro–glial interaction in the median eminence and these morphological
changes appear to regulate or modulate seasonal GnRH secretion from the
hypothalamus to portal capillary. The illustration has been modified from
that published by Yoshimura (89).

terminals and glial endfeet within the median eminence (85). In
SD conditions, many GnRH nerve terminals are encased by the
endfeet of glial processes and do not contact the basal lamina,
while many GnRH nerve terminals are in close proximity to the
basal lamina under LD conditions (Figure 3). It has been proposed
that the nerve terminals of hypothalamic neurons are required to
directly contact the pericapillary space for the secretion of the
hypothalamic neurohormone from the hypothalamus into the
portal capillary (86). Morphological changes between the GnRH
nerve terminals and endfeet of glial processes are observed in SD
quail treated with T3 to stimulate testicular growth (87). There-
fore, these morphological changes appear to regulate or modulate
the seasonal GnRH secretion from the median eminence. It is also
interesting to note that the seasonal plasticity within the GnRH
system is reported in ewes (88).

PHOTOPERIODIC SIGNALING PATHWAY AND
DOMESTICATION
Seasonal reproduction is a rate-limiting factor for the animal
procreation. The photoperiodic signaling pathway could also be
a potential target that facilitates human-driven domestication
process. As discussed previously, most laboratory mice lack the
enzyme activity of melatonin biosynthesis pathway (82, 83, 90,
91). In addition, occurrence of selective sweeps was found at the
TSHR locus in all domestic chickens (92). This observation sug-
gests that the TSHR may be a domestication locus in chicken (92).
Although we still do not know the correlation with domestication,
it is interesting to note that photoperiodic regulation of DIO3 is
absent in Syrian hamster (27). Thus, genes involved in the pho-
toperiodic signaling pathway could emerge as useful targets for the
domestication of wild animals.

CONCLUSION
Involvement of thyroid hormone in the regulation of seasonal
reproduction has been suggested in the past several decades.
Recent comparative studies clearly reveal that the local activation
of thyroid hormone within the hypothalamus is a key factor in the
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regulation of seasonal reproduction in a number of mammalian
and avian species. It is important to note that this mechanism is
also conserved in fish (93) and is universal among various verte-
brate species. Although thyroid hormone influences both LD and
SD breeders, the mechanism that differentiates LD breeders from
SD breeders remains unknown. Presumably, the responsiveness of
pathways downstream of T3 activity (e.g., responsiveness of T3

target genes to LD-induced T3 etc.) differs in LD and SD breeders.
The switching mechanism of LD breeder and SD breeder needs to
be clarified in the future studies.
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