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Abstract: A comprehensive summary of recent knowledge in syndactyly (SD) is important for
understanding the genetic etiology of SD and disease management. Thus, this review article provides
background information on SD, as well as insights into phenotypic and genetic heterogeneity, newly
identified gene mutations in various SD types, the role of HOXD13 in limb deformities, and recently
introduced modern surgical techniques for SD. This article also proposes a procedure for genetic
analysis to obtain a clearer genotype–phenotype correlation for SD in the future. We briefly describe
the classification of non-syndromic SD based on variable phenotypes to explain different phenotypic
features and mutations in the various genes responsible for the pathogenesis of different types of
SD. We describe how different types of mutation in HOXD13 cause various types of SD, and how a
mutation in HOXD13 could affect its interaction with other genes, which may be one of the reasons
behind the differential phenotypes and incomplete penetrance. Furthermore, we also discuss some
recently introduced modern surgical techniques, such as free skin grafting, improved flap techniques,
and dermal fat grafting in combination with the Z-method incision, which have been successfully
practiced clinically with no post-operative complications.

Keywords: syndactyly; heterogeneity; incomplete penetrance; surgery; HOXD13

1. Background

Syndactyly (SD) is a congenital digital malformation characterized by webbing of the
fingers and toes. Syndactyly is derived from the Greek word “syn”, meaning together,
and “dactylos”, meaning digits. It is one of the most common hereditary limb disorders,
with a prevalence of 3–10 in every 10,000 births, although higher estimates in the range
of 10–40/10,000 have been reported [1–4]. Its occurrence in males is twice that in females,
and mothers aged 40 years or older are more likely to produce children with inborn limb
deformities compared to mothers who are 30 years of age or younger [5]. SD is genetic in
origin; clinically, it is an extremely heterogeneous developmental deformity [6]. It may be
symmetrical or asymmetrical and unilateral or bilateral. Moreover, inter- or intra-familial
phenotypic variability is relatively common. The extent of variability of the disorder can
even be observed in the same individual as he/she may have asymmetrical phenotypic
features in the hands and feet, as well as between the right hand and left hand. SD can be
completely or partially identified as bony or cutaneous, involving the phalanges, and may
extend to the carpal and tarsal bones, even to the metacarpal and metatarsal levels of the
limbs, and occasionally adjacent to the distal end of the forearm and foreleg.
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Milder phenotypic features in limbs that are related to SD might be identified by inter-
phalangeal fold differences [7]. SD mostly segregates as an isolated (non-syndromic) limb
disorder but may occur in combination with other disorders (synostosis, acro-syndactyly,
cleft hand, clinodactyly, polydactyly) or syndromes (Apert syndrome, Poland’s syndrome,
Pfeiffer syndrome) [3]. Significant progress has been made in SD research, with multiple
milestones being achieved during the past few years (Figure 1).
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Figure 1. Schematic diagram illustrating the series of milestones achieved in past years in
syndactyly research.

2. Classification of Syndactyly

The classification of non-syndromic SD can be performed in different ways, based
on the various phenotypes. It can be simple or complex, complete or incomplete, and
osseous (bone-involved) or cutaneous (only skin-involved). The classification system of
Temtamy and McKusick for non-syndromic syndactyly is largely based on the phenotypic
appearance (nature or site of affected limbs), along with segregation of the disorder in
affected families [7]. The classification system of Temtamy and McKusick provided the basis
for the latest modern classification system, which additionally considers advancements
made clinically, as well as in basic molecular studies. In 2012, a nine-type classification
system was put forward by Malik et al. that was mainly an extended version of the Temtamy
and McKusick classification system [8]. The autosomal dominant mode of inheritance
is evident in most of the types [9]. We summarize the classification of non-syndromic
syndactyly in Table 1.
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Table 1. List of genes and loci responsible for different types of non-syndromic syndactyly.

Clinical
Phenotype Original Name Major Symptoms Locus/Gene Mutation Type Inheritance References

Syndactyly
I-a Zygodactyly

Cutaneous webbing of 2nd
and 3rd toes without the

hand involvement
Chr.3p21.31 - AD* [4,10,11]

Syndactyly
I-b Lueken type

Bilateral bony or
cutaneous webbing of
3rd/4th fingers and

2nd/3rd toes

HOXD13
Duplication,

missense, and
deletion

AD [4,12]

Syndactyly I-c Montagu type

Bilateral bony or
cutaneous webbing of
3rd/4th fingers, with

normal feet

HOXD13
Duplication,

missense, and
deletion

AD [4,13]

Syndactyly
I-d Castilla type

Bilateral cutaneous
webbing of the 4th and 5th

toes
- - AD [4,8,14]

Syndactyly
II-a

Vordingborg
type

Distinct combinations of
syndactyly and

polydactyly
HOXD13

Duplication,
missense,

frameshift,
splicing and

deletion

AD [15–17]

Syndactyly
II-b

Metacarpal and metatarsal
synostoses FBLN1 Missense AD [15,18]

Syndactyly
II-c

Cutaneous webbing,
abnormal metacarpals

Chr.14q11.2-
12 - AD [19]

Syndactyly III Johnston-Kirby
type

Bilateral complete
syndactyly of the 4th and

5th fingers
Chr.7q36.3 - AD [10,20,21]

Syndactyly IV Haas-type
polysyndactyly

Complete cutaneous
syndactyly of all fingers LMBR1

Large
duplications and

missense
AD [22–25]

Syndactyly V Dowd type Synostotic fusion of
metacarpals HOXD13

Duplication,
missense, and

deletion
AD [1,26,27]

Syndactyly VI Mitten type Fusion of 2nd–5th fingers
of the right hand - - AD [7]

Syndactyly
VII-a

Cenani-Lenz
syndactyly

(CLS)
Bony fusion of all digits LRP4 Missense AR* [28,29]

Syndactyly
VII-b

15q13.3,
GREM1-
FMN1

- - [30]

Syndactyly
VIII

Orel-Holmes
type Fusion of metacarpals 4/5 FGF16 Nonsense XR* [20]

Syndactyly IX

Mesoaxial
synostotic
syndactyly

(MSSD)

Phalangeal reduction BHLHA9
Missense,

frameshift, and
deletion

AR [31–33]

AD* = autosomal dominant, AR* = autosomal recessive, XR* = X-linked recessive.

3. Variable Phenotypic Features of Non-Syndromic Syndactyly Types

The most-reported phenotypic features of SD are webbing of the 3rd and 4th fingers,
while webbing of the 1st and 2nd digits rarely occurs because, during normal development,
the thumb (1st digit) is not closely attached to the remaining fingers of the hand. There
are two types of webbing. In the first type, only the skin is involved; this is referred to as
simple syndactyly and can be sub-categorized into complete and partial SD; however, in
the second type, the bones are also fused underneath the skin and this is called complex
syndactyly [34].
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In syndactyly type I (SD1), the clinical records show a large variation in patient
phenotypes; this involves mesoaxial webbing, i.e., either the complete or partial blending of
either the 3rd and 4th fingers, the 2nd and 3rd toe, or both in the same individual [4,10,11]
(Figure 2A). A family with almost two dozen affected members showed deformities of
digits that were characteristic of SD type 1c, with webbed fingers of both hands along with
normal feet, but only one member of the family showed fused toes (3rd to 5th) [8,35].
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Syndactyly and polydactyly (the addition of an extra digit in the limbs) may be found
together in some cases. For example, syndactyly type II (SD2), also termed synpolydactyly
(SPD), typically involves both webbing of the fingers and toe duplication, or an extra
toe added in the feet [7], and usually involves webbing of the 3rd and 4th digits in the
hands and the 4th and 5th toes, with an extra toe added [19]. The recognized phenotypic
features of this type of SPD are webbing of the fingers (3rd and 4th) and toes (4th and 5th),
which may be unilateral or bilateral and, rarely, evince duplicated toes and fingers [36]
(Figure 2B–D). SPD is a very heterogeneous deformity among all SD types, in terms of
phenotype as well as genotype [37]. The more complex type of SPD was first evident in a
Belgium family with three affected family members who had irregular metacarpal as well
as metatarsal synostoses [18].
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The phenotypic features of syndactyly type III (SD3) are webbing of the 4th plus 5th
fingers of both hands at the same time, but in some cases, the 3rd finger of each hand is also
involved, accompanied by camptodactyly (Figure 2E) [21]. Similarly, syndactyly type IV
(SD4) involves the webbing of the skin of all five digits of the hand, without the involvement
of the bone; in most cases, polydactyly is also seen in the affected hands (Figure 2F). This
type of SD is further classified into two categories, based on feet involvement along with
affected hands. In the first category, no feet are involved, and in the second category, the
fusion of the toes of one or both feet are involved [8,11]. Syndactyly type V (SD5) can
be recognized by a bony combination of the 4th and 5th metacarpals in the forelimbs
(Figure 2G) [27]. Additional deformities are also reported to be part of SD5, such as
the irregular derivation of the fifth finger in both hands and unusual interphalangeal
distortions [26]. Deformity of the feet involves defective metatarsals, for example, abnormal
growth of the first metatarsal and the lesser small size of the remaining metatarsals, which
severely affects the shape and function of the feet [8,26]. Correspondingly, syndactyly
type VI (SD6) can be recognized by webbing of the four fingers (2nd to 5th) in the right
hand, integration of the phalanges, and webbing of the 2nd and 3rd toes in the affected feet
(Figure 2H) [7].

Syndactyly type VII (SD7) is the most severe form of SD, whereby the whole hand is
distorted by the bony webbing of all fingers in the affected hand. The skeletal structure of
the affected hand is fully disordered, to a degree that the phalanges cannot be distinguished
as separate entities (Figure 2I) [38]. Furthermore, the carpals, metacarpals, and phalanges
also have an uneven shape. Sometimes, other bones, such as the radius and ulna, also get
affected, causing the length of the whole arm to shorten [7,23]. Two different phenotypic
features of SD7 have been proposed, i.e., the spoon-head and oligodactyly types [39].

The main phenotypic feature of syndactyly type VIII (SD8) is the skeletal fusion of
the 4th and 5th metacarpals, the shortness of the 4/5 metacarpals, and a few other small
deformities in the skeletal structure of the affected hand (Figure 2J) [20]. Syndactyly type
IX (SD9) can usually be recognized by phalangeal lessening, the osseous fusion of the
metacarpals, 5th-finger clinodactyly, hypoplasia of the thumb and phalanges in the hand,
and webbing of the toes (Figure 2K) [31,32].

4. Genetic Factors Underlying the Differential Phenotypes of Syndactyly

Mutations associated with the pathogenesis of SD have been recognized in numerous
genes due to recent advancements in molecular genetics [40] (Figure 3). In 2000, SD1-b was
mapped to chromosomal 2q34-q36 in the members of large families of German and Iranian
kindred, but no specific gene has yet been identified [4,12,41], although recently a missense
mutation (c.500A>G;p.Y167C) in the HOXD13 gene has been reported to cause SD1-b [42].
Mutation in the HOXD13, present on chromosome 2, has also been reported to be asso-
ciated with SD1-c. A study concerning two Chinese families affected with the Montagu
type reported mutations in HOXD13 [13]. Recently, missense variants (c.961A>C;p.T321P,
c.917G>A;p.R306Q) in the HOXD13 have been linked with SD1-c in families [42,43].

Different types of duplication, as well as missense and deletion variants in HOXD13,
cause typical SPD disease [44]. Missense mutations in HOXD13 have been linked with
SPD1, which possibly affects the stability of the HOXD13 protein [45]. Recently, a missense
variant (c.1157C>T;p.A375V) in the TTC30B has been reported in a Chinese family with
SPD1 phenotypic features [46]. The FBLN1 has been linked with SPD2, as mutations in
this gene have been reported to result in a complex type of SPD [47]. The most common
mutation involved polyalanine expansion or contraction in the N-terminal region of the
HOXD13 protein [17].
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Molecular evidence for SD3 has been confirmed in a family with SD3 and was linked
to a locus at chr.7q36.3 [10]. Although SD3 is described in families as an isolated anomaly,
it also occurs as a part of other diseases or syndromes [21,48,49].

Likewise, the duplication of 115.3 kb at a locus called ZRS (limb-specific cis regulator)
on chromosome 7 has been linked with SD4 [22–25]. Recently, in two different studies,
large duplications that involve several exons in the LMBR1, present on the same locus at
chromosome 7, were associated with SD4 deformity in two large Chinese families [50,51].

A missense mutation (c.950A>G;p.Q317R) in the HOXD13 has been confirmed to cause
SD5 in a large Chinese family [27].

SD7 has been linked with the LRP4 gene in several studies. For example, two broth-
ers affected with SD7 deformity had a missense mutation (c.4910G>A;p.C1637T) in the
LRP4 [52]. In a large Pakistani family, a mutation in LRP4 (c.316+1G>A) has been reported to
cause SD7 [53]. Similarly, another study reported a missense mutation (c.1151A>G;p.T384C)
in the LRP4 in a family affected with SD7 [54]. A deleterious variant (c.1348A>G;p.I450V)
in LRP4 was also associated with SD7 in two affected members of a Sri Lankan family [55].

In the case of SD8, a mutation in FGF16 on the locus chrXq21.1 is the main cause, as
two nonsense mutations (p.R179X and p.S157X) in FGF16 have been linked with SD8 [56].

Likewise, a mutation in BHLHA9 present on chromosome 17q13.3 has been linked with
the SD9 [32]. Several other studies have reported missense (c.311T>C;p.I104T), frameshift
(c.74delG;p.G25Afs*55), and deletion (c.252_270delinsGCA;p.F85Qfs*108) variants in the
BHLHA9 (Reference sequence: NM_001164405.2) in families affected with SD9 [33,57,58].

5. Some Excluded Types of Syndactyly and Underlying Genetic Factors

According to the current classification system, syndactyly can be classified into nine
types, but this classification system does not consider numerous other syndromic and
non-syndromic forms of SD. For a better understanding of the genetic factors behind
all SD types, these excluded types of SD must be considered because several genes in
combination are involved in limb development at the embryonic stage. For example,
Saudi-type familial SD has been linked to the hammer-toe locus in mice [10], while Cenani–
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Lenz SD is associated with APC variations [59], missense alterations in FIBULIN1 are
associated with brain atrophy-syndactyly syndrome [60], and genomic replications of the
SHH enhancer ZRS lead to triphalangeal thumb polysyndactyly syndrome [61], Greig
syndrome, acrocephalosyndactyly syndromes and other SD phenotypes linked with the
GLI3 variants [62].

A large family affected with polydactyly and SD was shown to have a disease-linked
variant (c.739C>T;p.Q247X) in the GLI3 gene that was co-segregated in all affected family
members [63]. Furthermore, a heterozygous mutation in the NSDHL (c.713C>A;p.T238N)
gene has been reported in a nine-month-old female affected with a CHILD syndrome
phenotype and SD, who has non-consanguineous parents [64]. In addition, the TP63 gene
has been found to be associated with SD in the presence of other abnormalities [65,66].
Recently, autosomal dominant SD has been associated with a microdeletion of 2.79 Mb at
chr14q22-q22.2 in four affected members of a three-generation family with limb defects
(syndactyly and polydactyly) along with other disorders, such as developmental delay and
facial defects [67]. Recently, it has been reported that children with SD and prolonged heart-
rate-corrected QT (QTc) interval have more multisystem diseases and electrocardiographic
abnormalities [68]. Heterozygous missense alterations in GLI3 (c.1622C>T;p.T541M) and
GJA1 (c.274T>C;p.Y92H) were identified in patients with the phenotypic features of SD
type I [69], and two variants (p.D1403H, p.Q1564K) of LRP4 have been reported in a child
affected with isolated SD of both hands, although the LRP4 gene has been reported to cause
SD7 [70]. In recent studies, the combinations of SD, cleft hand, and polydactyly in a single
patient suggested that some common genetic factors are behind these deformities [71,72].
Similarly, a missense variant (c.1622C>T;p.T541M) in GLI3 has been reported in a patient
with isolated postaxial synpolydactyly [73]. In another study, mutations in the GJA1
gene, i.e., that located on chromosome 6q22-q23, have been reported to be linked with
oculodentodigital dysplasia syndrome, and the SD3 phenotype has also been reported in
some cases [74]. Recently, SD1-a has been reported to be associated with other diseases,
e.g., diabetes [75].

We have listed the genes linked with these deformities in Table 2.

Table 2. Genes linked with the excluded types of syndactyly.

Gene Deformity/Syndrome References

APC Cenani-Lenz syndrome and other related syndactyly disorders [59]
FIBULIN1 Atrophy-syndactyly syndrome [60]

GLI3 Acrocephalo-syndactyly [62]
GLI3 Polydactyly and syndactyly [63]
GLI3 Isolated postaxial synpolydactyly [73]

NSDH CHILD syndrome phenotype and syndactyly [64]
TP63 Syndactyly in combination with other abnormalities [65,66]
LRP4 Isolated syndactyly [70]
GJA1 Oculodentodigital dysplasia [74]

6. HOXD13 and Its Role in Causing Syndactyly

HOXD13 belongs to a group of evolutionarily conserved HOX gene-family, which
encode a group of transcription factors that regulate morphogenesis at an early embryonic
stage [76]. Germline mutation in HOXD13 is known to cause the deformity of limbs in
humans. The phenomena of variable expressivity and incomplete penetrance are com-
mon with HOXD13 mutations [77]. Mutations in HOXD13 have also been linked with
brachydactyly-syndactyly syndrome and VACTERL association [27,78]. HOXD13 is known
to cause different types of SD, e.g., SD1, SD5, and SPD1, which shows that the HOXD13
gene has an important function in limb development (Table 3). The most common variation
is a polyalanine expansion in the N-terminal domain of HOXD13, which is widely reported
in families of different kindred (Figure 3B). For example, nine extra alanine residues that
are added to the same region of HOXD13, due to the duplication of 27 bases, have been
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found in Turkish families with SPD1 [14]. In 2005, a polyalanine extension in HOXD13
has been reported to cause SPD1 in four Danish families [79], while the duplication of
27 base pairs (c.184_210dup) has been reported to cause the addition of nine extra ala-
nines to HOXD13 in a large Chinese family with SPD1 [80]. In 2009, a mutation within
the N-terminal transcription-regulating domain of HOXD13 (c.659G>T;p.G220V) was
reported in a Greek family with a variant form of SPD [81]. In our own study, with the
help of whole-genome sequencing (WGS), we identified a 24-base pair duplication variant,
c.183_206dupGCGGCGGCTGCGGCGGCGGCGGC (Reference sequence: NM_000523.3) in
HOXD13 that results in the addition of eight extra alanines in four generations of a family
in northern China [82]. Similarly, missense and nonsense mutations in HOXD13 have also
been reported in large families affected with SPD1 [83–85].

Previously, it has been reported that families inheriting a homozygous mutation in
the HOXD13 have a severe form of SPD [86] but, recently, this has been demonstrated not
to be true in all cases of SPD1 patients with homozygous mutations [87]. Studies have
also reported HOXD13 mutations in families with different syndactyly types, e.g., SD1-a,
SD1-c, and SD5 (Table 3), which gives a clear indication that HOXD13 has a critical role in
limb formation and that it may also interact with other limb-formation genes during the
process. Recently, a study demonstrated how a missense mutation in the homeodomain
of HOXD13 leads to impaired transcriptional activity of EPHA7 (one of the downstream
genes of HOXD13) [88]. EPHA7 is known to play a crucial role in limb development [89].
Hence, variations in the normal sequence of HOXD13 can negatively affect other gene’s
normal functions that could possibly results in differential phenotypes of SD.

Table 3. List of HOXD13 gene mutations reported for different types of non-syndromic syndactyly in
the literature.

Mutation Type cDNA Change AA Change NCBI Ref.
Sequence Allele Phenotype Ref.

Missense c.917G>A p.R306Q NM_000523.4 Heterozygous SD1-c [13]
Missense c.500A>G p.Y167C NM_000523.4 Heterozygous SD1-b [42]
Missense c.961A>C p.T321P NM_000523.4 Heterozygous SD1-c [42]
Missense c.917G>A p.R306Q NM_000523.3 Heterozygous SD1-c [43]

Duplication c.183_206dup p.A64_A71dup NM_000523.3 Heterozygous SPD1 [82]
Duplication c.184_210dup p.A63_A71dup NM_000523.3 Heterozygous SPD1 [80]
Duplication c.183_206dup p.A64_A71dup NM_000523.4 Heterozygous SPD1 [90]
Duplication c.186-212dup p.A63_A71dup NM_000523.4 Heterozygous SPD1 [91]

Missense c.859C>T p.G287X NM_000523.3 Heterozygous SPD1 [83]
Missense c.556C>T p.R186X NM_000523.4 Heterozygous SPD1 [84]
Missense c.938C>G p.T313R NM_000523.4 Homozygous SPD1 [85]
Missense c.892C>T p.R298W NM_000523.2 Heterozygous SPD1 [45]
Missense c.659G>T p.G220V NM_000523.2 Heterozygous SPD1 [81]
Missense c.938C>G p.T313R NM_000523.3 Homozygous SPD1 [86]
Missense c.893G>A p.A298G NM_000523.3 Heterozygous SPD1 [44]
Deletion c.708delC p.A236Lfs*30 NM_000523.4 Heterozygous SPD1 [92]
Missense c.925A>T p.I309F NM_000523.4 Heterozygous SPD1 [88]

Splice donor site c.781+1G>A - NC_000002.12
NM_000523.3 Heterozygous SPD1 [93]

Missense c.950A>G p.Q317R NM_000523.3 Heterozygous SD5 [27]

7. Diagnosis and Surgical Treatment of Syndactyly

SD is basically a limb malformation that belongs to congenital anomalies affecting
bone or skeletal structure or function. It is caused when the digits of the fetus in the womb
do not separate successfully, resulting in a webbed hand or feet. As an apparent deformity
of the hands and feet, the characteristic is so obvious that it attracts instant attention or
concern soon after birth, especially when it occurs in the hands. SD can be managed
using different diagnostic tools, plus a genetic background of the patient’s family history
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and clinical data regarding deformities in affected family members. Genetic screening
of the affected person and affected family members can easily reveal information about
the genetic background, which can make it easy for a clinician to diagnose the deformity.
Furthermore, other tools, such as X-rays and ultrasound, can also make the deformity
clearer to the clinician and, therefore, more easily diagnosed. In the presence of all this
information, a clinician will be able to diagnose the problem immediately and perform
treatment effectively and efficiently [80,94]. Furthermore, after successfully diagnosing
the deformity, genetic analysis of the patient and his family members will be helpful in
establishing a clearer genotype–phenotype correlation. We have proposed a genetic analysis
procedure in the form of a schematic diagram to obtain clearer genotype–phenotype
correlation in future (Figure 4).

Genes 2022, 13, x FOR PEER REVIEW 9 of 16 
 

 

Splice donor site c.781+1G>A - NC_000002.12 
NM_000523.3 

Heterozygous SPD1 [93] 

Missense c.950A>G p.Q317R NM_000523.3 Heterozygous SD5 [27] 

7. Diagnosis and Surgical Treatment of Syndactyly  
SD is basically a limb malformation that belongs to congenital anomalies affecting 

bone or skeletal structure or function. It is caused when the digits of the fetus in the womb 
do not separate successfully, resulting in a webbed hand or feet. As an apparent deformity 
of the hands and feet, the characteristic is so obvious that it attracts instant attention or 
concern soon after birth, especially when it occurs in the hands. SD can be managed using 
different diagnostic tools, plus a genetic background of the patient’s family history and 
clinical data regarding deformities in affected family members. Genetic screening of the 
affected person and affected family members can easily reveal information about the 
genetic background, which can make it easy for a clinician to diagnose the deformity. 
Furthermore, other tools, such as X-rays and ultrasound, can also make the deformity 
clearer to the clinician and, therefore, more easily diagnosed. In the presence of all this 
information, a clinician will be able to diagnose the problem immediately and perform 
treatment effectively and efficiently [80,94]. Furthermore, after successfully diagnosing 
the deformity, genetic analysis of the patient and his family members will be helpful in 
establishing a clearer genotype–phenotype correlation. We have proposed a genetic 
analysis procedure in the form of a schematic diagram to obtain clearer genotype–
phenotype correlation in future (Figure 4). 

 
Figure 4. Genetic analysis procedure to attain a clearer genotype-phenotype correlation in all types 
of syndactyly. 

The most important aim and objective of surgical treatment for SD is to minimize 
possible complications, reinstate the space between the digits, and detach the limbs by 
using minimal medical techniques and avoiding problems that are likely to happen, such 
as recurrence and post-surgery complications, until a useful hand is obtained [95]. Skin 

Figure 4. Genetic analysis procedure to attain a clearer genotype-phenotype correlation in all types
of syndactyly.

The most important aim and objective of surgical treatment for SD is to minimize
possible complications, reinstate the space between the digits, and detach the limbs by
using minimal medical techniques and avoiding problems that are likely to happen, such
as recurrence and post-surgery complications, until a useful hand is obtained [95]. Skin
implantation, open treatment, and the zigzag method of surgery techniques are usually
conducted in corrective SD patient surgeries. Surgical outcomes in SD are more positive in
simple-type SD compared to complex-type SD. In the United States, a recent study reported
that the occurrence of SD is roughly 7 for every 10,000 babies born and that almost every
affected child receives surgery before reaching two years of age. The study also pointed
out that there may be some genuine problems in getting immediate health care, which
includes accessibility to specialized surgeons for correcting limb deformity, failure to get to
well-equipped hospitals, especially for people living in remote areas, and poor financial
status [96].
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The most significant and simple way to eliminate the deformity is early treatment
of new-borns by surgery. For new-borns with simple SD, the best age to receive surgery
ranges from 6 to 18 months old, whereas in case of complex syndactyly, surgery should be
performed prior to 6 months of age [95]. It is very difficult to predict the effectiveness of the
surgery because of the tremendous variety and phenotypic range of SD types. The simpler
the SD, the higher the chance of achieving useful and fully recovered hand movement [97].
In case of simple SD, corrective and operational outcomes are typically excellent, with
fewer chances of recurrence or the possibility of re-arising hand-related problems, whereas
in case of complex SD, the chances of post-surgery complications are higher and involve
difficulty in normal hand movement and nail deformities [23,97,98]. Complex-SD patients
who have received surgery always require revisiting the clinician or surgeon to diagnose
post-operative complications.

Surgeons specializing in pediatrics often admit children with rare limb deformities.
Closely associated deformities and syndromes should be always taken into consideration,
because if not diagnosed accurately, surgery in that case can lead the patient into a worsen
situation [99]. The main principle of the surgical treatment of SD and other associated
limb deformities is to gain functional and useful limbs with less chance of recurrence. Skin
grafts are the operational procedures most commonly used for corrective purposes in limbs
affected with SD [100], although open-treatment methods for SD avoid leftover postop-
erative marks on the skin and are comparatively useful, with the best end results [101].
Several modern surgical techniques have been successfully practiced in the clinics with the
aim of achieving useful limbs with no post-operative scars, smooth mobility of the digits,
and fewer chances of recurrence. The free skin graft (full-thickness) surgical technique
produces the best results when practiced in combination with the Z-method of incision,
which can successfully diminish the scars usually obtained at the end of surgery and, as a
result, can attain fully functional and useful limbs [102]. Recently, a technique called the
improved flap technique was successfully implemented and involves the use of skin grafts
with full thickness and different types of flaps to provide sufficient soft tissue cover. The
results involved no post-operative complications, provided full recovery of the affected
hand, and no discomfort to the child who received surgery [103]. Furthermore, the use of
a dermal fat graft surgical technique specifically intended for treating the complex type
of SD has recently been introduced [104]. In recent years, the use of abdominal flaps for
complex SD release has also proved to be successful [105]. The part of the donor skin
used for the corrective surgery of simple or complicated SD must have the features of both
dorsal and palm skin as it can leave post-operative skin flaws in the digits, which can
eventually affect mobility. Recently, it has been demonstrated that for the surgical purposes
of SD, a gradation skin graft is far better cosmetically, compared to skin grafts from the
sub-malleolar part, as it has been used traditionally; however, proper alignment with other
parts is critical [106].

In case of the treatment of webbed toes in SD, it is slightly more complicated to perform
surgery in children because of its high recurrence rate and post-surgery complications,
especially in those children who are older than 24 months (the younger the age of the child
at the time of surgery, lower the risk of recurrence) [107]. Recently, it has been demonstrated
that the most effective surgical procedure suitable for both simple and complex SD involves
the interdigitating of rectangular flaps because of its simple design, flexibility in alteration
during surgery, and inclusive flap tips [108]. Another study suggested that the dorsal
hexagon flap can be a useful substitute technique in treating syndactyly [109]. Furthermore,
for skin grafting in which the donor site of the patient also gets disturbed, dorsal rectangular
flaps can be very useful, with appealing results for the patient [110]. Based on the condition
of the deformity, an individualized treatment plan should be made that can better restore the
shape and function of the thumb, especially in SD5 [111]. Moreover, the use of methotrexate
can reduce keloid formation just after the dissection of the webbed digits [112].

Post-operative check-ups of the patients should be frequently arranged prior to com-
plete recovery to avoid any difficulties due to surgery [95]. Overall, treatment and surgery
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for SD are carried out by surgeons of other specialties, which shows that SD treatment is a
harmless and effective process with few postoperative complications, but it does need to
be followed up by clinicians to ensure fully recovered limbs [113].

8. Future Perspectives

Due to modern techniques, more of the genetic factors behind SD are being revealed
as research proceeds on inborn limb deformities. It is, therefore, of considerable importance
to further elucidate the genetic etiologic factors that contribute to the differential phenotype
and incomplete penetrance of all types of non-syndromic SD. Next-generation sequencing
can play a crucial role in identifying new pathogenic genes and provide a better under-
standing of this deformity in the future [114]. More in vitro and in vivo studies should be
conducted to investigate the interaction of HOXD13 with other closely related genes that
are involved in limb deformities. A stronger phenotype–genotype correlation needs to be
established using the modern technologies of genetic engineering and biotechnology to
investigate the factors involved in causing differential phenotype of SD.
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