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ABSTRACT Eremophilanes are a large group of “sesquiterpenes” produced by plants
and fungi, with more than 180 compounds being known in fungi alone. Many of
these compounds are phytotoxic, antimicrobial, anticancer and immunomodulators,
and hence are of great economic values. Acremeremophilanes A to O have earlier
been reported in a marine isolate of Acremonium sp. We report here the presence of
Acremeremophilane I, G, K, N, and O, in a plant beneficial fungus Trichoderma virens,
in a strain-specific manner. We also describe a novel, P strain-specific polyketide syn-
thase (PKS) gene cluster in T. virens. This gene cluster, designated amm cluster, is
absent in the genome of a Q strain of T. virens, and in other Trichoderma spp.; instead,
a near identical cluster is present in the genome of the toxic mold Stachybotrys charta-
rum. Using gene knockout, we provide evidence that acremeremophilanes are biosyn-
thesized via a polyketide route, and not via the mevalonate/terpene synthesis route as
believed. We propose here that the 10-carbon skeleton is a product of polyketide syn-
thase, to which a five-carbon isoprene unit is added by a prenyl transferase (PT), a
gene for which is present next to the PKS gene in the genome. Based on this evi-
dence, we propose that at least some of the eremophilanes classified in literature as
sesquiterpenes (catalyzed by terpene cyclase) are actually meroterpenes (catalyzed by
PKSs and PTs), and that the core moiety is not a sesquiterpene, but a hybrid polyke-
tide/isoprene unit.

IMPORTANCE The article contradicts the established fact that acremeremophilane metabo-
lites produced by fungi are sesquiterpenes; instead, our findings suggest that at least some
of these well-studied metabolites are of polyketide origin. Acremeremophilane metabolites
are of medicinal significance, and the present findings have implications for the metabolic
engineering of these metabolites and also their overproduction in microbial cell factories.

KEYWORDS Trichoderma, secondary metabolism, acremeremophilane, gene cluster,
biosynthesis, Stachybotrys

The filamentous fungi Trichoderma spp. are widely used in agriculture as plant growth
promoters and biofungicides (1–4). Plant beneficial effects of these microbes have

been attributed to their ability to kill/inhibit other fungi, to boost plant immunity, and to
the production of a large array of secondary (specialized) metabolites (5–10). About 400
small molecule secondary metabolites (mainly nonribosomal peptides, polyketides, and
terpenes) have been reported from Trichoderma spp., in addition to more than 1000
peptaibols (5, 7). Trichoderma virens is one of the most researched species for genetics,
genomics, and development of commercial formulations (11–13). Interestingly, T. virens
population exist as two strains, classified based on their ability to produce secondary
metabolites (14). The P strains produce gliovirin, while the Q strains produce gliotoxin
(both nonribosomal peptides). Both P and Q strains produce viridin, viridiol (steroids),
heptelidic acid (sesquiterpene), and several volatile sesquiterpene metabolites (14–17).
The biosynthesis gene clusters for all these metabolites have been revealed by genome
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analysis and gene deletion experiments (18–21). As with other fungi, the Trichoderma ge-
nome analysis revealed that the biosynthesis potential far exceeds that of the metabolites
reported, as most gene clusters are silent under standard laboratory cultivation conditions
(5, 8). The genome of T. virens Q strain (Gv29-8) was already available in the database (22).
We earlier sequenced the genome of a P strain, i.e., IMI 304061 (19). Comparing these two
genome sequences, we found a PKS cluster that is unique to P strain, and has similarity
with a gene cluster from Stachybotrys chartarum, rather than with any other Trichoderma
spp. In parallel, a chemical analysis by LC-MS/MS of the culture filtrate of the P strain
revealed the presence of five acremeremophilane compounds, which were not detected
in a Q strain analyzed earlier (PK Mukherjee, unpublished). We thus put forward a hypothe-
sis that this unique PKS cluster may code for acremeremophilanes, which we proceeded
to test by gene deletion experiment. Interestingly, in a transcriptome analysis, some mem-
bers of this gene cluster were upregulated in a radiation-induced mutant (G2) of T. virens
that produced larger amounts of secondary metabolites and downregulated in another
radiation induced mutant (M7) that produced no detectable amounts of secondary metab-
olites (12, 13). We used the secondary metabolites overproducing mutant (G2) as a genetic
tool for this study. Using gene knockout, we proved here that the PKS gene cluster is re-
sponsible for the biosynthesis of acremeremophilane metabolites ascertaining the polyke-
tide origin of a large group of natural products that are being continuously discovered in
fungi, especially from deep sea sediments and inside plants, and might be getting errone-
ously reported as sesquiterpenes.

RESULTS
The strain-specific PKS gene cluster. Using a comparative genome analysis of the

P versus Q genome, we identified a unique polyketide synthase gene in the P strain.
Domain search by Pfam revealed it to be a highly reducing polyketide synthase (HRPKS)
gene with a ketoreductase domain (Fig. 1A). The domain organization of this protein is
similar to one HRPKS gene from T. virens Gv29-8 responsible for the biosynthesis of the
salicylaldehyde metabolites (23). The gene cluster (designated amm cluster) is com-
prised of 9 other genes that include a prenyl transferase, two oxidoreductases, two cyto-
chrome P450s, a hydrolase, an O-acyl transferase, and an MFS transporter (Fig. 1B).
Intriguingly, the gene cluster is identical to a PKS gene cluster from Stachybotrys charta-
rum IBT 7711 and similar to the one from S. chartarum IBT 40293; the latter lacking
amm6 and amm7 genes (Fig. 1B). All the genes (amm1- amm10) in T. virens amm cluster
are highly homologous ($70%) to the genes from S. chartarum (Table 1; Fig. S1). The
T. virens cluster is distributed along two scaffolds (Scaffold 1 and 87), similar to that in
S. chartarum IBT7711. However, the cluster in S. chartarum IBT 40293 is located on single
scaffold.

Deletion of the PKS gene abolishes biosynthesis of acremeremophilanes. Using
split-marker based homologous recombination (Fig. 2), we obtained five stable puta-
tive mutants which were screened for locus-specific homologous recombinants using
primer pairs Amm1OutF and PTrpCR (one upstream of the left flank and other from the
hygromycin resistance cassette, hygR) and TTrpCF and Amm1OutR (one from hygR cas-
sette and another from downstream of the right flank), as well as presence or absence
of the wild-type gene by gene specific primers (Amm1ORFF and Amm1ORFR). Based
on the stability and absence of wild type allele, we finally selected two gene deletion
mutants (Damm1-6 and Damm1-7) (Fig. 2B). On agar medium, the mutants were fast
growing compared to the parental strain G2, with about 18% higher radial growth
(Fig. 3). We analyzed the metabolite extract by high resolution accurate mass analysis.
The acremeremophilanes G, I, K, N, and O were detected, identified and confirmed in G2
while they were found to be absent in the two independent mutants (Fig. 4, Fig. S2-S5).

Proposed biosynthesis pathway. Taking cue from Matsuda et al. (24) on biosyn-
thesis of the meroterpene anditomin in Aspergillus variecolor, we propose a novel path-
way for the biosynthesis of acremeremophilane metabolites (Fig. 5). The HRPKS
enzyme assembles the 10-carbon compound by using one molecule of acetyl-CoA and
two molecules of isobutyryl CoA, which is reduced and cyclized by the same enzyme.
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The attachment of an isoprene unit is accomplished by AMM2, the prenyl transferase
located next to the PKS gene in the cluster. The cyclization of the terpene moiety is
proposed to be performed by one of the two cytochrome P450s (AMM5 or AMM8),
leading to the bicyclic scaffold which undergoes oxidative rearrangements to provide
a common intermediate for both the bicyclic and tricyclic products. This precursor
undergoes oxidation/reduction to produce acremeremophilane I and G. Acetylation
(accomplished by an O-acyl transferase located in the cluster) of acremeremophilane I,

TABLE 1 Orthology of the amm cluster genes

Gene no. in
the cluster

cDNA no. in
the assembly Putative function/domain

Top BLAST hits
Organism/Acc. No./% Identity/E value

amm1 CDS1812 Polyketide synthase Stachybotrys chartarum IBT 40293/KFA45404.1/82.96/0.0
Stachybotrys chartarum IBT 7711/KEY74888.1/81.79/0.0

amm2 CDS1811 Prenyl transferase Stachybotrys chartarum IBT 7711/KEY74889.1/84.47/0.0
amm3 CDS1810 FAD/FMN-containing dehydrogenase Stachybotrys chartarum IBT 7711/KEY73630.1/71.4/0.0
amm4 CDS13310D RmlC-like cupin Stachybotrys chartarum IBT 40288/KFA74226.1/86.76/2e-174

Stachybotrys chartarum IBT 40293/KFA45405.1/80.51/3e-157
Stachybotrys chartarum IBT 7711/KEY73629.1/77.21/3e-149

amm5 CDS13310C Cytochrome P450 Stachybotrys chartarum IBT 7711/KEY73628.1/84.02/0.0
Stachybotrys chartarum IBT 40293/KFA45406.1/83.24/0.0
Stachybotrys chartarum IBT 40288/KFA80927.1/84.30/0.0

amm6 CDS13310B Metallo-dependent hydrolase Stachybotrys chartarum IBT 7711/KEY73627.1/83.01/6e-174
Stachybotrys chartarum IBT 40288/KFA80926.1/82.03/1e-164

amm7 CDS13310A O-acyl transferase Stachybotrys chartarum IBT 7711/KEY73623.1/81.64/1e-118
Stachybotrys chartarum IBT 40293/KFA53562.1/81.22/1e-122

amm8 CDS13309 Cytochrome P450 Stachybotrys chartarum IBT 40288/KFA80928.1/91.59/0.0
Stachybotrys chartarum IBT 40293/KFA45408.1/90.64/0.0
Stachybotrys chartarum IBT 7711/KEY73624.1/88.57/0.0

amm9 CDS13308 Rossmann fold NAD(P)1 binding
dehydrogenase

Stachybotrys chartarum IBT 7711/KEY73625.1/69.68/1e-150
Stachybotrys chartarum IBT 40293/KFA45409.1/63.37/9e-126

amm10 CDS13307 MFS transporter Stachybotrys chartarum IBT 40293/KFA45407.1/72.84/0.0
Stachybotrys chartarum IBT 40288/KFA80926.1/72.84/0.0
Stachybotrys chartarum IBT 7711/KEY73626.1/68.71/0.0

FIG 1 The polyketide synthase (PKS) and the gene cluster. (A) The domain organization of the Trichoderma virens highly reducing polyketide synthase
AMM1. (B) The amm gene cluster in T. virens (Tv) IMI304061, Stachybotrys chartarum (Sc) IBT7711 and IBT40293. 1: Polyketide synthase, 2. Prenyl transferase, 3.
FAD/FMN-containing dehydrogenase, 4. RmlC-like cupin, 5. Cytochrome P450, 6. Metallo-dependent hydrolase, 7. O-acyl transferase, 8. Cytochrome P450, 9.
Rossmann fold NAD(P)1 binding dehydrogenase, 10. MFS transporter. PS-DH: Polyketide synthase-dehydratase; KR: Ketoreductase; PP: Phosphopantetheine
attachment site.
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followed by a reductive reaction leads to acremeremophilane K. Lactonization, accom-
plished by the hydrolase (AMM6) leads to biosynthesis of precursor for tricyclic compounds.
Oxidation/reduction and acetylation results in the formation of acremeremophilane N,
which undergoes acetate removal and reduction to form acremeremophilane O. Once pro-
duced, these metabolites are transported outside the cell by the MFS transporter AMM10,
present in the same biosynthesis gene cluster.

DISCUSSION

Microbial natural products have immense impact in human welfare, especially in
the health and agriculture sectors. Correct classification of such products is of utmost
importance as this information is required for ease of chemical synthesis and discovery
of pathways and enzymes involved, which is again important if one has to perform
experiments for rational drug designing, pathway engineering, and overexpression of
genes for such metabolites.

Eremophilanes, discovered nearly 90 years ago, are a large group of clinically signifi-
cant natural products mainly produced by plants and fungi (25). The eremophilanes

FIG 2 Strategy for gene deletion in Trichoderma virens using homologous recombination (A) and Confirmation of homologous recombination and gene
deletion in amm1 knockout mutants (B). Transformant numbers 6 and 7 were selected for further analysis.
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are described as sesquiterpenes, synthesized by cyclization of farnesyl pyrophosphate
by terpene cyclases. Our study shows that a group of these metabolites have been
wrongfully classified, perhaps due to the absence of information on genetics and bio-
chemical pathways. Using a radiation-induced, secondary metabolite overproducing
mutant, and gene knockout, backed by strong bioinformatics and genome mining,
coupled with high resolution accurate mass analysis, we provide evidence that the tri-
cyclic eremophilanes like acremeremophilane I, G, K, N, and O are synthesized by a
highly reducing polyketide synthase, and not by a terpene cyclase. This HRPKS gene
cluster also has a prenyl transferase, and the cluster is absent in Gv29-8 genome.

The basic 10-carbon skeleton is somewhat similar to 3,5–dimethylorsellinic acid (DMOA),
a precursor for anditomin biosynthesis in Aspergillus variecolor (24). Anditomin is a meroter-
pene which is produced by fusion of a farnesyl moiety to DMOA, followed by other
modifications (in case of acremeremophilanes, an isoprene unit is added to the polyketide
skeleton- this study). Several genes in the amm cluster and the and cluster are also func-
tionally similar. However, the PKS in and cluster is a nonreducing one while in the amm
cluster, it is a highly reducing PKS. The cyclization of the terpene moiety is catalyzed by a
terpene cyclase in case of anditomin biosynthesis, while in case of acremeremophilanes
biosynthesis in T. virens, this is most likely accomplished by a cytochrome P450, similar to
viridicatumtoxin biosynthesis in Penicillium aethiopium as described by Chooi et al. (26).
Oxidative rearrangements are accomplished by oxidoreductases and lactonization by hy-
drolases, in case of both, the anditomin and acremeremophilanes biosynthesis. A major dif-
ference is the use of precursors- in case of anditomin, it’s malonyl CoA, while it’s isobutyryl
CoA in case of acremeremophilanes (both these pathways use acetyl-CoA as a starter unit).
Isobutyryl CoA as the substrates for PKS is known for other metabolites (27, 28).

FIG 3 Growth characteristics of Trichoderma virens G2 and two independent knockout mutants. (A) 2 days after inoculation and (B) 7 days after inoculation.
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First reported in 1932 by Bradfield et al. (29), eremophilane “sesquiterpenes” continue
to be a major class of plant and fungal natural products, with more than 180 compounds
discovered in fungi alone (25, 30). Many of these are bioactive and hence have attracted
attention as antimicrobial, anticancer, immunomodulatory, and phytotoxic compounds.
Despite their abundance, the genetic basis and biosynthesis routes for most of such
compounds are unknown. It is documented that the 15-carbon bicyclic eremophilane
backbone is a sesquiterpene (25). Tricyclic acremeremophilane-like metabolites are also
abundant in nature. For example, berkleasmins C,D,E from Berkleasmius nigroapicale (31),
acremeremophilanes L,M,O from Acremonium sp. (32), eutymeremophilane A from
Eutypella sp. (33), rhizoperemophilanes K and L from Rhizopycnis vagum (31), and similar
metabolites from Xylaria sp. (34) and Glomerella cingulata (35). However, the genetics
and biosynthesis route for the tricyclic eremophilanes have not been worked out even
though it was hypothesized that such compounds are derived from eremophilane back-
bone (31). Due to this reason, these metabolites, being continuously discovered in fungi
from deep sea sediments and endophytic fungi, are being reported as sesquiterpenes,
which, according to our findings, should be described as meroterpenes (hybrid of poly-
ketide and terpene).

FIG 4 Detection of Acremeremophilane G. (A) Overlaid extracted ion chromatograms depicting the detection of Acremeremophilane G in Trichoderma
virens G2 and its absence in knockout mutants, and (B) Spectral identification to confirm the detection using high resolution accurate mass analysis.
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The present finding is important on several counts: (i) This is the first report of exis-
tence of eremophilane compounds in the plant beneficial fungus Trichoderma. (ii) The
compounds are synthesized only by P strain of T. virens encoded by a strain-specific
gene cluster. (iii) Identical gene cluster is present in the toxic mold S. chartarum, but
absent in other Trichoderma spp., including a Q strain of T. virens. (iv) A biosynthesis
pathway is proposed for the polyketide route of biosynthesis for these compounds
described in literature as sesquiterpenes, necessitating the reclassification of a large
number of natural products.

It would be interesting to see what metabolite is coded by the same cluster in
S. chartarum, as the genome is rich in secondary metabolism gene clusters and the
mold produces several meroterpenes (36, 37).

Conclusion. Using a combination of bioinformatics, genome analysis, gene deletion
experiments, and high-resolution accurate mass analysis, we provide evidence that the
acremeremophilanes in T. virens are synthesized via a polyketide route, and not by ter-
pene cyclase, as is widely believed. These metabolites thus need to be reclassified as
meroterpenes and not sesquiterpenes. The current findings would have implications in
the discovery and deployment of these medicinally important compounds.

MATERIALS ANDMETHODS
Fungal strain and growth conditions. We used a gamma ray induced mutant (G2) of T. virens for

gene deletion experiment, as this strain overproduces secondary metabolites and also is upregulated in
some of the genes present in the PKS gene cluster under study (12). The fungus was cultivated routinely
on potato dextrose medium (PDB or PDA, when agar was used) or Vogel’s minimal salt medium with
1.5% glucose (VMG). The strain was maintained at280C for long term storage.

Identification of the gene cluster and its homology. The gene cluster was identified by comparison
of the genome of two strains of T. virens- the Q strain Gv29-8 (https://mycocosm.jgi.doe.gov/TriviGv29_8
_2/TriviGv29_8_2.info.html; 22) and the P strain IMI 304061 (accession number LQCH01000000; 19). The
Stachybotrys cluster was identified by homology search from the sequences available in the database (36).

FIG 5 The proposed biosynthesis pathway of acremeremophilanes, catalyzed by the enzymes coded by the genes present in the amm gene cluster. The
highlighted compounds were detected in Trichoderma virens G2 and not in the amm1 deletion mutants.
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Gene deletion experiment and characterization of the mutants. For deletion of the PKS gene in
T. virens G2, a modified split marker protocol was followed (16). Briefly, the 59 flank was amplified with
the primer pair Amm1FKpnI (all oligonucleotide primer sequences are listed in Table S1) and
Amm1RXhoI with KpnI and XhoI enzyme sites integrated in the sequence, and the 39 flank was amplified
with the primer pair Amm1FXbaI and Amm1FSacI with XbaI and SacI enzyme sites integrated. The flanks
generated were ligated to pATBS (a plasmid harboring the hygromycin resistance cassette) linearized
with the respective enzyme pairs. This placed the left flank above the hyg cassette and right flank under
the hyg cassette in two separate plasmids. The flanks with part of the hyg cassette were generated with
Amm1FKpnI and NLC37 for left flank and NLC38 and Amm1RSacI for right flank. Protoplasts were gener-
ated from T. virens G2 germinated conidia and transformed with these two constructs added in equimo-
lar ratio (16). The plates were incubated for 1 day and overlaid with 1% water-agar amended with
600 ppm hygromycin B (final concentration 200 ppm). The colonies that appeared two-3 days after the
hyg overlay were picked-up, transferred to fresh PDA plates with 100 ppm hyg, purified three times by
single spore isolation and then subjected to molecular analysis to select the gene deletion mutants
based on the absence of the wild type band. The deletion mutants were phenotyped for growth charac-
teristics and production of metabolites. All the experiments were performed in three replicates and
repeated at least twice.

Extraction and analysis of the filtrates. T. virens G2 and the knockout mutants were grown in VMG
medium with shaking at 28 C for 4 days before solvent extraction of the metabolites (Bansal et al. 2021).
After drying in vacuo, the samples were reconstituted in methanol:water (1:1) and analyzed by high reso-
lution LC-MS/MS as described before (21). Briefly, the analysis was performed in an Acquity Ultra
Performance Liquid Chromatograph (UPLC), coupled with a QToF-MS (Synapt G2 HDMS, Waters
Corporation, Manchester, UK). Ionization was performed with electrospray ionization (ESI) in positive po-
larity at the mass resolution of 20,000. MassLynx 4.1 software was used to control the QToF and the data
were acquired in full scan MSe mode at low energy at 4 V followed by high energy ramping at 10 to 60
V. For chromatographic separation of metabolites, an Acquity UPLC HSS T3 column (2.1 � 100 mm,
1.8 mm, Waters India Pvt. Ltd., Bengaluru) was used, with the following source parameters: capillary 1 kV,
sampling cone 10 V, source temperature 120°C, desolvation temperature 500°C, desolvation gas flow
1000 L/h, and cone gas flow 50 L/h. Mobile phase A was methanol:water (10:90, vol/vol) and phase B
was methanol:water (90:10, vol/vol) with 0.1% formic acid, in both phases. The analysis was performed
in three replicates and repeated twice.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.8 MB.
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