1	Human Plasma Proteomic Profile of Clonal Hematopoiesis
2	Zhi Yu ^{1,2} , Amélie Vromman ³ , Ngoc Quynh H. Nguyen ^{4,5} , Art Schuermans ^{1,2} , Thiago Rentz ³ ,
3	Shamsudheen K. Vellarikkal ³ , Md Mesbah Uddin ^{1,2} , Abhishek Niroula ^{1,6,7} , Gabriel Griffin ^{1,8,9} ,
4	Michael C. Honigberg ^{1,2,10} , Amy E. Lin ^{1,3,6} , Christopher J. Gibson ^{1,6} , Daniel H. Katz ^{11,12} , Usman
5	Tahir ^{10,11} , Shi Fang ³ , Sara Haidermota ^{1,2} , Shriienidhie Ganesh ^{1,2} , Tajmara Antoine ^{1,2} , Joshua
6	Weinstock ^{13,14} , Thomas R. Austin ^{15,16} , Vasan S. Ramachandran ^{17,18} , Gina M. Peloso ¹⁹ , Whitney
7	Hornsby ^{1,2} , Peter Ganz ²⁰ , JoAnn E. Manson ^{21,22} , Bernhard Haring ^{23,24} , Charles L. Kooperberg ²⁵ ,
8	Alexander P. Reiner ^{25,26} , Joshua C. Bis ^{14,27} , Bruce M. Psaty ^{15,16,26,27} , Yuan-I Min ²⁸ , Adolfo
9	Correa ²⁸ , Leslie A. Lange ²⁹ , Wendy S. Post ³⁰ , Jerome I. Rotter ³¹ , Stephen S. Rich ³² , James G.
10	Wilson ¹¹ , Benjamin L. Ebert ^{1,6,10} , Bing Yu ^{4,5} , Christie M. Ballantyne ³³ , Josef Coresh ³⁴ , Vijay G
11	Sankaran ^{1,35,36,37} , Alexander G. Bick ³⁸ , Siddhartha Jaiswal ³⁹ , Robert E. Gerszten ^{10,11} , NHLBI
12	Trans-Omics for Precision Medicine, Peter Libby* ³ , Rajat M Gupta* ³ , Pradeep Natarajan* ^{1,2,10}
13	*Indicate co-senior authorship
14	
15	1. Broad Institute of MIT and Harvard, Cambridge, MA, USA
16	2. Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General
17	Hospital, Boston, MA, USA
18	3. Cardiovascular Division, Brigham and Women's Hospital Heart & Vascular Center, Boston,
19	MA, USA
20	4. Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public
21	Health, University of Texas Health Science Center at Houston, Houston, TX, USA

22	5. Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental
23	Sciences, School of Public Health, The University of Texas Health Science Center at Houston,
24	Houston, TX, USA
25	6. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
26	7. Department of Laboratory Medicine, Lund University, Lund, Sweden
27	8. Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
28	9. Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
29	10. Department of Medicine, Harvard Medical School, Boston, MA, USA
30	11. Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA,
31	USA
32	12. Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
33	13. Department of Genetics, Stanford University, Stanford, CA, USA
34	14. Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
35	15. Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
36	16. Department of Epidemiology, University of Washington, Seattle, WA, USA
37	17. Department of Medicine, School of Medicine, Boston University, Boston, MA, USA
38	18. Framingham Heart Study, Framingham, MA, USA
39	19. Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
40	20. Division of Cardiology, Zuckerberg San Francisco General Hospital and Department of
41	Medicine, University of California, San Francisco, CA, USA
42	21. Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,
43	USA

- 44 22. Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital
- 45 and Harvard Medical School, Boston, MA, USA
- 46 23. Department of Medicine III, Saarland University Hospital, Homburg, Germany
- 47 24. Department of Epidemiology & Population Health, Albert Einstein College of Medicine,
- 48 Bronx, NY, USA
- 49 25. Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA,
- 50 USA
- 51 26. Department of Health Systems and Population Health, University of Washington, Seattle,
- 52 WA, USA
- 53 27. Department of Medicine, University of Washington, Seattle, WA, USA
- 54 28. Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- 55 29. Department of Medicine, Division of Biomedical Informatics and Personalized Medicine,
- 56 University of Colorado Anschutz Medical Campus, Denver, CO, USA
- 57 30. Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD,
- 58 USA
- 59 31. The Institute for Translational Genomics and Population Sciences, Department of Pediatrics,
- 60 The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance,
- 61 CA, USA
- 62 32. Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- 63 33. Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- 64 34. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore,
- 65 MD, USA

- 66 35. Division of Hematology and Oncology, Boston Children's Hospital, Harvard Medical School,
- 67 Boston, MA, USA
- 68 36. Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School,
- 69 Boston, MA, USA
- 70 37. Harvard Stem Cell Institute, Cambridge, MA, USA
- 71 38. Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- 39. Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine,
- 73 Stanford University School of Medicine, Stanford, CA, USA
- 74
- 75 Please address correspondence to:
- 76 Pradeep Natarajan, MD MMSc
- 77 185 Cambridge Street, CPZN 3.184, Boston, MA 02114
- 78 617-726-1843
- 79 pnatarajan@mgh.harvard.edu

80 Abstract

Plasma proteomic profiles associated with subclinical somatic mutations in blood cells may offer 81 82 novel insights into downstream clinical consequences. Here, we explore such patterns in clonal 83 hematopoiesis of indeterminate potential (CHIP), which is linked to several cancer and noncancer outcomes, including coronary artery disease (CAD). Among 61,833 ancestrally diverse 84 participants (3,881 with CHIP) from NHLBI TOPMed and UK Biobank with blood-based DNA 85 sequencing and proteomic measurements (1,148 proteins by SomaScan in TOPMed and 2,917 86 87 proteins by Olink in UK Biobank), we identified 32 and 345 unique proteins from TOPMed and UK Biobank, respectively, associated with the most prevalent driver genes (DNMT3A, TET2, and 88 89 ASXL1). These associations showed substantial heterogeneity by driver genes, sex, and race, and 90 were enriched for immune response and inflammation pathways. Mendelian randomization in humans, coupled with ELISA in hematopoietic *Tet2-/-* vs wild-type mice validation, 91 92 disentangled causal proteomic perturbations from TET2 CHIP. Lastly, we identified plasma proteins shared between CHIP and CAD. 93

95 Introduction

96 Clonal hematopoiesis of indeterminate potential (CHIP) is a common age-related phenomenon
97 defined as the presence of expanded hematopoietic stem cell (HSC) clones caused by
98 acquired leukemogenic mutations (e.g., *DNMT3A*, *TET2*, *ASXL1*, and *JAK2*) in persons without
99 clinical hematologic abnormalities^{1, 2}. CHIP is a pre-cancerous lesion strongly predictive of
100 hematologic malignancy^{3, 4}. In addition, CHIP predisposes an individual to other age-related
101 human diseases, chiefly cardiovascular diseases, in both human genetic and murine experimental
102 studies^{4, 5, 6, 7, 8, 9, 10, 11, 12}.

103 Characterizing the consequences of CHIP mutations on the plasma proteome may 104 facilitate an improved understanding of how CHIP influences clinical outcomes. Recent studies 105 have associated CHIP with germline DNA variation^{13, 14, 15}, bulk RNA transcript 106 concentrations^{16, 17}, and epigenomic profiles^{18, 19} for such insights. While proteins represent key 107 downstream effector gene products, their associations with CHIP remain largely unknown. The 108 circulating proteins are involved in numerous biological processes; surveying the proteome 109 might offer new insights into CHIP and its mechanistic link to disease phenotypes²⁰.

Leveraging paired DNA sequencing and proteomic profiling from multi-ancestry 110 participants of four Trans-Omics for Precision Medicine (TOPMed) cohorts (N=12,911) and UK 111 Biobank (UKB; N = 48.922), we explored the proteomic signatures of CHIP and its most 112 common or most disease-promoting driver genes (DNMT3A, TET2, ASXL1, and JAK2). We 113 114 prioritized potentially causal relationships with Mendelian randomization and validated this 115 approach with ELISA studies in murine models. Lastly, we explored the functional implications of CHIP-associated proteins through pathway analyses and by examining the 116 117 shared and non-shared pathways between CHIP and CAD (Figure 1).

118

119 Results

120 CHIP and Proteomics Characterization in Participants Across Multiple Cohorts

- 121 Our study population comprised 61,833 participants with CHIP genotyping from deep-coverage
- 122 whole genome or exome sequencing of blood DNA and concurrent plasma proteomics data from
- four TOPMed cohorts (N=12,911), utilizing SomaScan assay for proteomics measurements^{13, 21},
- ²², and UK Biobank (N=48,922), whose proteomics were measured through Olink^{23, 24}. The four
- 125 TOPMed cohorts are the Jackson Heart Study (JHS; N=2,058)²⁵, Multi-Ethnic Study of
- 126 Atherosclerosis (MESA; N=976)²⁶, Cardiovascular Health Study (CHS; N=1,689)^{27, 28}, and
- 127 Atherosclerosis Risk in Communities (ARIC; N=8,188) Study²⁹.
- 128 Overviews of the study cohorts are described in detail in **Methods**. In the samples
- 129 obtained from the five cohorts, 3,881 (6.0%) individuals were identified as having CHIP.
- 130 Consistent with previous reports^{13, 30}, CHIP was robustly associated with age. Across all cohorts,
- approximately 90% of individuals with CHIP driver mutations had only one identified mutation.
- 132 The most commonly mutated driver genes, *DNMT3A*, *TET2*, and *ASXL1*, accounted for >75% of
- 133 individuals with CHIP mutations. The variant allele fraction (VAF) distributions of mutations in
- each driver mutation were relatively consistent across participating cohorts (Figure 2,
- 135 Supplemental Tables 1-2).

136

137 Diverse Proteomic Associations Across CHIP Driver Genes

138 CHIP was modeled both as a composite and separately for the most common or pathogenic
139 drivers (*DNMT3A*, *TET2*, *ASXL1*, and *JAK2*) and defined both using the conventional thresholds

140	for all mutations (VAF \geq 2%) and for the expanded (large) clones (VAF \geq 10%) ¹ , resulting in ten
141	CHIP exposure variables. As SomaScan and Olink had a relatively small overlap of proteins
142	included in their panels with variable correlations between the overlapped proteins, we
143	conducted separate analyses in parallel. For TOPMed cohorts that used SomaScan for
144	proteomics measurements, the cross-sectional associations between CHIP mutations and 1,148
145	plasma proteins present in all cohorts were estimated within each cohort and then meta-analyzed.
146	Consistent with prior modeling of proteomic analyses of ARIC ³¹ , we separated ARIC into two
147	subpopulations: European Ancestry (EA) and African Ancestry (AA). For UK Biobank, which
148	used Olink for proteomics measurements, we examined the cross-sectional associations between
149	CHIP mutations and 2,917 plasma proteins in parallel. JAK2 analyses were only conducted in
150	cohorts with greater than 5 participants with JAK2 mutations, which only retained CHS, ARIC
151	EA, and UK Biobank for these analyses; thus, JAK2 analyses were considered secondary.
152	Since the associations between proteins and all CHIP mutations (i.e., VAF \geq 2%) are
153	highly correlated to those with their corresponding expanded mutations (i.e., VAF $\geq 10\%$)
154	(Supplemental Table 3), we retained the one with the stronger association (i.e., larger absolute
155	Z score) to maximize power. In SomaScan-based TOPMed cohorts, this led to the identification
156	of 35 significant CHIP variable-protein pairs (false discovery rate [FDR]<0.05, 4,592 testings),
157	representing 32 unique proteins, independent of potential confounders described in detail in
158	Materials and Methods (Figure 3 and Supplemental Table 4). Adding JAK2 increased the
159	number of significant pairs to 107 (Supplemental Figure 1 and Supplementary Table 4). In the
160	Olink-based UK Biobank, 473 CHIP variable-protein pairs (345 unique proteins) passed
161	FDR<0.05 threshold and the number increased to 861 when adding <i>JAK2</i> (Figure 4 ,
162	Supplemental Table 5, Supplemental Figure 2).

163	Consistent with prior work implicating heightened interleukin (IL)-1 β , NOD-, LRR- and
164	pyrin domain-containing protein 3 (NLRP3), IL-6R pathways in CHIP biology ^{9, 13, 16, 17, 32} , the
165	proteins associated with examined CHIP mutations (including JAK2) at FDR=0.05 level were
166	similarly enriched in these inflammatory pathways. For example, TET2 was negatively
167	associated with lipocalin 2 (LCN2), a secreted glycoprotein upregulated by IL-1 β signaling and
168	contributing indirectly to NLRP3 inflammasome activity in both TOPMed cohorts (SomaScan)
169	and UK Biobank (Olink). Significant associations between CHIP variables and interleukin-
170	related proteins involved in the pathways, such as IL-1 receptor type 1 (IL1R1) and type 2
171	(IL1R2), IL10, and IL-18 binding protein (IL18BP), were also observed in either TOPMed
172	cohorts or UK Biobank. In addition, we also observed significant positive associations between
173	CHIP variables and a number of chemokines play a role in immune cell recruitment and
174	activation during inflammation and also contribute to the production and regulation of IL-1 β and
175	IL-6, consistently in both TOPMed cohorts and UK Biobank, such as C-C motif chemokine
176	ligand (CCL) 17, CCL22, CCL28, C-X-C motif chemokine ligand (CXCL) 5, and CXCL11.
177	There were additional significant associations in either study population with other chemokines,
178	such as CXCL9, and tumor necrosis factor superfamily (TNFSF) members, such as TNFSF14
179	(Figure 3-4, Supplemental Figure 1-2, and Supplemental Tabe 4-5).
180	In both TOPMed cohorts and UK Biobank, mutations in individual CHIP genes exhibited
181	distinct proteomic associations. Among the primary CHIP variables, TET2 and ASXL1
182	demonstrated a larger number of associations with plasma proteins compared with the most
183	prevalent driver gene, DNMT3A. TET2 was associated with 16 proteins in TOPMed cohorts and
184	121 proteins in UK Biobank at the FDR<0.05 threshold. ASXL1 was associated with 11 proteins
185	in TOPMed cohorts and 157 proteins in UK Biobank at the FDR<0.05 threshold. In contrast,

DNMT3A was significantly associated with only four and 59 proteins in TOPMed cohorts and 186 187 UK Biobank, respectively, and the associations are generally weaker than those with TET2 and 188 ASXL1. Proteins associated with composite CHIP were typically driven by individual mutant genes. Despite its infrequency and restricted sample size for secondary analysis, JAK2 was 189 associated with more proteins than all primary CHIP mutations examined, with 54 proteins 190 191 associated in TOPMed cohorts and 315 proteins in UK Biobank. Proteins associated with JAK2 also generally differed from other examined driver genes (Figure 3-4, Supplemental Figure 1-2, 192 193 and **Supplemental Tabe 4-5**). In the TOPMed meta-analysis, some CHIP variable-protein 194 associations have heterogeneity across cohorts, and this was mainly observed in the associations between JAK2 and proteins. 195

Proteins associated with different CHIP variables are enriched with different functions. 196 Although the proteins measured by SomaScan and Olink are different, the enriched functions 197 198 showed some convergence. TET2 was associated with proteins predominately involved in 199 immune regulation, as well as extracellular matrix (ECM) remodeling and cell signaling. In 200 TOPMed cohorts, for example, the top two associated proteins, pappalysin-1 (PAPPA) and secreted protein, acidic and rich in cysteine (SPARC), both participate in ECM remodeling^{33, 34,} 201 ^{35, 36, 37, 38, 39}. Detailed protein functions are discussed in the **Supplemental Text**. For participants 202 with TET2 mutations, plasma PAPPA and SPARC levels were 22% and 8.2% lower, respectively, 203 than those without *TET2* mutations (FDR = 4.6×10^{-8} and 3.8×10^{-4} , respectively). We observed 204 significant associations between TET2 CHIP and several proteins related to immune regulation. 205 For example, the third and fifth strongest associated proteins CXCL13 and CCL22 (both positive 206 associations; FDR = 3.8×10^{-4} and 6.7×10^{-3} , respectively) are implicated in regulating IL-1 β and 207 208 IL-6 levels as mentioned above, and a few other proteins are involved in innate immunity, such

as lipocalin-2 (LCN2; negative association; FDR = 1.1×10^{-3} ; heterogeneity p value = 3.2×10^{-5} 209 [suggesting less robust evidence]) and myeloperoxidase (MPO; positive association; FDR = 0.02) 210 (Figure 3 and Supplementary Table 4). In the UK Biobank, notably, LCN2 and SPARC, 211 associated with TET2 in the TOPMed cohorts, show consistent associations in the UK Biobank 212 (FDR = 9.4×10^{-17} and 0.005, respectively). *TET2* is associated with fms-related tyrosine kinase 3 213 214 ligand (FLT3LG), T-cell surface glycoprotein CD1c (CD1C), C-type lectin domain family 4 member C (CLEC4C), and CD209 (FDR = 2.1×10^{-50} , 1.4×10^{-23} , 1.2×10^{-14} , and 1.1×10^{-7} , 215 respectively). These proteins play key roles in the regulation and activation of immune responses. 216 217 TET2 is also associated with tumor necrosis factor receptor superfamily member EDAR (EDAR). epidermal growth factor-like protein 7 (EGFL7), and proheparin-binding EGF-like growth factor 218 (HBEGF) (FDR = 1.5×10^{-8} , 6.2×10^{-7} , and 2.2×10^{-6} , respectively), which are involved in cell 219 220 growth, differentiation, and survival signaling pathways. Additionally, DAG1 and COL4A1 (FDR = 1.2×10^{-14} and 0.001, respectively) are linked to *TET2*, contributing to cell structure 221 222 maintenance and extracellular matrix interactions (Figure 4 and Supplementary Table 5). In addition to immune regulation, ASXL1-associated proteins were enriched in metabolic 223 regulation and cell signaling. For example, carbonic anhydrase 1 (CA1), which is crucial for 224 225 metabolic processes related to pH and ion balance, is the top protein associated with ASXL1 in TOPMed cohorts and also strongly associated with ASXL1 in UK Biobank⁴⁰. In both study 226 227 populations, CA1 is significantly associated with other CHIP variables. In the TOPMed cohorts, CA1 levels are 15.9% (FDR = 2.4×10^{-7}), 8.2% (FDR = 0.01), and 4.3% (FDR = 6.7×10^{-3}) lower 228 among participants with ASXL1, TET2, and composite CHIP, respectively, than those without 229 those mutations. Similarly, in the UK Biobank, CA1 levels are 21.8% (FDR = 2.4×10^{-29}), 12.4% 230 $(FDR = 3.2 \times 10^{-22}), 6.3\%$ $(FDR = 3.2 \times 10^{-25}), and 4.4\%$ $(FDR = 5.7 \times 10^{-6})$ lower among 231

participants with ASXL1, TET2, composite CHIP, and DNMT3A, respectively, than those without 232 those mutations. The top two associated proteins with ASXL1 in UK Biobank are cytochrome B5 233 234 reductase 2 (CYB5R2) and dimethylarginine dimethylaminohydrolase 1 (DDAH1); both are key metabolic enzymes, with the former supporting electron transport and metabolic stability and the 235 latter regulating nitric oxide levels to promote vascular health (both positive associations; FDR =236 2.1×10^{-122} for CYB5R2 and FDR = 6.8×10^{-118}). Other proteins associated with ASXL1 span 237 238 metabolic regulation, immune regulation, and cell signaling. For example, metabolic protein, resistin (RETN)⁴¹, and immune-regulating proteins, EDAR and lymphatic vessel endothelial 239 hyaluronic acid receptor 1 (LYVE1)⁴³, are strongly associated with ASXL1 in both TOPMed 240 cohorts and UK Biobank with consistent directions of effects. And ASXL1, in TOPMed cohorts, 241 is associated with sphingosine kinase 1 (SPHK1), a protein on signaling pathways that regulate 242 cell growth and proliferation⁴², and, in UK Biobank, is also strongly associated with roundabout 243 244 guidance receptor 1 (ROBO1), a neural cell adhesion molecule (Figure 3-4 and Supplementary **Table 4-5**)^{42, 43}. 245

In the secondary analysis, JAK2 is associated with 54 proteins in TOPMed cohorts and 246 316 proteins in UK Biobank that exhibit diverse functions. The top JAK2-associated proteins are 247 248 highly consistent between TOPMed cohorts and UK Biobank: Top associated proteins in both study populations, including P-selectin (SELP) and platelet glycoprotein 1b alpha chain 249 250 (GP1BA), play crucial roles in cell adhesion and platelet function had greater concentrations among those with JAK2^{44, 45} similar to knock-in mice with inducible JAK2^{V617F 13, 46}; additionally, 251 individuals with JAK2 CHIP had reduced erythropoietin (EPO) concentrations in both study 252 populations, which has been observed among individuals with JAK2 myeloproliferative 253 254 neoplasms⁴⁷; other top-associated proteins in both study populations are involved in bone

metabolism and signaling pathway regulation (dickkopf WNT signaling pathway inhibitor 1 255 [DKK1]), growth and neural development (amphoterin induced gene and ORF 2 [AMIGO2]) 256 257 and pleiotrophin [PTN]), and immune response (CXCL11) (Supplemental Figure 1-2 and **Supplemental Table 4-5**)⁴⁸. In ARIC, we additionally adjusted for platelet and white blood cell 258 (WBC) counts in the sensitivity analysis, and the results were largely robust. The associations 259 260 between JAK2 and a few proteins directly related to platelets, such as GP1BA, were diminished 261 but remained statistically significant (Supplemental Table 6 and Supplemental Figure 3). We also investigated the relationship between the VAF of CHIP variables and proteomics in the UK 262 263 Biobank, finding significant associations comparable to those observed with binary CHIP variables (Supplemental Table 7). For the aforementioned analysis, additionally adjusting for 264 estimated glomerular filtration rates (eGFR) yielded consistent results (Supplemental Table 8 265 266 and Supplemental Figure 4-5).

267

268 Comparative Analysis of Proteomic Associations Across Platforms

While we observed some consistent associations between results from TOPMed cohorts using 269 270 SomaScan for proteomics analysis and UK Biobank, which utilized the Olink platform for proteomics measurements^{21, 24}, the general agreement between the two platforms is moderate, 271 consistent with recent report⁴⁹. There were 493 unique proteins shared between the two platforms. 272 273 Among the 2,465 CHIP variable-protein pairs being compared (493 proteins×5 CHIP variables 274 [DNMT3A, TET2, ASXL1, JAK2, and composite CHIP]), 30.8% was nominally significant in at least one of the SomaScan-based and Olink-based results. Among them, 114 were nominally 275 276 significant in both sets of results, with 26 of them being significant after correcting for multiple 277 testing (FDR = 0.05) in both SomaScan-based and Olink-based results. Those pairs include the

278	top proteins associated with JAK2, strong signals of ASXL1, composite CHIP, and TET2 with
279	CA1, as well as the association between <i>TET2</i> and LCN2 (Supplemental Figure 6). Sensitivity
280	analysis restricted to results from EA only yielded slightly dampened but generally consistent
281	results (Supplemental Figure 7). Since only 19% of overlapping proteins are highly correlated
282	between the two platforms in prior work ⁵⁰ , we can not rule out the possibility of false positives
283	and false negatives in this cross-platform comparison.

284

285 Sex-specific and Race-specific Differences in CHIP Variable-Protein Associations

286 We conducted stratified analyses by sex (both TOPMed cohorts and UK Biobank) and race (TOPMed cohorts only). While there was no difference in the prevalence of composite CHIP and 287 288 each examined driver gene by sex, more proteins were associated with CHIP mutations, and the associations are generally stronger in males than in females. In TOPMed, there is a relatively 289 290 small overlap between significantly associated proteins between females and males 291 (Supplemental Table 9-10 and Figure 3B). For the 40 CHIP variable-protein pairs that are only significant in male or female stratified analysis, we introduced and tested for interaction terms 292 between the corresponding CHIP variables and sex in the combined analysis across all discovery 293 294 cohorts. Of these, 15 pairs displayed statistically significant interactions at an FDR = 0.05(Supplemental Table 11). The sex difference slightly dampened in UK Biobank results; 295 296 although only 1/4 of proteins significant in males were also significant in females, the top 297 associated proteins showed high consistency between males and females. Some interesting sex-298 specific effects were observed. For example, in females, TCL1 family AKT coactivator A 299 (TCL1A) was significantly positively associated with TET2 and negatively associated with

DNMT3A, as recent GWAS discoveries. But this protein was neither associated with *TET2* nor
 DNMT3A in males (Supplemental Table 12-13 and Figure 4B).

302 Proteins associated with CHIP mutations also differ by self-reported race. In TOPMed cohorts, among individual driver genes, only DNMT3A demonstrated significant proteomic 303 associations in the Black-only analysis, with two out of three associated proteins, namely sialic 304 305 acid-binding Ig-like lectin 6 (SIGLEC6) and mitogen-activated protein kinase 1 (MAK1), not observed in combined analyses. In contrast, significant associations in the White-only analyses 306 307 were primarily driven by *TET2* and *ASXL1* and largely reflected findings in combined analyses. 308 And these significant associations were not present in Black-only analyses (Supplemental Tables 14-15 and Figures 3C). We tested for interaction terms between CHIP variables and race 309 in combined analysis in ARIC for the 18 proteins that are only significant in Black or White 310 stratified analysis. Three pairs displayed statistically significant interactions at an FDR = 0.05311 (Supplemental Table 16). JAK2 analyses yielded similar sex and race-specific patterns 312 313 (Supplemental Tables 9-16 and Supplemental Figures 8-13). 314 **Genetic Causal Inference for CHIP-proteomics Associations** 315 316 We performed genetic causal inference for CHIP-proteomic pairs with FDR < 0.05 to 317 disentangle the potential proteomic causes and consequences of CHIP using Mendelian 318 randomization (MR; Methods). Given that only composite CHIP, DNMT3A, and TET2 have 319 adequate GWAS power, we focused on these three CHIP variables for MR analysis to minimize 320 the influence of weak instrument bias. In the TOPMed cohorts, among the 22 pairs with valid 321 instruments, we identified nine pairs where CHIP variables causally influence proteomic changes. 322 The strongest genetic causal effect was composite CHIP on scavenger receptor class F member 1

323	(SCARF1), with composite CHIP presence leading to a 7% increase in SCARF1 levels. Other
324	significant effects included CHIP on PAPPA and TET2 on MPO. Additionally, we found one
325	pair where a protein level difference influenced the development of a CHIP variable: higher
326	lysozyme (LYZ) levels decreased the risk of developing TET2 mutations. In the UK Biobank, we
327	observed 121 out of 317 pairs where CHIP variables causally influenced proteomic changes.
328	Notable effects included the causal impact of CHIP and TET2 on decreased FLT3LG
329	concentrations and TET2's causal effect on LCN2 (Figure 5A-B and Supplemental Table 17-
330	20).
331	Among the nine significant pairs from the TOPMed Somascan analysis, proteins from
332	four pairs were also present in the UK Biobank Olink data. Two pairs (composite CHIP to CA1
333	and TET2 to LCN2) showed consistent significance and causal directions in both datasets, while
334	the other two pairs were not significantly associated and thus not included in MR analysis. It is
335	important to note that association effects can encompass bidirectional causal influences. For
336	instance, while TET2 negatively associates with LCN2, the average causal direction shows that
337	TET2 positively influences LCN2 levels.

338

339 Murine Evidence Corroborating Human Causal Discoveries

After showing consistency across two proteomics platforms with support for causality from
Mendelian randomization, we examined the plasma levels of proteins influenced by *TET2* in 8–
9-week-old mice with *Tet2* deletion in hematopoietic cells. Specifically, we selected LCN2
(significantly causal by *TET2* in both TOPMed cohorts and UK Biobank), MPO (significantly
causal by *TET2* in TOPMed cohorts), as well as FLT3LG (significantly causal by *TET2* in UK
Biobank) for enzyme-linked immunosorbent assay (ELISA) analysis in male and female with

346	hematopoietic Tet2 deficiency and WT mice given their disease relevance based on
347	epidemiological evidence. Consistent with human genetic causal evidence, we found that
348	hematopoietic Tet2-/- significantly increased plasma MPO levels in both male and female mice
349	compared to WT mice, and male mice with hematopoietic Tet2-/- exhibited higher plasma levels
350	of LCN2 compared to WT controls. However, though slightly decreased in hematopoietic Tet2-/-
351	female mice, consistent with the causal direction in human genetics analysis, FLT3LG is not
352	significantly different between hematopoietic Tet2-/- mice and control mice in both males and
353	females (Figure 6).
354	
355	Enriched Biological Pathways and Protein Networks
355 356	Enriched Biological Pathways and Protein Networks As SomaScan-measured proteins have wide analytic breadth across the proteome and are
356	As SomaScan-measured proteins have wide analytic breadth across the proteome and are
356 357	As SomaScan-measured proteins have wide analytic breadth across the proteome and are implicated in diverse pathways, we performed pathway analyses to investigate biological
356 357 358	As SomaScan-measured proteins have wide analytic breadth across the proteome and are implicated in diverse pathways, we performed pathway analyses to investigate biological processes and regulatory mechanisms linked to the collective function of proteins associated with
356 357 358 359	As SomaScan-measured proteins have wide analytic breadth across the proteome and are implicated in diverse pathways, we performed pathway analyses to investigate biological processes and regulatory mechanisms linked to the collective function of proteins associated with each CHIP driver gene from TOPMed cohorts' results. The examined CHIP driver genes were
356 357 358 359 360	As SomaScan-measured proteins have wide analytic breadth across the proteome and are implicated in diverse pathways, we performed pathway analyses to investigate biological processes and regulatory mechanisms linked to the collective function of proteins associated with each CHIP driver gene from TOPMed cohorts' results. The examined CHIP driver genes were broadly enriched in immune response and inflammation-related pathways and disease processes

368 signaling pathways and inhibiting LXR/RXR activation. While *DNMT3A* and *TET2* appeared

17

of DNMT3A-mediated CH in heart failure¹⁷, DNMT3A-associated proteins activated pathways

involved in acute responses to wound healing signaling and pathogen-induced cytokine storm

signaling pathways⁵¹. In contrast, *TET2*-associated proteins modulated pathways implicated in

autoimmunity and promoted chronic inflammation, activating the IL-17, STAT3, and IL-22

364

365

366

369	pro-inflammatory, ASXL1 was linked to a number of reduced pro-inflammatory pathways, such
370	as the STAT3 pathway that was predicted to be activated in the TET2 pathway analysis and
371	established IL-6 signaling pathway (Figure 7). We conducted sensitivity analysis where we
372	limited to total quantified proteins as background for pathway analysis and yielded consistent
373	results (Supplemental Figures 18). In secondary analyses, JAK2-associated proteins modulated
374	tissue remodeling pathways, such as cardiac hypertrophy and pulmonary fibrosis idiopathic
375	signaling pathways (Supplemental Figures 19).

376

377 Shared Proteomic Associations in CHIP and CAD

We next used SomaScan proteins to investigate the shared proteomic associations between CHIP 378 379 mutations and CAD. Again, we used SomaScan results to facilitate potential novel discoveries. 380 We analyzed the cross-sectional associations between prevalent CAD, which were assessed at 381 the visits of blood draws to maintain temporal consistency with CHIP measurement, and 382 proteomics. Top CAD-associated proteins include known CAD biomarkers, such as N-terminal pro-BNP (NT pro-BNP; FDR = 5.7×10^{-13}), C-reactive protein (CRP; FDR = 2.7×10^{-4}), and 383 troponin I and T (FDR = 5.2×10^{-3} and 7.4×10^{-3} , respectively), consistent with prior studies 384 (Supplemental Table 21)^{52, 53, 54, 55}. A total of 68 proteins were also associated with composite 385 CHIP, DNMT3A, ASXL1, or TET2 and CAD at the nominal significance threshold. These shared 386 387 proteins have diverse functions, primarily enriched in inflammation and immune response 388 pathways. Specifically, a number of the shared proteins were implicated in the regulation of IL-1β/NLRP3/IL-6 pathways, including proteins belonging to TNFRSF (such as TNFRSF1B and 389 390 TNFRSF10D), members or receptors of the IL-1 cytokine family (such as IL-36 α , IL-1Ra, IL-391 1RL1, and IL-1R2), and other chemokines (such as CXCL13 and CXCL10). Notably, Cxcl13

392	and several genes encoding IL-1-related proteins have been shown to have increased expressed
393	in $Tet2^{-/-}$ peritoneal macrophages exposed to lipopolysaccharide and interferon- γ in vitro ³² .
394	Other important inflammatory proteins are implicated, such as protein S100-A9,
395	myeloperoxidase ^{56, 57} , as well as proteins validated in <i>Tet2^{-/-}</i> Ldlr ^{-/-} mice that consumed an
396	atherogenic diet, such as CXCL13 and lysozyme C. Consistent with the functions of proteins
397	associated with CHIP, proteins related to both TET2 and CAD are involved in the ECM, cell
398	adhesion, and signaling, such as metalloproteinase inhibitor 3 (TIMP-3) ⁵⁸ . Those associated with
399	both ASXL1 and CAD participate in enzyme and metabolism processes, such as proprotein
400	convertase subtilisin/kexin type 9 (PCSK9). Proteins associated with both DNMT3A and CAD
401	have diverse functions, with several proteins involved in the signaling and adhesion of neural
402	cells, such as contactin-1 ^{59, 60, 61} . Furthermore, 24 proteins were found to be associated with JAK2,
403	including key proteins involved in hematopoietic traits, such as erythropoietin and ferritin
404	(Figure 8 and Supplemental Table 22).
405	

406 **Discussion**

The various common mutations that drive CHIP yield differential associations with clinical outcomes^{3, 10, 13}, and intermediate molecular phenotypes may facilitate a better understanding of these distinctions. Leveraging large-scale proteomics data from multiple diverse cohorts across two proteomics platforms, we identified and validated distinct proteomic signatures for common CHIP driver genes. Furthermore, our findings demonstrated the potential causal relationships between CHIP and those associated proteins through human genetics and murine ELISA experiments. More broadly, our study provides mechanistic insights offering novel CHIP driver

gene-specific therapeutic strategies toward precision prevention of CHIP-associated clinicaloutcomes.

Despite convergence on clonal hematopoiesis^{2, 3, 4}, mutations by CHIP driver genes had 416 varied proteomic associations in both TOPMed cohorts and UK Biobank. Our study 417 demonstrated that the three common driver genes linked to unique proteins with diverse 418 419 functions, which subsequently aggregated into distinct pathways, suggesting these genes may associate with diseases through separate cellular pathways. For instance, although all examined 420 421 driver mutations related to some proteins involved in immune responses, with particular 422 enrichment in regulating IL-1β/NLRP3/IL-6 pathways, in line with existing knowledge that 423 CHIP arising from several mutations induces an altered inflammatory state, different genes act differently. DNMT3A, the most prevalent CHIP driver gene, exhibited a relatively indolent 424 profile with few and weak associations, primarily implicating first-line defense pathways. In 425 426 contrast, TET2, associated with proteins predominantly involved in innate immunity, 427 inflammation, and extracellular matrix remodeling, and ASXL1, enriched in proteins related to cell signaling and function and metabolic regulation, appeared to modulate chronic inflammation 428 pathways, such as STAT3 and IL-6 signaling pathways. JAK2, the least prevalent CHIP mutated 429 430 gene examined, was associated with the largest number of proteins exhibiting the strongest associations, enriched in hematopoietic traits. In particular, our study contributed evidence in 431 432 humans of the anti-inflammatory role of ASXL1 CHIP mutations, with pathway analysis showing 433 predicted reduction across a large number of pro-inflammatory pathways, in direct contrast with 434 other examined CHIP driver genes. This finding corresponds with the observed coexistence of 435 pro- and anti-inflammatory characteristics in both zebrafish and murine macrophages with Asxl1 mutations, and similarly in humans with ASXL1 CHIP mutations^{62, 63}. Moreover, leveraging 436

multi-ancestry data from both men and women, our study highlighted sex and race differences in
CHIP-proteomic associations, with the sex differences in CHIP's impact on proteome being
observed in our mice experiment as well. The factors driving differential associations across
populations requires further investigation. Several of these findings agree closely with existing
observations at the phenotypic level in humans or mice, substantiating the validity of our results
and offering potential molecular mechanisms to explain these differential phenotypic
associations^{13, 64, 65}.

Association effects can encompass bidirectional causal influences when studying the relationship between CHIP and proteomics, both of which are dynamic. We conducted MR in our human study and ELISA in mice models to disentangle and validate the causal relationship between the two. We demonstrated that proteins with strong human causal evidence, such as *TET2* to MPO and LCN2, exhibit alignment in controlled murine models, supporting the validity of our human findings.

450 By examining shared proteomic associations between CHIP and CAD, in addition to proteins implicated in regulating the established CHIP-related IL- 1β /NLRP3/IL-6 pathways, we 451 implicate new potential associations. For instance, both TET2 and CAD were linked to ECM-452 453 related proteins, such as TIMP3, an ECM-bound protein inhibiting a broad range of substrates, including matrix metalloproteinase^{66, 67}. It is a potent angiogenesis inhibitor⁶⁸ and has been 454 shown to play crucial roles in cardiac remodeling and cardiomyopathy⁶⁹. Recent studies also 455 suggest its therapeutic potential for heart failure⁷⁰. Similarly, ASXL1 and CAD were associated 456 with metabolism-related proteins like PCSK9, a key regulator of lipid metabolism. Inhibitors 457 targeting PCSK9 lower LDL levels and reduce the risk of cardiovascular diseases⁷¹. Furthermore, 458 459 DNMT3A and CAD shared associations with signaling and adhesion proteins in neural cells, such

460	as contactin-1. This cell adhesion molecule plays a critical role in various aspects of neural
461	development and function ^{59, 60, 61} , and has also been identified as a cardiac biomarker by several
462	studies ^{72, 73} . Our study has limitations. Firstly, both molecular and environmental confounders
463	might affect the associations between CHIP and the plasma proteome. Also, SomaScan
464	proteomics from TOPMed cohorts was measured by two SomaScan platforms (1.3K and 5K),
465	which may introduce heterogeneity due to technical differences. To address that, we adjusted for
466	recognized confounders, applied PEER factors to mitigate technical noise, performed sensitivity
467	analyses to reduce residual and unmeasured confounding as much as we could, and also reported
468	heterogeneity p-value for meta-analysis. Secondly, our study primarily utilized linear models to
469	explore associations between CHIP driver genes and proteins. However, there may be
470	interactions and non-linear effects at play. To address this, we assessed interactions between
471	CHIP variables and both sex and race for proteins, demonstrating differential associations in our
472	stratified analysis. Thirdly, the cross-sectional design of our study constrains our ability to
473	establish temporality and causality. Nevertheless, our experimental murine data provides some
474	ability to infer associations resulting from TET2 mutations.
475	These results, taken together, provide a comprehensive human plasma proteomic profile

These results, taken together, provide a comprehensive human plasma proteomic profile
of clonal hematopoiesis. These novel findings inform us of the biological mechanism of various
CHIP mutations and the potential development and testing of interventions to mitigate associated
diseases observed in carriers of these mutations.

479

480 Materials and Methods

481 *Human study participants*

TOPMed is a research program generating genomic data from DNA isolated from blood and 482 other omics data for more than 80 NHLBI-funded research studies with extensive phenotype 483 data²². Our current study includes five community-based cohorts: JHS, MESA, CHS, ARIC, and 484 UKB. The secondary use of data for this analysis was approved by the Massachusetts General 485 Hospital Institutional Review Board (protocol 2016P001308 and protocol 2021P002228) and, for 486 487 the UKB data, facilitated through UKB Application 7089. JHS is a longitudinal cohort study of 5,306 self-identified Black men and women 488 recruited in 2000-04 from Jackson, Mississippi²⁵. Our study included 2,058 individuals with 489 whole-genome sequencing (WGS) and plasma proteomic profiling data²². MESA is a multi-490 491 ancestry prospective cohort of 6,814 self-identified White, Black, Hispanic, or Asian (predominately of Chinese descent) men and women recruited in 2000-02²⁶. We included 976 492 participants randomly selected for WGS and plasma proteomic profiling analysis⁷⁴. CHS is a bi-493 494 ancestry (White and Black) longitudinal study of 5,888 men and women 65 years or older at recruitment (1989-90 or 1992-93)²⁷. We analyzed data from 1,689 participants with WGS and 495 plasma proteomics measurements who consented to genetics study²⁸. ARIC is an ongoing 496 497 longitudinal cohort of 15,792 middle-aged, mostly black and white participants recruited in 1987-89⁷⁵. We included 8,188 participants with valid whole exome sequencing (WES) data and 498 499 plasma proteomics measurements at Visit 2 or 3 in our study. These four cohorts, with data from 500 a total of 12,911 participants, were used for the current analysis. UKB is a comprehensive, 501 prospective cohort study consisting of approximately 500,000 men and women, predominantly of EA, who were aged between 40 and 69 years at the time of recruitment from 2006 to 2010 502 503 across the UK. Our analysis included a subset of 48,922 participants for whom both WES and plasma proteomic profiling data were available^{23, 76}. 504

The mean age of the participants at the time of DNA sample collection was 57.4 years (55.8 years for JHS, 60.2 years for MESA, 73.3 years for CHS, 57.8 years for ARIC, and 56.8 years for UKB). Except for JHS, which includes only Black participants, all cohorts are biancestry or multi-ancestry. All cohorts included participants of both sexes, with the percentage of men ranging from 39% to 47%.

510

511 CHIP calling

512 WGS and CHIP calling in JHS, MESA, and CHS were previously performed and have been described in detail elsewhere¹³. The same procedure was applied for WES data in ARIC and UK 513 Biobank^{13, 19}. In brief, whole blood-derived DNA was sequenced at an average depth of $38 \times$ 514 515 using Illumina HiSeq X Ten instruments. All sequences in CRAM files were remapped to the hs38DH 1000 Genomes build 38 human genome references, following the protocol published 516 previously⁷⁷. Single nucleotide polymorphisms (SNPs) and short indels were jointly discovered 517 and genotyped across the TOPMed samples using the GotCloud pipeline ⁷⁸. CHIP mutations 518 were identified using Mutect2 software if one or more of a prespecified list of pathogenic 519 somatic variants in 74 genes that drive clonal hematopoiesis and myeloid malignancies were 520 present^{13, 79}. A Panel of Normals (PON) minimized sequencing artifacts and Genome 521 Aggregation Database (gnomAD) filtered likely germline variants from the putative somatic 522 mutations call set⁸⁰. Each Variant Call Format (VCF) file was annotated using ANNOVAR 523 software⁸¹. Variants were retained for further curation if they met the following criteria: total 524 depth of coverage ≥ 10 , number of reads supporting the alternate allele ≥ 3 , ≥ 1 read in both 525 526 forward and reverse direction supporting the alternate allele, and variant allele fraction (VAF) \geq 0.02. In particular, variants with VAF \geq 0.1 were defined as expanded CHIP clones. 527

528

529 Human proteomic measurements

530	The relative concentrations of plasma proteins or protein complexes from the blood samples of
531	JHS, MESA, CHS, and ARIC were measured by the SomaScan (SomaLogic; Boulder, CO)
532	using an aptamer (SOMAmer)-based approach, while proteomics of WHI was measured by
533	Olink (Olink Proteomics; Uppsala, Sweden) using a proximity-extension immunoassay-based
534	method. Detailed information on these technologies can be found in the corresponding
535	manufacturer's protocols ^{24, 82} . JHS and MESA utilized a 1.3K human protein platform, while
536	CHS and ARIC used a 5K human protein platform. We focused on 1,148 proteins shared by both
537	SomaScan platforms. Protein measurements were reported as relative fluorescence units
538	(RFUs) ²¹ . There were no missing values in the SomaScan proteomic data, and details of the
539	quality control of the proteins were described elsewhere ⁸³ . Proteomics measured by Olink in UK
540	Biobank included 2,917 proteins from cardiovascular, inflammation, cardiometabolic, neurology,
541	oncology, and other panels. Proteins with $\geq 10\%$ missingness were excluded. Participants who
542	had >10% missing proteomics data were excluded. When examining the associations between
543	CHIP variables and proteomics, we did not further process the missingness. When generating
544	PEER factors for proteomics data, which requires complete data, we used K-nearest neighbors
545	imputation ^{84, 85} . In this study, all proteins underwent log2 transformation. UK Biobank proteins
546	were additionally normalized centrally.

547

548 *Regression model and meta-analysis for human analysis*

549 We examined the cross-sectional associations between CHIP mutations and 1,148 plasma

550 proteins measured by SomaScan within four TOPMed cohorts, which were then meta-analyzed,

and between CHIP mutations and 2,917 plasma proteins measured by Olink in UK Biobank. 551 TOPMed cohorts and UK Biobank analysis were conducted separately, given the limited 552 553 overlapping in proteins between the two platforms. CHIP was modeled both as a composite and individually for the most common or pathogenic drivers (DNMT3A, TET2, ASXL1, and JAK2), 554 using conventional thresholds for all mutations (VAF $\geq 2\%$) and expanded forms (VAF $\geq 10\%$), 555 resulting in a total of ten CHIP mutations. Consistent with a recent analysis³¹, ARIC was 556 557 separated into two subcohorts: ARIC EA and ARIC AA. To reduce redundant information and 558 multiple testing burdens, we collapsed the composite CHIP and each driver gene with their 559 corresponding expanded forms, retaining the one with stronger associations (larger absolute Z 560 score). Within each cohort or subcohort (ARIC), linear regression models were fitted with CHIP mutations as exposures, log-transformed proteins as outcomes, and various covariates, including 561 562 age at sequencing, sex, race, batch, center, diagnoses of type 2 diabetes mellitus at the time of enrollment, ever-smoker status, first ten PCs of genetic ancestry, and PEER factors as covariates. 563 564 PEER factors were adjusted to account for hidden confounders, such as batches, that may influence clusters of proteins⁸⁶. The number of PEER factors varied by cohorts based on study 565 population size: 50 for JHS, MESA, and CHS; 70 for ARIC AA; 120 for ARIC EA^{31, 87}; and 150 566 567 for UK Biobank. JAK2 analyses were only conducted in cohorts with more than 5 participants with JAK2 mutations (i.e., CHS, ARIC EA, and UK Biobank only) to optimize power and 568 569 generate more reliable effect estimates; given the required subsetting; JAK2 analyses were 570 considered secondary analyses. Next, linear regression results from each discovery cohort were 571 meta-analyzed using inverse-variance weighted fixed-effect meta-analysis. We conducted 572 stratified analysis by sex (female and male) and by race (Black and White; TOPMed cohorts 573 only). For CHIP variable-protein pairs that are only significant in either male or female stratified

analysis, we introduced and tested interaction terms between the corresponding CHIP variables 574 and sex across all discovery cohorts. Likewise, for pairs that are only significant in Black or 575 576 White stratified analysis, we tested for interaction terms between the CHIP variables and race in the combined analysis of ARIC, as ARIC has a good number of and relatively balanced White 577 and Black participants. We also conducted secondary analyses additionally adjusting for eGFR 578 or blood cells (platelet and WBC) in ARIC⁸⁸. Linear regression models were performed using R 579 580 function 'glm' while fixed-effects meta-analysis and tests of heterogeneity were conducted using 581 the R package 'meta'. We controlled the FDR using the Benjamini-Hochberg procedure and set 582 an FDR threshold of 0.05 for significance.

583

584 Cross-platform replication for human proteomic associations

585 We assessed the compatibility of associations between CHIP mutations and proteomic data

586 measured using two highly multiplexed technologies for large-scale proteomics measurements:

587 aptamer-based (SomaScan 1.3K) and proximity-extension immunoassay (Olink 3K) platforms^{21,}

²⁴. A total of 493 were overlapped between the two platforms as matched by UniProt IDs. We

589 compared our results of these proteins between meta-analysis results from TOPMed cohorts

590 based on SomaScan-measured proteins and results from UK Biobank based on Olink-measured

591 proteins, with assessing shared CHIP variable-proteomic pairs between both groups.

592

593 Mendelian randomization analyses

We performed two-sample MR analyses for CHIP-proteomic pairs with FDR < 0.05 to estimate

the causal effects of CHIP on proteomics and vice versa. CHIP variables being tested include

596 composite CHIP, DNMT3A, and TET2, given GWAS availability. The GWAS summary

597	statistics for CHIP were from our CHIP GWAS meta-analysis for 648,992 multi-ancestry
598	individuals in the UK Biobank, TOPMed, Vanderbilt BioVU, and Mass General Brigham
599	Biobank ⁸⁹ . For genetic instruments of proteins, we obtained SomaScan pQTL data from 35,892
600	Icelanders ⁴⁹ and Olink pQTL data from 48,922 UK Biobank-Pharma Proteomics Project
601	participants who had their circulating proteomes profiled. All GWAS summary statistics
602	assumed an additive genetic model. We used the inverse-variance-weighted (IVW) method for
603	genetic instruments with more than one cis-pQTL and the Wald ratio estimator for instruments
604	with only one cis-pQTL. IVW estimates were adjusted for residual correlation between genetic
605	variants.
606	
607	Mouse experiments
608	All experiments were approved by the Institutional Animal Care and Use Committees and were
609	conducted in accordance with the guidelines of the American Association for Accreditation of
610	Laboratory Animal Care and the National Institutes of Health. To create animals with specific
611	<i>Tet2</i> deletion in hematopoietic cells, we crossed <i>Tet2</i> -floxed line B6;129S- <i>Tet2</i> ^{tm1.1Iaai} /J (Jax Cat.
612	No. 017573) with mice bearing constitutive expression of Cre recombinase under control of the
613	<i>Vav1</i> promoter (B6.Cg-Commd10 ^{Tg(Vav1-icre)A2Kio} /J; Jax Cat. No. 008610).
614	At 8-9 weeks old, vav1-cre; Tet2-/- (Tet2-/-) and vav1-cre; WT (WT) mice were
615	sacrificed by CO2 euthanasia and blood was collected through cardiac puncture.
616	
617	ELISA
618	Mouse plasma levels of MPO, LCN2, and FLT3LG were quantified by ELISA following the
619	manufacturer's guidelines (Abcam, cat#275109; R&D systems cat# DY1857 and #DY427).

620 Pathway analysis for human proteomic association results

We conducted pathway analyses of proteins associated with each CHIP driver gene at a P=0.05 621 622 threshold. We applied a nominal threshold (P=0.05) for selecting proteomic associations for pathway analysis, ensuring a comprehensive view of pathway enrichment by including a wide 623 range of associated proteins. We input the sets of Z-scores of 102 DNMT3A-associated proteins, 624 625 123 TET2-associated proteins, and 140 ASXL1-associated proteins, which were organized into canonical pathways by the Ingenuity Pathway Analysis (IPA) tool. IPA pathways were 626 627 constructed within the Ingenuity Knowledge Base, a large structured collection of findings 628 containing nearly 5 million entries manually curated from the biomedical literature or integrated from third-party databases⁹⁰. The network comprises \sim 40,000 nodes connected by \sim 1,480,000 629 edges representing experimentally observed cause-effect relationships related to expression, 630 transcription, activation, molecular modification, transportation, and binding events. IPA utilizes 631 a right-tailed Fisher's exact test to evaluate the enrichment of CHIP driver genes-associated 632 633 proteins in each pathway, as well as to infer their potential cause-effect relationships.

634

635 Human coronary artery disease ascertainment

636 The four TOPMed cohorts have conducted active surveillance for coronary artery disease (CAD)

events through annual follow-up by phone calls, surveys, and/or interviews, and abstracting

638 medical records, hospitalization records, and death certificates^{91, 92, 93, 94, 95}. In JHS, CAD was

639 defined as myocardial infarction (MI), death due to CAD, or cardiac procedures,

640 including percutaneous transluminal coronary angioplasty, stent placement, coronary artery

bypass grafting, or other coronary revascularization⁹¹. In MESA, CAD included MI, death due to

642 CAD, resuscitated cardiac arrest, and revascularization⁹². In CHS, CAD included MI, death due

643	to CAD, angina pectoris, and cardiac procedures, including angioplasty and coronary artery
644	bypass graft ⁹⁶ . In ARIC, CAD included MI observed on ECG, self-reported doctor-diagnosed
645	heart attack, or self-reported cardiovascular surgery or coronary angioplasty, as well as study-
646	adjudicated CAD cases between visit 1 and visit 2 or 3 ⁹⁷ . In our study, we defined prevalent
647	CAD cases as those occurring before the blood sample collection visit, where CHIP
648	measurements were also taken. By aligning the time points for prevalent CAD and CHIP
649	assessments, we ensured a fair comparison between them in later analyses.
650	
651	Shared proteomic associations between CHIP and CAD in human
652	We investigated the shared proteomic associations between CHIP mutations and CAD using four
653	discovery TOPMed cohorts (N=12,911), JHS, MESA, CHS, and ARIC, same study population
654	for examining the associations between CHIP mutations and proteomics in the main analysis. We
655	first examined the cross-sectional associations between prevalent CAD, assessed at the same
656	visits as blood draws to maintain temporal consistency with CHIP measurements, and
657	proteomics. For the associations between CAD and proteomics, we employed the same linear
658	models used to study the associations between CHIP mutations and proteomics. Specifically, we
659	again used processed proteomics as the outcome, replaced CHIP with CAD as the exposure, and
660	adjusted for the same set of covariates excluding PEER factors (age at sequencing, sex, race,
661	batch, center, type 2 diabetes mellitus diagnoses at enrollment, ever-smoker status, and the first
662	ten PCs of genetic ancestry). Our decision not to adjust for PEER factors in the CAD and
663	proteomics association analysis was based on a previous report indicating that PEER factors can
664	capture proteomic variation related to disease mechanisms ⁹⁸ . Additionally, empirical evidence
665	from our own analysis showed that several PEER factors were associated with CAD, which

- 666 could remove relevant signals. However, PEER factors were generally not associated with CHIP
- 667 mutations, and with or without adjusting for PEER factors yielded consistent associations
- between CHIP mutations and proteomics. Subsequently, we identified the intersection of
- proteins associated with both CHIP mutations and CAD ascertained at the same visits at a
- 670 P=0.05 level. We then categorized these proteins according to the type of CHIP mutations and
- 671 investigated any differential enrichment by distinct types of CHIP mutations.

672

674 Data availability

TOPMed individual-level DNA and proteomics data used in this analysis are available through

restricted access via the dbGaP. UK Biobank individual-level data are available for request by

677 application (<u>https://www.ukbiobank.ac.uk</u>). All code used for the described analysis will be

uploaded to GitHub once the manuscript is accepted for publication.

679

680 Acknowledgments

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 681 682 program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 683 "NHLBI TOPMed: Multi-Ethnic Study of Atherosclerosis (MESA)" (phs001416.v1.p1) was performed at the Broad Institute of MIT and Harvard (3U54HG003067-13S1). Centralized read 684 mapping and genotype calling, along with variant quality metrics and filtering were provided by 685 the TOPMed Informatics Research Center (3R01HL-117626-02S1). Phenotype harmonization, 686 data management, sample-identity QC, and general study coordination, were provided by the 687 TOPMed Data Coordinating Center (3R01HL-120393-02S1), and TOPMed MESA Multi-Omics 688 (HHSN2682015000031/HSN26800004). The Atherosclerosis Risk in Communities study has 689 been funded in whole or in part with Federal funds from the National Heart, Lung, and Blood 690 691 Institute, National Institutes of Health, Department of Health and Human Services, under Contract nos. (75N92022D00001, 75N92022D00002, 75N92022D00003, 75N92022D00004, 692 75N92022D00005). The authors thank the staff and participants of the ARIC study for their 693 important contributions. Funding support for "Building on GWAS for NHLBI-diseases: the U.S. 694 CHARGE consortium" was provided by the NIH through the American Recovery and 695 Reinvestment Act of 2009 (ARRA) (5RC2HL102419). Metabolomics measurements were 696

sponsored by the National Human Genome Research Institute (3U01HG004402-02S1). 697 SomaLogic Inc. conducted the SomaScan assays in exchange for use of ARIC data. This work 698 699 was supported in part by NIH/NHLBI grant R01 HL134320. Cardiovascular Health Study: This supported by contracts HHSN268201200036C, HHSN268200800007C, 700 research was HHSN268201800001C, N01HC55222, 701 N01HC85079, N01HC85080, N01HC85081, 702 N01HC85082, N01HC85083, N01HC85086, 75N92021D00006, and grants U01HL080295, 703 HL105756, and U01HL130114 from the National Heart, Lung, and Blood Institute (NHLBI), 704 with additional contribution from the National Institute of Neurological Disorders and Stroke 705 (NINDS). Additional support was provided by R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-706 NHLBI.org. The content is solely the responsibility of the authors and does not necessarily 707 represent the official views of the National Institutes of Health. The Jackson Heart Study (JHS) 708 709 supported conducted in collaboration with University is and Jackson State 710 (HHSN268201800013I), Tougaloo College (HHSN268201800014I), the Mississippi State Department of Health (HHSN268201800015I) and the University of Mississippi Medical Center 711 (HHSN268201800010I, HHSN268201800011I and HHSN268201800012I) contracts from the 712 713 National Heart, Lung, and Blood Institute (NHLBI) and the National Institute on Minority Health and Health Disparities (NIMHD). The authors also wish to thank the staffs and 714 715 participants of the JHS. The MESA projects are conducted and supported by the National Heart, 716 Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for the 717 Multi-Ethnic Study of Atherosclerosis (MESA) projects are conducted and supported by the 718 National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. 719 Support for MESA is provided by contracts 75N92020D00001, HHSN268201500003I, N01-HC-

720 95159. 75N92020D00005. N01-HC-95160. 75N92020D00002. N01-HC-95161, 721 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, 722 N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1TR001881, 723 724 DK063491, and R01HL105756. The authors thank the other investigators, the staff, and the 725 participants of the MESA study for their valuable contributions. A full list of participating 726 MESA investigators and institutes can be found at http://www.mesa-nhlbi.org. The WHI 727 program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, 728 U.S. Department of Health and Human Services through contracts HHSN268201600018C, 729 HHSN268201600001C, HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C. We used Perplexity AI (https://www.perplexity.ai/) as searching engine, 730 ChatGPT4 (https://chat.openai.com/) for debugging code and for assisting with tedious tasks 731 such as counting how many proteins are in each functional categories. We also thank Mrs. Leslie 732 733 Gaffney from the Broad Research Communication Lab for her valuable assistance in improving 734 the display items.

735

736 Funding

A.G.B. is supported by a Burroughs Wellcome Foundation Career Award for Medical Scientists

and the National Institute of Health (NIH) Director's Early Independence Award (DP5-

OD029586). A.R. is supported by NIH R01 HL148565. A.V. received the Harold M. English

Fellowship Fund from Harvard Medical School (Boston, USA). B.L.E. is supported by Leducq

- Foundation. G.G. is supported by NIH grants R01 MH104964 and R01 MH123451, and Stanley
- 742 Center for Psychiatric Research. P.G. is supported by NIH grants 1R01 HL159081, R01

HL153499, and 5U01DK108809. P.L. receives funding support from the National Heart, Lung, 743 and Blood Institute (1R01HL134892 and 1R01HL163099-01), the RRM Charitable Fund and the 744 Simard Fund. P.N. is supported by grants from the NHLBI (R01HL142711, R01HL127564, 745 R01HL148050, R01HL151283, R01HL148565, R01HL135242, and R01HL151152), National 746 Institute of Diabetes and Digestive and Kidney Diseases (R01DK125782), Fondation Leducq 747 748 (TNE-18CVD04), and Massachusetts General Hospital (Paul and Phyllis Fireman Endowed Chair in Vascular Medicine). S.J. is supported by the Burroughs Wellcome Fund Career Award 749 750 for Medical Scientists, Fondation Leducq (TNE-18CVD04), the Ludwig Center for Cancer Stem 751 Cell Research at Stanford University, and the National Institutes of Health (DP2-HL157540). Z.Y. is supported by NHLBI (5T32HL007604-37). 752

753

754 Disclosures:

755 A.E.L. is currently a member of TenSixteen Bio, outside of the submitted work. B.L.E. has 756 received research funding from Celgene, Deerfield, Novartis, and Calico and consulting fees from GRAIL. He is a member of the scientific advisory board and shareholder for Neomorph 757 758 Inc., TenSixteen Bio, Skyhawk Therapeutics, and Exo Therapeutics. B.M.P serves on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. J.C. is 759 760 a scientific advisor to SomaLogic. P.L. is an unpaid consultant to, or involved in clinical trials 761 for Amgen, AstraZeneca, Baim Institute, Beren Therapeutics, Esperion Therapeutics, Genentech, 762 Kancera, Kowa Pharmaceuticals, Medimmune, Merck, Moderna, Novo Nordisk, Novartis, Pfizer, 763 and Sanofi-Regeneron. P.L. is a member of the scientific advisory board for Amgen, Caristo 764 Diagnostics, Cartesian Therapeutics, CSL Behring, DalCor Pharmaceuticals, Dewpoint Therapeutics, Eulicid Bioimaging, Kancera, Kowa Pharmaceuticals, Olatec Therapeutics, 765

766 Medimmune, Novartis, PlaqueTec, TenSixteen Bio, Soley Thereapeutics, and XBiotech, Inc. P.L.'s laboratory has received research funding in the last 2 years from Novartis, Novo Nordisk 767 768 and Genentech. P.L. is on the Board of Directors of XBiotech, Inc. P.L. has a financial interest in Xbiotech, a company developing therapeutic human antibodies, in TenSixteen Bio, a company 769 770 targeting somatic mosaicism and clonal hematopoiesis of indeterminate potential (CHIP) to 771 discover and develop novel therapeutics to treat age-related diseases, and in Soley Therapeutics, 772 a biotechnology company that is combining artificial intelligence with molecular and cellular 773 response detection for discovering and developing new drugs, currently focusing on cancer 774 therapeutics. P.L.'s interests were reviewed and are managed by Brigham and Women's Hospital 775 and Mass General Brigham in accordance with their conflict-of-interest policies. P.N. reports 776 investigator-initiated grants from Amgen, Apple, Boston Scientific, Novartis, and AstraZeneca, personal fees from Allelica, Apple, AstraZeneca, Blackstone Life Sciences, Foresite Labs, 777 778 Genentech, and Novartis, scientific board membership for Esperion Therapeutics, geneXwell, 779 and TenSixteen Bio, and spousal employment at Vertex, all unrelated to the present work. P.N., A.G.B., S.J., and B.L.E. are scientific co-founders of TenSixteen Bio, and P.L. is an advisor to 780 781 TenSixteen Bio. TenSixteen Bio is a company focused on clonal hematopoiesis but had no role 782 in the present work. S.J. is on advisory boards for Novartis, AVRO Bio, and Roche Genentech, reports speaking fees and a honorarium from GSK, and is on the scientific advisory board of 783 784 Bitterroot Bio. The other authors report no conflicts.

785 **References:**

786 787	1.	Steensma DP, <i>et al.</i> Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. <i>Blood</i> 126 , 9-16 (2015).			
788 789 790	2.	Xie M, <i>et al.</i> Age-related mutations associated with clonal hematopoietic expansion and malignancies. <i>Nat Med</i> 20 , 1472-1478 (2014).			
791 792 793	3.	Genovese G, <i>et al.</i> Clonal hematopoiesis and blood-cancer risk inferred from blood DNA equence. <i>N Engl J Med</i> 371 , 2477-2487 (2014).			
794 795 796	4.	Jaiswal S, <i>et al.</i> Age-related clonal hematopoiesis associated with adverse outcomes. <i>N Engl J Med</i> 371 , 2488-2498 (2014).			
797 798 799	5.	Kim PG, <i>et al.</i> Dnmt3a-mutated clonal hematopoiesis promotes osteoporosis. <i>J Exp Mea</i> 218 , (2021).			
800 801 802	6.	Yu B, <i>et al.</i> Supplemental Association of Clonal Hematopoiesis With Incident Heart Failure. <i>J Am Coll Cardiol</i> 78 , 42-52 (2021).			
803 804 805	7.	Miller PG, <i>et al.</i> Association of clonal hematopoiesis with chronic obstructive pulmonary disease. <i>Blood</i> 139 , 357-368 (2022).			
806 807 808	8.	Bhattacharya R, <i>et al.</i> Clonal Hematopoiesis Is Associated With Higher Risk of Stroke. <i>Stroke</i> 53 , 788-797 (2022).			
809 810 811	9.	Jaiswal S, <i>et al.</i> Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. <i>N Engl J Med</i> 377 , 111-121 (2017).			
812 813 814	10.	Jaiswal S. Clonal hematopoiesis and nonhematologic disorders. <i>Blood</i> 136 , 1606-1614 (2020).			
815 816	11.	Wong WJ, et al. Clonal haematopoiesis and risk of chronic liver disease. Nature, (2023).			
817 818 819	12.	Natarajan P, Jaiswal S, Kathiresan S. Clonal Hematopoiesis: Somatic Mutations in Blood Cells and Atherosclerosis. <i>Circ Genom Precis Med</i> 11 , e001926 (2018).			
820 821 822	13.				

823 824 825	14.	Kar SP, <i>et al.</i> Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. <i>Nat Genet</i> 54 , 1155-1166 (2022).
826 827 828	15.	Uddin MM, <i>et al.</i> Germline genomic and phenomic landscape of clonal hematopoiesis in 323,112 individuals. <i>medRxiv</i> , 2022.2007.2029.22278015 (2022).
829 830 831 832 833	16.	Abplanalp WT, Mas-Peiro S, Cremer S, John D, Dimmeler S, Zeiher AM. Association of Clonal Hematopoiesis of Indeterminate Potential With Inflammatory Gene Expression in Patients With Severe Degenerative Aortic Valve Stenosis or Chronic Postischemic Heart Failure. <i>JAMA Cardiol</i> 5 , 1170-1175 (2020).
834 835 836	17.	Abplanalp WT, <i>et al.</i> Clonal Hematopoiesis-Driver DNMT3A Mutations Alter Immune Cells in Heart Failure. <i>Circ Res</i> 128 , 216-228 (2021).
837 838 839	18.	Nachun D, <i>et al.</i> Clonal hematopoiesis associated with epigenetic aging and clinical outcomes. <i>Aging Cell</i> 20 , e13366 (2021).
840 841 842	19.	Uddin MDM, <i>et al.</i> Clonal hematopoiesis of indeterminate potential, DNA methylation, and risk for coronary artery disease. <i>Nat Commun</i> 13 , 5350 (2022).
843 844 845	20.	Pietzner M, <i>et al.</i> Mapping the proteo-genomic convergence of human diseases. <i>Science</i> 374 , eabj1541 (2021).
846 847 848 849	21.	Rohloff JC, <i>et al.</i> Nucleic Acid Ligands With Protein-like Side Chains: Modified Aptamers and Their Use as Diagnostic and Therapeutic Agents. <i>Molecular therapy Nucleic acids</i> 3 , e201 (2014).
850 851 852	22.	Taliun D, <i>et al.</i> Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. <i>Nature</i> 590 , 290-299 (2021).
853 854 855	23.	Sun BB, <i>et al.</i> Genetic regulation of the human plasma proteome in 54,306 UK Biobank participants. <i>bioRxiv</i> , 2022.2006.2017.496443 (2022).
856 857 858	24.	Assarsson E, et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS One 9 , e95192 (2014).
859 860 861	25.	Taylor HA, Jr., <i>et al.</i> Toward resolution of cardiovascular health disparities in African Americans: design and methods of the Jackson Heart Study. <i>Ethn Dis</i> 15 , S6-4-17 (2005).
862		

863 864	26.	Bild DE, <i>et al.</i> Multi-Ethnic Study of Atherosclerosis: objectives and design. <i>Am J Epidemiol</i> 156 , 871-881 (2002).		
865 866 867	27.	Fried LP, <i>et al.</i> The Cardiovascular Health Study: design and rationale. <i>Ann Epidemiol</i> 1 , 263-276 (1991).		
868 869 870 871	28.	Austin TR, <i>et al.</i> Proteomics and Population Biology in the Cardiovascular Health Study (CHS): design of a study with mentored access and active data sharing. <i>Eur J Epidemiol</i> 37 , 755-765 (2022).		
872 873 874	29.	Wright JD, <i>et al.</i> The ARIC (Atherosclerosis Risk In Communities) Study: JACC Focus Seminar 3/8. <i>J Am Coll Cardiol</i> 77 , 2939-2959 (2021).		
875 876 877	30.	Kessler MD, <i>et al.</i> Common and rare variant associations with clonal haematopoiesis phenotypes. <i>Nature</i> 612 , 301-309 (2022).		
878 879 880 881	31.	Zhang J, <i>et al.</i> Plasma proteome analyses in individuals of European and African ancestry identify cis-pQTLs and models for proteome-wide association studies. <i>Nat Genet</i> 54 , 593-602 (2022).		
882 883 884	32.	Fuster JJ, <i>et al.</i> Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. <i>Science</i> 355 , 842-847 (2017).		
885 886 887	33.	Lin TM, Galbert SP, Kiefer D, Spellacy WN, Gall S. Characterization of four human pregnancy-associated plasma proteins. <i>Am J Obstet Gynecol</i> 118 , 223-236 (1974).		
888 889 890	34.	Wald N, <i>et al.</i> First trimester concentrations of pregnancy associated plasma protein A and placental protein 14 in Down's syndrome. <i>Bmj</i> 305 , 28 (1992).		
891 892 893 894	35.	Kirkegaard I, Uldbjerg N, Oxvig C. Biology of pregnancy-associated plasma protein-A in relation to prenatal diagnostics: an overview. <i>Acta Obstet Gynecol Scand</i> 89 , 1118-1125 (2010).		
895 896 897	36.	Smith GC, Stenhouse EJ, Crossley JA, Aitken DA, Cameron AD, Connor JM. Early-pregnancy origins of low birth weight. <i>Nature</i> 417 , 916 (2002).		
898 899 900	37.	Brekken RA, Sage EH. SPARC, a matricellular protein: at the crossroads of cell-matrix communication. <i>Matrix Biol</i> 19 , 816-827 (2001).		
901				

902 903	38.	Bradshaw AD, Sage EH. SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. <i>J Clin Invest</i> 107 , 1049-1054 (2001).			
904 905 906	39.	Tai IT, Tang MJ. SPARC in cancer biology: its role in cancer progression and potential for therapy. <i>Drug Resist Updat</i> 11 , 231-246 (2008).			
907 908 909	40.	Lindskog S. Structure and mechanism of carbonic anhydrase. <i>Pharmacol Ther</i> 74 , 1-20 (1997).			
910 911 912	41.	Steppan CM, <i>et al.</i> The hormone resistin links obesity to diabetes. <i>Nature</i> 409 , 307-312 (2001).			
913 914 915	42.	Jackson DG. Hyaluronan in the lymphatics: The key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking. <i>Matrix Biol</i> 78-79 , 219-235 (2019).			
916 917 918	43.	Lee JY, Spicer AP. Hyaluronan: a multifunctional, megaDalton, stealth molecule. <i>Curr Opin Cell Biol</i> 12 , 581-586 (2000).			
919 920 921	44.	Quach ME, Li R. Structure-function of platelet glycoprotein Ib-IX. <i>J Thromb Haemost</i> 18 , 3131-3141 (2020).			
922 923 924	45.	Furie B, Furie BC. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. <i>Trends Mol Med</i> 10 , 171-178 (2004).			
925 926 927 928	46.	6. Hobbs CM, <i>et al.</i> JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia. <i>Blood</i> 122 , 3787-3797 (2013).			
929 930 931 932	47.	Maslah N, <i>et al.</i> Revisiting Diagnostic performances of serum erythropoïetin level and JAK2 mutation for polycythemias: analysis of a cohort of 1090 patients with red cell mass measurement. <i>Br J Haematol</i> 196 , 676-680 (2022).			
933 934 935	48.	Chin-Yee B, <i>et al.</i> Serum erythropoietin levels in 696 patients investigated for erythrocytosis with JAK2 mutation analysis. <i>Am J Hematol</i> 97 , E150-e153 (2022).			
936 937 938	49.	Eldjarn GH, <i>et al.</i> Large-scale plasma proteomics comparisons through genetics and disease associations. <i>Nature</i> 622 , 348-358 (2023).			
939 940 941	50.				

942 943	51.	Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med 383, 2255-2273 (2020).
944 945 946	52.	Thygesen K, <i>et al.</i> Fourth Universal Definition of Myocardial Infarction (2018). <i>Circulation</i> 138 , e618-e651 (2018).
947 948 949 950 951	53.	Roberts WL. CDC/AHA Workshop on Markers of Inflammation and Cardiovascular Disease: Application to Clinical and Public Health Practice: laboratory tests available to assess inflammationperformance and standardization: a background paper. <i>Circulation</i> 110 , e572-576 (2004).
952 953 954 955 956	54.	Pearson TA, <i>et al.</i> Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. <i>Circulation</i> 107 , 499-511 (2003).
957 958 959 960	55.	Atherton JJ, <i>et al.</i> National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand: Guidelines for the Prevention, Detection, and Management of Heart Failure in Australia 2018. <i>Heart Lung Circ</i> 27 , 1123-1208 (2018).
961 962 963	56.	Arnhold J. The Dual Role of Myeloperoxidase in Immune Response. <i>Int J Mol Sci</i> 21 , (2020).
964 965 966	57.	Averill MM, Kerkhoff C, Bornfeldt KE. S100A8 and S100A9 in cardiovascular biology and disease. <i>Arterioscler Thromb Vasc Biol</i> 32 , 223-229 (2012).
967 968 969	58.	Cabral-Pacheco GA, <i>et al.</i> The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. <i>Int J Mol Sci</i> 21 , (2020).
970 971 972 973	59.	Bizzoca A, <i>et al.</i> Transgenic mice expressing F3/contactin from the TAG-1 promoter exhibit developmentally regulated changes in the differentiation of cerebellar neurons. <i>Development</i> 130 , 29-43 (2003).
974 975 976	60.	Bizzoca A, <i>et al.</i> F3/Contactin acts as a modulator of neurogenesis during cerebral cortex development. <i>Dev Biol</i> 365 , 133-151 (2012).
977 978 979	61.	Hu QD, <i>et al.</i> F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. <i>Cell</i> 115 , 163-175 (2003).
980		

981 982	62.	Avagyan S, <i>et al.</i> Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis. <i>Science</i> 374 , 768-772 (2021).
983 984 985	63.	Yu Z, <i>et al.</i> Genetic modification of inflammation and clonal hematopoiesis-associated cardiovascular risk. <i>medRxiv</i> , 2022.2012.2008.22283237 (2023).
986 987 988	64.	Fujino T, Kitamura T. ASXL1 mutation in clonal hematopoiesis. <i>Exp Hematol</i> 83 , 74-84 (2020).
989 990 991	65.	Montagner S, <i>et al.</i> TET2 Regulates Mast Cell Differentiation and Proliferation through Catalytic and Non-catalytic Activities. <i>Cell Rep</i> 15 , 1566-1579 (2016).
992 993 994 995	66.	Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. <i>J Clin Invest</i> 94 , 2493-2503 (1994).
996 997 998	67.	Fan D, Kassiri Z. Biology of Tissue Inhibitor of Metalloproteinase 3 (TIMP3), and Its Therapeutic Implications in Cardiovascular Pathology. <i>Front Physiol</i> 11 , 661 (2020).
999 1000 1001 1002	68.	Qi JH, <i>et al.</i> A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. <i>Nat Med</i> 9 , 407-415 (2003).
1003 1004 1005	69.	Moore L, Fan D, Basu R, Kandalam V, Kassiri Z. Tissue inhibitor of metalloproteinases (TIMPs) in heart failure. <i>Heart Fail Rev</i> 17 , 693-706 (2012).
1006 1007 1008 1009	70.	Takawale A, <i>et al.</i> Myocardial overexpression of TIMP3 after myocardial infarction exerts beneficial effects by promoting angiogenesis and suppressing early proteolysis. <i>Am J Physiol Heart Circ Physiol</i> 313 , H224-h236 (2017).
1010 1011 1012	71.	Sabatine MS, <i>et al.</i> Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. <i>N Engl J Med</i> 376 , 1713-1722 (2017).
1013 1014 1015 1016	72.	Yin X, <i>et al.</i> Protein biomarkers of new-onset cardiovascular disease: prospective study from the systems approach to biomarker research in cardiovascular disease initiative. <i>Arterioscler Thromb Vasc Biol</i> 34 , 939-945 (2014).
1017 1018 1019	73.	Lau ES, <i>et al.</i> Cardiovascular Biomarkers of Obesity and Overlap With Cardiometabolic Dysfunction. <i>J Am Heart Assoc</i> 10 , e020215 (2021).
1020		

1021 1022	74.	Liu Y, <i>et al.</i> Blood monocyte transcriptome and epigenome analyses reveal loci associated with human atherosclerosis. <i>Nat Commun</i> 8 , 393 (2017).
1023 1024 1025	75.	ARIC Investigators. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. <i>Am J Epidemiol</i> 129 , 687-702 (1989).
1026 1027 1028	76.	Backman JD, <i>et al.</i> Exome sequencing and analysis of 454,787 UK Biobank participants. <i>Nature</i> 599 , 628-634 (2021).
1029 1030 1031 1032	77.	Regier AA, <i>et al.</i> Functional equivalence of genome sequencing analysis pipelines enables harmonized variant calling across human genetics projects. <i>Nat Commun</i> 9 , 4038 (2018).
1033 1034 1035 1036	78.	Jun G, Wing MK, Abecasis GR, Kang HM. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. <i>Genome Res</i> 25 , 918-925 (2015).
1037 1038 1039	79.	Benjamin D, Sato T, Cibulskis K, Getz G, Stewart C, Lichtenstein L. Calling Somatic SNVs and Indels with Mutect2. <i>bioRxiv</i> , 861054 (2019).
1040 1041 1042	80.	Karczewski KJ, <i>et al.</i> The mutational constraint spectrum quantified from variation in 141,456 humans. <i>Nature</i> 581 , 434-443 (2020).
1043 1044 1045	81.	Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. <i>Nucleic Acids Res</i> 38 , e164 (2010).
1046 1047 1048	82.	Gold L, <i>et al.</i> Aptamer-based multiplexed proteomic technology for biomarker discovery. <i>PLoS One</i> 5 , e15004 (2010).
1049 1050	83.	Sun BB, et al. Genomic atlas of the human plasma proteome. Nature 558, 73-79 (2018).
1051 1052 1053	84.	Gadd DA, <i>et al.</i> Blood protein assessment of leading incident diseases and mortality in the UK Biobank. <i>Nat Aging</i> 4 , 939-948 (2024).
1054 1055 1056	85.	Troyanskaya O, <i>et al.</i> Missing value estimation methods for DNA microarrays. <i>Bioinformatics</i> 17 , 520-525 (2001).
1057 1058 1059 1060	86.	Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. <i>Nat Protoc</i> 7 , 500-507 (2012).

1061 1062 1063	87.	Battle A, Brown CD, Engelhardt BE, Montgomery SB. Genetic effects on gene expression across human tissues. <i>Nature</i> 550 , 204-213 (2017).
1064 1065 1066	88.	Inker LA, <i>et al.</i> New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. <i>N Engl J Med</i> 385 , 1737-1749 (2021).
1067 1068 1069	89.	Uddin MM, <i>et al.</i> Germline genomic and phenomic landscape of clonal hematopoiesis in 323,112 individuals. <i>medRxiv</i> , 2022.2007.2029.22278015 (2022).
1070 1071 1072	90.	Krämer A, Green J, Pollard J, Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. <i>Bioinformatics</i> 30 , 523-530 (2014).
1073 1074 1075	91.	Keku E, <i>et al.</i> Cardiovascular disease event classification in the Jackson Heart Study: methods and procedures. <i>Ethn Dis</i> 15 , S6-62-70 (2005).
1076 1077 1078 1079 1080	92.	McClelland RL, <i>et al.</i> 10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional Risk Factors: Derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) With Validation in the HNR (Heinz Nixdorf Recall) Study and the DHS (Dallas Heart Study). <i>J Am Coll Cardiol</i> 66 , 1643-1653 (2015).
1081 1082 1083 1084	93.	Newman AB, <i>et al.</i> Dementia and Alzheimer's disease incidence in relationship to cardiovascular disease in the Cardiovascular Health Study cohort. <i>J Am Geriatr Soc</i> 53 , 1101-1107 (2005).
1085 1086 1087	94.	Dawber TR, Meadors GF, Moore FE, Jr. Epidemiological approaches to heart disease: the Framingham Study. <i>Am J Public Health Nations Health</i> 41 , 279-281 (1951).
1088 1089 1090 1091	95.	Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP. An investigation of coronary heart disease in families. The Framingham offspring study. <i>Am J Epidemiol</i> 110 , 281-290 (1979).
1092 1093 1094	96.	Psaty BM, <i>et al.</i> Study of Cardiovascular Health Outcomes in the Era of Claims Data: The Cardiovascular Health Study. <i>Circulation</i> 133 , 156-164 (2016).
1095 1096 1097 1098	97.	White AD, <i>et al.</i> Community surveillance of coronary heart disease in the Atherosclerosis Risk in Communities (ARIC) Study: methods and initial two years' experience. <i>J Clin Epidemiol</i> 49 , 223-233 (1996).
1099		

- 1100 98. Walker KA, et al. Large-scale plasma proteomic analysis identifies proteins and
- 1101 pathways associated with dementia risk. *Nature Aging* **1**, 473-489 (2021).

1102

1103

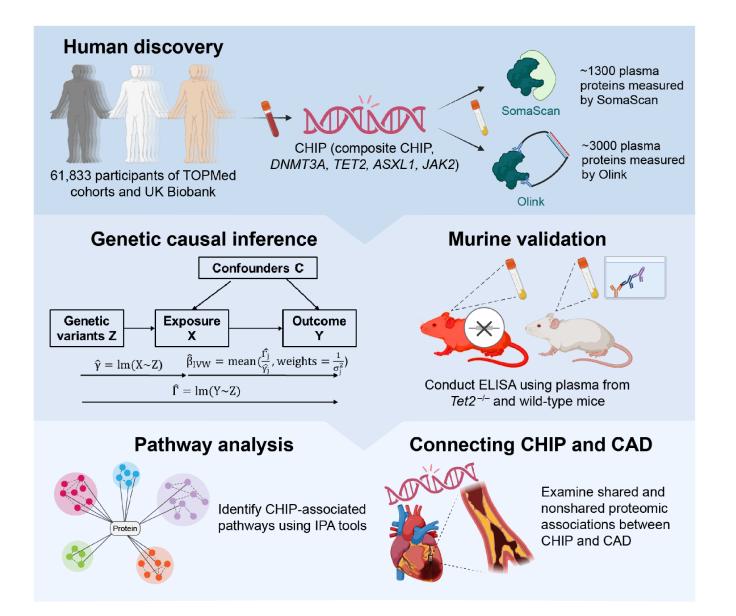
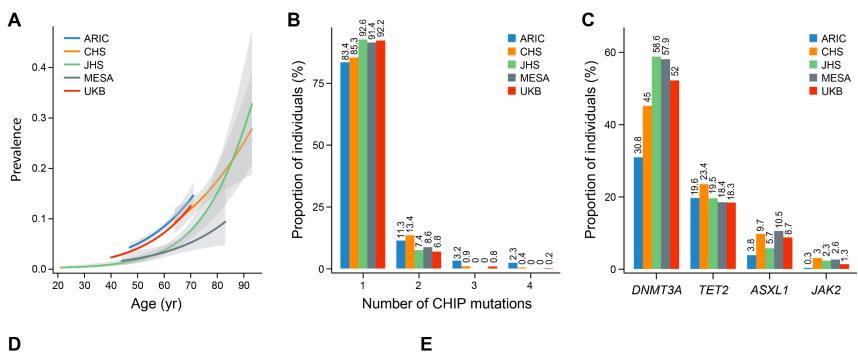
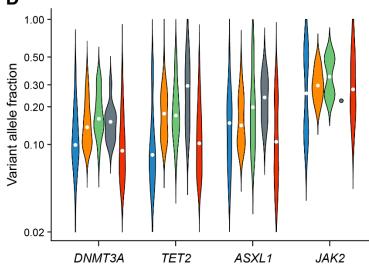


Figure 1: Scheme of the study design. We assessed the associations of CHIP and driver gene-specific CHIP subtypes (*DNMT3A, TET2, ASXL1,* and *JAK2*) with 1,148 circulating proteins measured by the SomaScan platform in 12,911 participants from TOPMed cohorts and 2,923 circulating proteins measured by Olink in 49,217 participants from UK Biobank. Causal relations for the associations were examined through genetic causal inference using Mendelian randomization and murine experiments contrasting plasma protein levels between *Tet2*^{+/+} mice and control mice using

ELISA. Pathway analyses were conducted using IPA tools. Finally, we investigated the associations between prevalent CAD and proteomics, identifying shared proteins associated with both CAD and any examined CHIP variable. CAD: Coronary artery disease. CHIP: Clonal hematopoiesis of indeterminate potential. TOPMed: ELISA: enzyme-linked immunosorbent assay. Trans-Omics for Precision Medicine. Parts of this figure have been created with BioRender.com.





Cohort	N	Platform	Panel	Usage
ARIC	8,188	SomaScan	5K	Discovery
CHS	1,689	SomaScan	5K	Discovery
JHS	2,058	SomaScan	1.3K	Discovery
MESA	976	SomaScan	1.3K	Discovery
UKB	49,217	Olink	ЗК	Parallel discovery

Figure 2. CHIP and proteomics in TOPMed cohorts and UK Biobank. A, CHIP prevalence increased with donor age at the time of blood sampling. The center line represents the general additive model spline, and the shaded region is the 95% confidence interval (N_{ARIC}=8,188; N_{CHS}=1,689; N_{JHS}=2,058; N_{MESA}=976; N_{UKB}=49,217). B. More than 90% of individuals with CHIP had only one somatic CHIP driver mutation variant identified. C. Counts for four driver genes, *DNMT3A, TET2, ASXL1*, and *JAK2*, of CHIP mutations. D. CHIP clone size heterogeneity as measured by variant allele fraction by CHIP driver gene. Violin plot spanning minimum and maximum values. E. Platform and panel used for proteomics measurement by each cohort. CHIP: Clonal hematopoiesis of indeterminate potential.

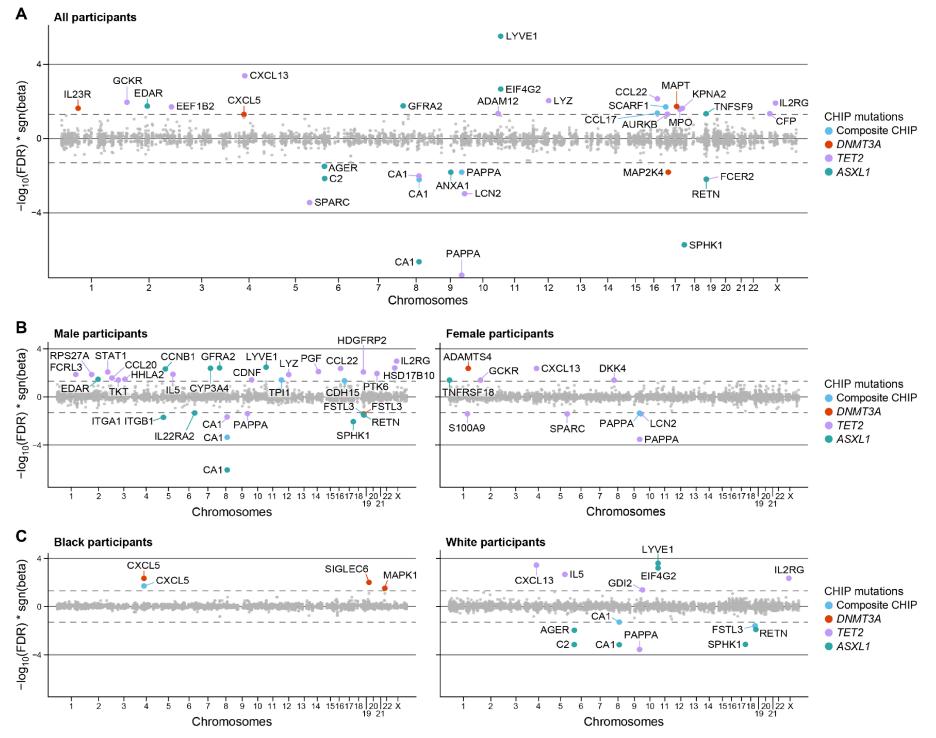


Figure 3. Meta-analyzed associations between CHIP mutations and circulating proteome measured by SomaScan in TOPMed cohorts. A.

All participants (N=12,911). B. Male participants only (N=5,616) vs. Female participants only (N=7,295). C. Black participants only (N=4,452) vs. White participants only (N=8,076). Proteins that are associated at FDR=0.05 level (for 4,560 testings) are labeled with the corresponding SomaScan targets and colored in blue, red, green, and orange, indicating significant associations with composite CHIP, *DNMT3A*, *TET2*, and *ASXL1*, respectively. Associations were assessed through linear regression models adjusting for age at sequencing, sex (if applicable), self-reported race (if applicable), batch (if applicable), type 2 diabetes status, smoker status, first ten principal components of genetic ancestry, and PEER factors (the number of PEER factors varies by cohorts based on the sizes of study populations: 50 for JHS, MESA, and CHS; 70 for ARIC AA; 120 for ARIC EA). AA: African Ancestry; ARIC: Atherosclerosis Risk in Communities; CHIP: Clonal hematopoiesis of indeterminate potential; CHS: Cardiovascular Heart Study; EA: European Ancestry; FDR: False discovery rate; JHS: Jackson Heart Study; MESA: Multi-Ethnic Study of Atherosclerosis; PEER: Probabilistic estimation of expression residuals.

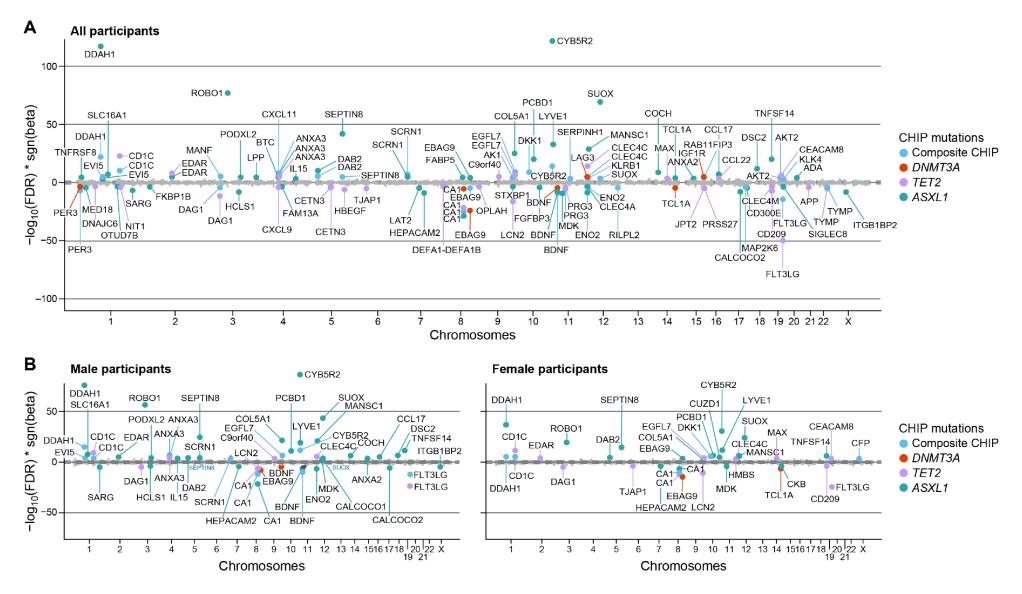


Figure 4. Associations between CHIP mutations and circulating proteome measured by Olink in UK Biobank. A. All participants (N=41,022). B. Male participants only (N=18,831) vs. Female participants only (N=22,191). Proteins that are associated at FDR=0.005 level (for 11,668 testings) are labeled with the corresponding Olink targets and colored in blue, red, purple, and green, indicating significant associations with composite CHIP, *DNMT3A*, *TET2*, and *ASXL1*, respectively. Associations were assessed through linear regression models adjusting for age at sequencing, sex, self-reported British White ancestry (if applicable), type 2 diabetes status, current smoker status, first ten principal components of genetic ancestry, and

150 PEER factors. CHIP: Clonal hematopoiesis of indeterminate potential; FDR: False discovery rate; PEER: Probabilistic estimation of expression residuals.

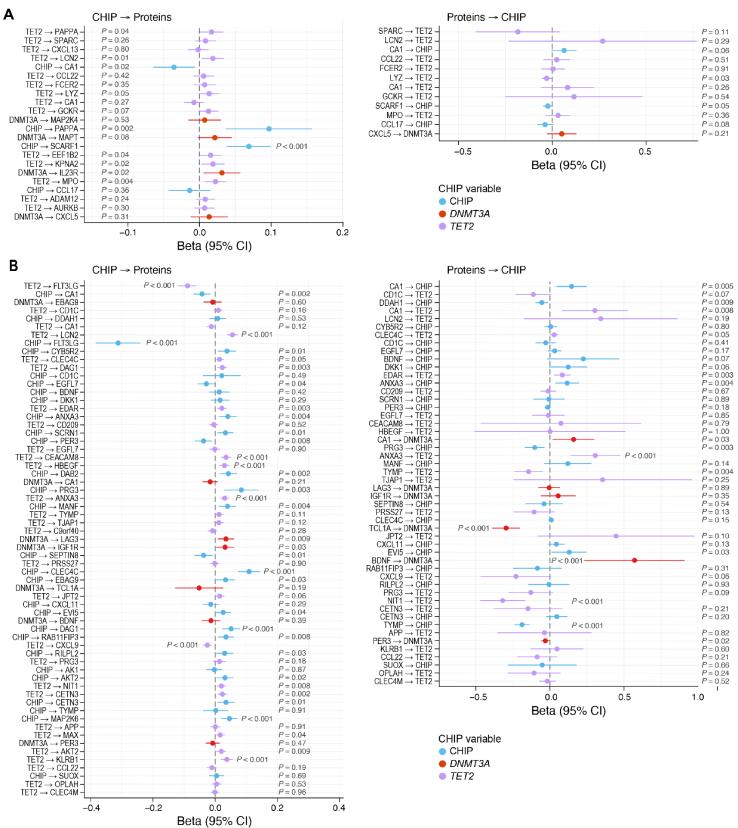


Figure 5. Estimation of bi-directional genetic causal effects between CHIP mutations and associated proteins. A. Proteins measured by SomaScan in TOPMed cohorts. B. Proteins measured by Olink in UK Biobank. For both A and B, we examined CHIP mutations' genetic causal effects on proteins and proteins' genetic causal effects on CHIP mutations. Only CHIP mutation-protein pairs that were significantly associated

at FDR=0.05 level were examined. CHIP mutations were limited to overall CHIP, *DNMT3A*, and *TET2* given the availability of GWAS. Some proteins were not examined as no valid instruments were available. Inverse-variance weighted Mendelian randomization approach were used for the analysis.

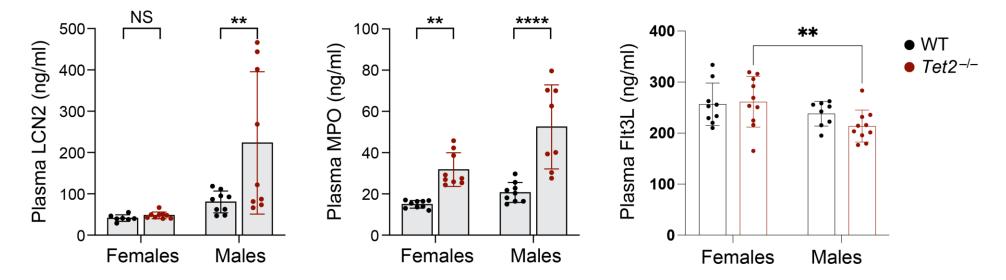


Figure 6. ELISA results of *Tet2^{-/-}* and WT mice for selected plasma proteins whose level changes are associated with and causal by *TET2* in human. A. A protein of which the causal role of *TET2* is supported in both SomaScan and Olink. B. A protein of which the causal role of *TET2* is supported in SomaScan only. C. Proteins of which the causal role of *TET2* is supported in Olink only. Flt3L: FMS-related tyrosine kinase 3 ligand; LCN: Lipocalin 2; MPO: Myeloperoxidase; WT: wild-type

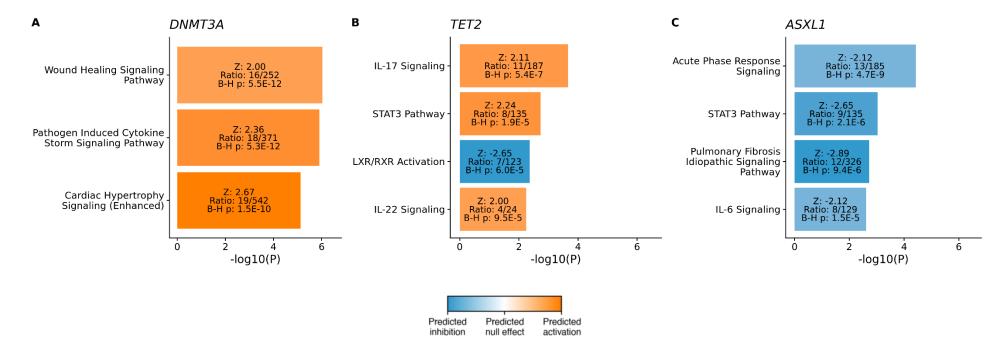


Figure 7. Significantly enriched and modulated pathways were identified among proteins associated with CHIP driver genes. Significantly enriched and modulated pathways corresponding to CHIP-associated proteins were derived based on known genetic and molecular relationships using IPA. The input was the Z-scores of the associations between major CHIP driver genes, i.e., *DNMT3A*, *TET2*, and *ASXL1*, and proteins that were significant at the P=0.05 level. The listed pathways fulfill two criteria: (1) within the top 30 most significantly enriched pathways by input proteins based on IPA analysis (P<0.05) and (2) being significantly modulated, either inhibited or activated, based on IPA analysis (Z>1.96). The orange indicates predicted activation, and the blue indicates predicted inhibition. The darker the color, the stronger the modulated canonical pathways implicated among proteins associated with *DNMT3A*. B. Significantly modulated canonical pathways implicated among proteins associated with *ASXL1*. CHIP: Clonal hematopoiesis of indeterminate potential; IPA: Ingenuity Pathway Analysis

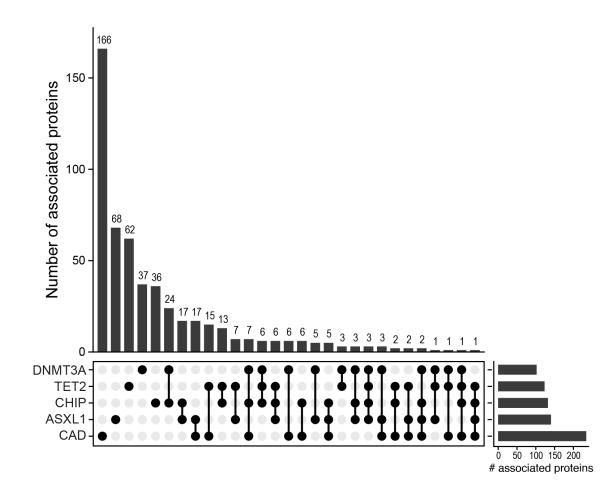


Figure 8. Upset plot showing overlapped and non-overlapped associated proteins between CHIP variables and CAD. A total of 68 proteins were associated with both prevalent CAD and any of the CHIP variables (composite CHIP, *DNMT3A*, *TET2*, and *ASXL1*) at P=0.05 level. For both CHIP variables and CAD, associations were assessed through linear regression models adjusting for age at sequencing, sex, race, batch (if applicable), type 2 diabetes status, smoker status, and the first ten principal components of genetic ancestry. PEER factors (the number of PEER factors varies by cohorts based on the sizes of study populations: 50 for JHS, MESA, and CHS; 70 for ARIC AA; 120 for ARIC EA) were adjusted in CHIP analysis only but not CAD analysis; this is because around 1/3 of them were associated with CAD, but in general not with CHIP. AA: African ancestry; ARIC: Atherosclerosis Risk in Communities; CAD: Coronary artery disease; CHIP, clonal hematopoiesis of indeterminate potential; CHS: Cardiovascular Heart Study; EA: European ancestry; FDR: False discovery rate; JHS: Jackson Heart Study; MESA: Multi-Ethnic Study of Atherosclerosis; PEER: Probabilistic estimation of expression residuals.