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Abstract 80 

Plasma proteomic profiles associated with subclinical somatic mutations in blood cells may offer 81 

novel insights into downstream clinical consequences. Here, we explore such patterns in clonal 82 

hematopoiesis of indeterminate potential (CHIP), which is linked to several cancer and non-83 

cancer outcomes, including coronary artery disease (CAD). Among 61,833 ancestrally diverse 84 

participants (3,881 with CHIP) from NHLBI TOPMed and UK Biobank with blood-based DNA 85 

sequencing and proteomic measurements (1,148 proteins by SomaScan in TOPMed and 2,917 86 

proteins by Olink in UK Biobank), we identified 32 and 345 unique proteins from TOPMed and 87 

UK Biobank, respectively, associated with the most prevalent driver genes (DNMT3A, TET2, and 88 

ASXL1). These associations showed substantial heterogeneity by driver genes, sex, and race, and 89 

were enriched for immune response and inflammation pathways. Mendelian randomization in 90 

humans, coupled with ELISA in hematopoietic Tet2-/- vs wild-type mice validation, 91 

disentangled causal proteomic perturbations from TET2 CHIP. Lastly, we identified plasma 92 

proteins shared between CHIP and CAD.  93 

  94 
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Introduction 95 

Clonal hematopoiesis of indeterminate potential (CHIP) is a common age-related phenomenon 96 

defined as the presence of expanded hematopoietic stem cell (HSC) clones caused by 97 

acquired leukemogenic mutations (e.g., DNMT3A, TET2, ASXL1, and JAK2) in persons without 98 

clinical hematologic abnormalities1, 2. CHIP is a pre-cancerous lesion strongly predictive of 99 

hematologic malignancy3, 4. In addition, CHIP predisposes an individual to other age-related 100 

human diseases, chiefly cardiovascular diseases, in both human genetic and murine experimental 101 

studies4, 5, 6, 7, 8, 9, 10, 11, 12.  102 

Characterizing the consequences of CHIP mutations on the plasma proteome may 103 

facilitate an improved understanding of how CHIP influences clinical outcomes. Recent studies 104 

have associated CHIP with germline DNA variation13, 14, 15, bulk RNA transcript 105 

concentrations16, 17, and epigenomic profiles18, 19 for such insights. While proteins represent key 106 

downstream effector gene products, their associations with CHIP remain largely unknown. The 107 

circulating proteins are involved in numerous biological processes; surveying the proteome 108 

might offer new insights into CHIP and its mechanistic link to disease phenotypes20.  109 

 Leveraging paired DNA sequencing and proteomic profiling from multi-ancestry 110 

participants of four Trans-Omics for Precision Medicine (TOPMed) cohorts (N=12,911) and UK 111 

Biobank (UKB; N= 48,922), we explored the proteomic signatures of CHIP and its most 112 

common or most disease-promoting driver genes (DNMT3A, TET2, ASXL1, and JAK2). We 113 

prioritized potentially causal relationships with Mendelian randomization and validated this 114 

approach with ELISA studies in murine models. Lastly, we explored the functional 115 

implications of CHIP-associated proteins through pathway analyses and by examining the 116 

shared and non-shared pathways between CHIP and CAD (Figure 1).  117 
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 118 

Results 119 

CHIP and Proteomics Characterization in Participants Across Multiple Cohorts 120 

Our study population comprised 61,833 participants with CHIP genotyping from deep-coverage 121 

whole genome or exome sequencing of blood DNA and concurrent plasma proteomics data from 122 

four TOPMed cohorts (N=12,911), utilizing SomaScan assay for proteomics measurements13, 21, 123 

22, and UK Biobank (N=48,922), whose proteomics were measured through Olink23, 24. The four 124 

TOPMed cohorts are the Jackson Heart Study (JHS; N=2,058)25, Multi-Ethnic Study of 125 

Atherosclerosis (MESA; N=976)26, Cardiovascular Health Study (CHS; N=1,689)27, 28, and 126 

Atherosclerosis Risk in Communities (ARIC; N=8,188) Study29.  127 

 Overviews of the study cohorts are described in detail in Methods. In the samples 128 

obtained from the five cohorts, 3,881 (6.0%) individuals were identified as having CHIP. 129 

Consistent with previous reports13, 30, CHIP was robustly associated with age. Across all cohorts, 130 

approximately 90% of individuals with CHIP driver mutations had only one identified mutation. 131 

The most commonly mutated driver genes, DNMT3A, TET2, and ASXL1, accounted for >75% of 132 

individuals with CHIP mutations. The variant allele fraction (VAF) distributions of mutations in 133 

each driver mutation were relatively consistent across participating cohorts (Figure 2, 134 

Supplemental Tables 1-2).  135 

 136 

Diverse Proteomic Associations Across CHIP Driver Genes 137 

CHIP was modeled both as a composite and separately for the most common or pathogenic 138 

drivers (DNMT3A, TET2, ASXL1, and JAK2) and defined both using the conventional thresholds 139 
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for all mutations (VAF ≥2%) and for the expanded (large) clones (VAF ≥10%)1, resulting in ten 140 

CHIP exposure variables. As SomaScan and Olink had a relatively small overlap of proteins 141 

included in their panels with variable correlations between the overlapped proteins, we 142 

conducted separate analyses in parallel. For TOPMed cohorts that used SomaScan for 143 

proteomics measurements, the cross-sectional associations between CHIP mutations and 1,148 144 

plasma proteins present in all cohorts were estimated within each cohort and then meta-analyzed. 145 

Consistent with prior modeling of proteomic analyses of ARIC31, we separated ARIC into two 146 

subpopulations: European Ancestry (EA) and African Ancestry (AA). For UK Biobank, which 147 

used Olink for proteomics measurements, we examined the cross-sectional associations between 148 

CHIP mutations and 2,917 plasma proteins in parallel. JAK2 analyses were only conducted in 149 

cohorts with greater than 5 participants with JAK2 mutations, which only retained CHS, ARIC 150 

EA, and UK Biobank for these analyses; thus, JAK2 analyses were considered secondary.  151 

 Since the associations between proteins and all CHIP mutations (i.e., VAF ≥2%) are 152 

highly correlated to those with their corresponding expanded mutations (i.e., VAF ≥10%) 153 

(Supplemental Table 3), we retained the one with the stronger association (i.e., larger absolute 154 

Z score) to maximize power. In SomaScan-based TOPMed cohorts, this led to the identification 155 

of 35 significant CHIP variable-protein pairs (false discovery rate [FDR]<0.05, 4,592 testings), 156 

representing 32 unique proteins, independent of potential confounders described in detail in 157 

Materials and Methods (Figure 3 and Supplemental Table 4). Adding JAK2 increased the 158 

number of significant pairs to 107 (Supplemental Figure 1 and Supplementary Table 4). In the 159 

Olink-based UK Biobank, 473 CHIP variable-protein pairs (345 unique proteins) passed 160 

FDR<0.05 threshold and the number increased to 861 when adding JAK2 (Figure 4, 161 

Supplemental Table 5, Supplemental Figure 2). 162 
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Consistent with prior work implicating heightened interleukin (IL)-1β, NOD-, LRR- and 163 

pyrin domain-containing protein 3 (NLRP3), IL-6R pathways in CHIP biology9, 13, 16, 17, 32, the 164 

proteins associated with examined CHIP mutations (including JAK2) at FDR=0.05 level were 165 

similarly enriched in these inflammatory pathways. For example, TET2 was negatively 166 

associated with lipocalin 2 (LCN2), a secreted glycoprotein upregulated by IL-1β signaling and 167 

contributing indirectly to NLRP3 inflammasome activity in both TOPMed cohorts (SomaScan) 168 

and UK Biobank (Olink). Significant associations between CHIP variables and interleukin-169 

related proteins involved in the pathways, such as IL-1 receptor type 1 (IL1R1) and type 2 170 

(IL1R2), IL10, and IL-18 binding protein (IL18BP), were also observed in either TOPMed 171 

cohorts or UK Biobank. In addition, we also observed significant positive associations between 172 

CHIP variables and a number of chemokines play a role in immune cell recruitment and 173 

activation during inflammation and also contribute to the production and regulation of IL-1β and 174 

IL-6, consistently in both TOPMed cohorts and UK Biobank, such as C-C motif chemokine 175 

ligand (CCL) 17, CCL22, CCL28, C-X-C motif chemokine ligand (CXCL) 5, and CXCL11. 176 

There were additional significant associations in either study population with other chemokines, 177 

such as CXCL9, and tumor necrosis factor superfamily (TNFSF) members, such as TNFSF14 178 

(Figure 3-4, Supplemental Figure 1-2, and Supplemental Tabe 4-5).  179 

In both TOPMed cohorts and UK Biobank, mutations in individual CHIP genes exhibited 180 

distinct proteomic associations. Among the primary CHIP variables, TET2 and ASXL1 181 

demonstrated a larger number of associations with plasma proteins compared with the most 182 

prevalent driver gene, DNMT3A. TET2 was associated with 16 proteins in TOPMed cohorts and 183 

121 proteins in UK Biobank at the FDR<0.05 threshold. ASXL1 was associated with 11 proteins 184 

in TOPMed cohorts and 157 proteins in UK Biobank at the FDR<0.05 threshold. In contrast, 185 
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DNMT3A was significantly associated with only four and 59 proteins in TOPMed cohorts and 186 

UK Biobank, respectively, and the associations are generally weaker than those with TET2 and 187 

ASXL1. Proteins associated with composite CHIP were typically driven by individual mutant 188 

genes. Despite its infrequency and restricted sample size for secondary analysis, JAK2 was 189 

associated with more proteins than all primary CHIP mutations examined, with 54 proteins 190 

associated in TOPMed cohorts and 315 proteins in UK Biobank. Proteins associated with JAK2 191 

also generally differed from other examined driver genes (Figure 3-4, Supplemental Figure 1-2, 192 

and Supplemental Tabe 4-5). In the TOPMed meta-analysis, some CHIP variable-protein 193 

associations have heterogeneity across cohorts, and this was mainly observed in the associations 194 

between JAK2 and proteins.   195 

  Proteins associated with different CHIP variables are enriched with different functions. 196 

Although the proteins measured by SomaScan and Olink are different, the enriched functions 197 

showed some convergence. TET2 was associated with proteins predominately involved in 198 

immune regulation, as well as extracellular matrix (ECM) remodeling and cell signaling. In 199 

TOPMed cohorts, for example, the top two associated proteins, pappalysin-1 (PAPPA) and 200 

secreted protein, acidic and rich in cysteine (SPARC), both participate in ECM remodeling33, 34, 201 

35, 36, 37, 38, 39. Detailed protein functions are discussed in the Supplemental Text. For participants 202 

with TET2 mutations, plasma PAPPA and SPARC levels were 22% and 8.2% lower, respectively, 203 

than those without TET2 mutations (FDR = 4.6×10-8 and 3.8×10-4, respectively). We observed 204 

significant associations between TET2 CHIP and several proteins related to immune regulation. 205 

For example, the third and fifth strongest associated proteins CXCL13 and CCL22 (both positive 206 

associations; FDR = 3.8×10-4 and 6.7×10-3, respectively) are implicated in regulating IL-1β and 207 

IL-6 levels as mentioned above, and a few other proteins are involved in innate immunity, such 208 
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as lipocalin-2 (LCN2; negative association; FDR = 1.1×10-3; heterogeneity p value = 3.2×10-5 209 

[suggesting less robust evidence]) and myeloperoxidase (MPO; positive association; FDR = 0.02) 210 

(Figure 3 and Supplementary Table 4). In the UK Biobank, notably, LCN2 and SPARC, 211 

associated with TET2 in the TOPMed cohorts, show consistent associations in the UK Biobank 212 

(FDR = 9.4×10-17and 0.005, respectively). TET2 is associated with fms-related tyrosine kinase 3 213 

ligand (FLT3LG), T-cell surface glycoprotein CD1c (CD1C), C-type lectin domain family 4 214 

member C (CLEC4C), and CD209 (FDR = 2.1×10-50, 1.4×10-23, 1.2×10-14, and 1.1×10-7, 215 

respectively). These proteins play key roles in the regulation and activation of immune responses. 216 

TET2 is also associated with tumor necrosis factor receptor superfamily member EDAR (EDAR), 217 

epidermal growth factor-like protein 7 (EGFL7), and proheparin-binding EGF-like growth factor 218 

(HBEGF) (FDR = 1.5×10-8, 6.2×10-7, and 2.2×10-6, respectively), which are involved in cell 219 

growth, differentiation, and survival signaling pathways. Additionally, DAG1 and COL4A1 220 

(FDR = 1.2×10-14 and 0.001, respectively) are linked to TET2, contributing to cell structure 221 

maintenance and extracellular matrix interactions (Figure 4 and Supplementary Table 5).  222 

In addition to immune regulation, ASXL1-associated proteins were enriched in metabolic 223 

regulation and cell signaling. For example, carbonic anhydrase 1 (CA1), which is crucial for 224 

metabolic processes related to pH and ion balance, is the top protein associated with ASXL1 in 225 

TOPMed cohorts and also strongly associated with ASXL1 in UK Biobank40. In both study 226 

populations, CA1 is significantly associated with other CHIP variables. In the TOPMed cohorts, 227 

CA1 levels are 15.9% (FDR = 2.4×10-7), 8.2% (FDR = 0.01), and 4.3% (FDR = 6.7×10-3) lower 228 

among participants with ASXL1, TET2, and composite CHIP, respectively, than those without 229 

those mutations. Similarly, in the UK Biobank, CA1 levels are 21.8% (FDR = 2.4×10-29), 12.4% 230 

(FDR = 3.2×10-22), 6.3% (FDR = 3.2×10-25), and 4.4% (FDR = 5.7×10-6) lower among 231 
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participants with ASXL1, TET2, composite CHIP, and DNMT3A, respectively, than those without 232 

those mutations. The top two associated proteins with ASXL1 in UK Biobank are cytochrome B5 233 

reductase 2 (CYB5R2) and dimethylarginine dimethylaminohydrolase 1 (DDAH1); both are key 234 

metabolic enzymes, with the former supporting electron transport and metabolic stability and the 235 

latter regulating nitric oxide levels to promote vascular health (both positive associations; FDR = 236 

2.1×10-122 for CYB5R2 and FDR = 6.8×10-118). Other proteins associated with ASXL1 span 237 

metabolic regulation, immune regulation, and cell signaling. For example, metabolic protein, 238 

resistin (RETN)41, and immune-regulating proteins, EDAR and lymphatic vessel endothelial 239 

hyaluronic acid receptor 1 (LYVE1)43, are strongly associated with ASXL1 in both TOPMed 240 

cohorts and UK Biobank with consistent directions of effects. And ASXL1, in TOPMed cohorts, 241 

is associated with sphingosine kinase 1 (SPHK1), a protein on signaling pathways that regulate 242 

cell growth and proliferation42, and, in UK Biobank, is also strongly associated with roundabout 243 

guidance receptor 1 (ROBO1), a neural cell adhesion molecule (Figure 3-4 and Supplementary 244 

Table 4-5)42, 43. 245 

In the secondary analysis, JAK2 is associated with 54 proteins in TOPMed cohorts and 246 

316 proteins in UK Biobank that exhibit diverse functions. The top JAK2-associated proteins are 247 

highly consistent between TOPMed cohorts and UK Biobank: Top associated proteins in both 248 

study populations, including P-selectin (SELP) and platelet glycoprotein 1b alpha chain 249 

(GP1BA), play crucial roles in cell adhesion and platelet function had greater concentrations 250 

among those with JAK244, 45 similar to knock-in mice with inducible JAK2V617F 13, 46; additionally, 251 

individuals with JAK2 CHIP had reduced erythropoietin (EPO) concentrations in both study 252 

populations, which has been observed among individuals with JAK2 myeloproliferative 253 

neoplasms47; other top-associated proteins in both study populations are involved in bone 254 
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metabolism and signaling pathway regulation (dickkopf WNT signaling pathway inhibitor 1 255 

[DKK1]), growth and neural development (amphoterin induced gene and ORF 2 [AMIGO2]) 256 

and pleiotrophin [PTN]), and immune response (CXCL11) (Supplemental Figure 1-2 and 257 

Supplemental Table 4-5)48. In ARIC, we additionally adjusted for platelet and white blood cell 258 

(WBC) counts in the sensitivity analysis, and the results were largely robust. The associations 259 

between JAK2 and a few proteins directly related to platelets, such as GP1BA, were diminished 260 

but remained statistically significant (Supplemental Table 6 and Supplemental Figure 3). We 261 

also investigated the relationship between the VAF of CHIP variables and proteomics in the UK 262 

Biobank, finding significant associations comparable to those observed with binary CHIP 263 

variables (Supplemental Table 7). For the aforementioned analysis, additionally adjusting for 264 

estimated glomerular filtration rates (eGFR) yielded consistent results (Supplemental Table 8 265 

and Supplemental Figure 4-5).  266 

 267 

Comparative Analysis of Proteomic Associations Across Platforms 268 

While we observed some consistent associations between results from TOPMed cohorts using 269 

SomaScan for proteomics analysis and UK Biobank, which utilized the Olink platform for 270 

proteomics measurements21, 24, the general agreement between the two platforms is moderate, 271 

consistent with recent report49. There were 493 unique proteins shared between the two platforms. 272 

Among the 2,465 CHIP variable-protein pairs being compared (493 proteins×5 CHIP variables 273 

[DNMT3A, TET2, ASXL1, JAK2, and composite CHIP]), 30.8% was nominally significant in at 274 

least one of the SomaScan-based and Olink-based results. Among them, 114 were nominally 275 

significant in both sets of results, with 26 of them being significant after correcting for multiple 276 

testing (FDR = 0.05) in both SomaScan-based and Olink-based results. Those pairs include the 277 
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top proteins associated with JAK2, strong signals of ASXL1, composite CHIP, and TET2 with 278 

CA1, as well as the association between TET2 and LCN2 (Supplemental Figure 6). Sensitivity 279 

analysis restricted to results from EA only yielded slightly dampened but generally consistent 280 

results (Supplemental Figure 7). Since only 19% of overlapping proteins are highly correlated 281 

between the two platforms in prior work50, we can not rule out the possibility of false positives 282 

and false negatives in this cross-platform comparison.  283 

 284 

Sex-specific and Race-specific Differences in CHIP Variable-Protein Associations 285 

We conducted stratified analyses by sex (both TOPMed cohorts and UK Biobank) and race 286 

(TOPMed cohorts only). While there was no difference in the prevalence of composite CHIP and 287 

each examined driver gene by sex, more proteins were associated with CHIP mutations, and the 288 

associations are generally stronger in males than in females. In TOPMed, there is a relatively 289 

small overlap between significantly associated proteins between females and males 290 

(Supplemental Table 9-10 and Figure 3B). For the 40 CHIP variable-protein pairs that are only 291 

significant in male or female stratified analysis, we introduced and tested for interaction terms 292 

between the corresponding CHIP variables and sex in the combined analysis across all discovery 293 

cohorts. Of these, 15 pairs displayed statistically significant interactions at an FDR = 0.05 294 

(Supplemental Table 11). The sex difference slightly dampened in UK Biobank results; 295 

although only 1/4 of proteins significant in males were also significant in females, the top 296 

associated proteins showed high consistency between males and females. Some interesting sex-297 

specific effects were observed. For example, in females, TCL1 family AKT coactivator A 298 

(TCL1A) was significantly positively associated with TET2 and negatively associated with 299 
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DNMT3A, as recent GWAS discoveries. But this protein was neither associated with TET2 nor 300 

DNMT3A in males (Supplemental Table 12-13 and Figure 4B).  301 

 Proteins associated with CHIP mutations also differ by self-reported race. In TOPMed 302 

cohorts, among individual driver genes, only DNMT3A demonstrated significant proteomic 303 

associations in the Black-only analysis, with two out of three associated proteins, namely sialic 304 

acid-binding Ig-like lectin 6 (SIGLEC6) and mitogen-activated protein kinase 1 (MAK1), not 305 

observed in combined analyses. In contrast, significant associations in the White-only analyses 306 

were primarily driven by TET2 and ASXL1 and largely reflected findings in combined analyses. 307 

And these significant associations were not present in Black-only analyses (Supplemental 308 

Tables 14-15 and Figures 3C). We tested for interaction terms between CHIP variables and race 309 

in combined analysis in ARIC for the 18 proteins that are only significant in Black or White 310 

stratified analysis. Three pairs displayed statistically significant interactions at an FDR = 0.05 311 

(Supplemental Table 16). JAK2 analyses yielded similar sex and race-specific patterns 312 

(Supplemental Tables 9-16 and Supplemental Figures 8-13).  313 

 314 

Genetic Causal Inference for CHIP-proteomics Associations  315 

We performed  genetic causal inference for CHIP-proteomic pairs with FDR < 0.05 to 316 

disentangle the potential proteomic causes and consequences of CHIP using Mendelian 317 

randomization (MR; Methods). Given that only composite CHIP, DNMT3A, and TET2 have 318 

adequate GWAS power, we focused on these three CHIP variables for MR analysis to minimize 319 

the influence of weak instrument bias. In the TOPMed cohorts, among the 22 pairs with valid 320 

instruments, we identified nine pairs where CHIP variables causally influence proteomic changes. 321 

The strongest genetic causal effect was composite CHIP on scavenger receptor class F member 1 322 
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(SCARF1), with composite CHIP presence leading to a 7% increase in SCARF1 levels. Other 323 

significant effects included CHIP on PAPPA and TET2 on MPO. Additionally, we found one 324 

pair where a protein level difference influenced the development of a CHIP variable: higher 325 

lysozyme (LYZ) levels decreased the risk of developing TET2 mutations. In the UK Biobank, we 326 

observed 121 out of 317 pairs where CHIP variables causally influenced proteomic changes. 327 

Notable effects included the causal impact of CHIP and TET2 on decreased FLT3LG 328 

concentrations and TET2's causal effect on LCN2 (Figure 5A-B and Supplemental Table 17-329 

20).  330 

Among the nine significant pairs from the TOPMed Somascan analysis, proteins from 331 

four pairs were also present in the UK Biobank Olink data. Two pairs (composite CHIP to CA1 332 

and TET2 to LCN2) showed consistent significance and causal directions in both datasets, while 333 

the other two pairs were not significantly associated and thus not included in MR analysis. It is 334 

important to note that association effects can encompass bidirectional causal influences. For 335 

instance, while TET2 negatively associates with LCN2, the average causal direction shows that 336 

TET2 positively influences LCN2 levels. 337 

 338 

Murine Evidence Corroborating Human Causal Discoveries 339 

After showing consistency across two proteomics platforms with support for causality from 340 

Mendelian randomization, we examined the plasma levels of proteins influenced by TET2 in 8–341 

9-week-old mice with Tet2 deletion in hematopoietic cells. Specifically, we selected LCN2 342 

(significantly causal by TET2 in both TOPMed cohorts and UK Biobank), MPO (significantly 343 

causal by TET2 in TOPMed cohorts), as well as FLT3LG (significantly causal by TET2 in UK 344 

Biobank) for enzyme-linked immunosorbent assay (ELISA) analysis in male and female with 345 
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hematopoietic Tet2 deficiency and WT mice given their disease relevance based on 346 

epidemiological evidence. Consistent with human genetic causal evidence, we found that 347 

hematopoietic Tet2-/- significantly increased plasma MPO levels in both male and female mice 348 

compared to WT mice, and male mice with hematopoietic Tet2-/- exhibited higher plasma levels 349 

of LCN2 compared to WT controls. However, though slightly decreased in hematopoietic Tet2-/- 350 

female mice, consistent with the causal direction in human genetics analysis, FLT3LG is not 351 

significantly different between hematopoietic Tet2-/- mice and control mice in both males and 352 

females (Figure 6).  353 

 354 

Enriched Biological Pathways and Protein Networks  355 

As SomaScan-measured proteins have wide analytic breadth across the proteome and are 356 

implicated in diverse pathways, we performed pathway analyses to investigate biological 357 

processes and regulatory mechanisms linked to the collective function of proteins associated with 358 

each CHIP driver gene from TOPMed cohorts' results. The examined CHIP driver genes were 359 

broadly enriched in immune response and inflammation-related pathways and disease processes 360 

(Supplemental Figures 14-17). However, the significantly modulated pathways of different 361 

driver genes were involved in different immune activities and exhibited divergent effects. In 362 

addition to activating the cardiac hypertrophy signaling pathway that aligns with the observations 363 

of DNMT3A-mediated CH in heart failure17, DNMT3A-associated proteins activated pathways 364 

involved in acute responses to wound healing signaling and pathogen-induced cytokine storm 365 

signaling pathways51. In contrast, TET2-associated proteins modulated pathways implicated in 366 

autoimmunity and promoted chronic inflammation, activating the IL-17, STAT3, and IL-22 367 

signaling pathways and inhibiting LXR/RXR activation. While DNMT3A and TET2 appeared 368 
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pro-inflammatory, ASXL1 was linked to a number of reduced pro-inflammatory pathways, such 369 

as the STAT3 pathway that was predicted to be activated in the TET2 pathway analysis and 370 

established IL-6 signaling pathway (Figure 7). We conducted sensitivity analysis where we 371 

limited to total quantified proteins as background for pathway analysis and yielded consistent 372 

results (Supplemental Figures 18). In secondary analyses, JAK2-associated proteins modulated 373 

tissue remodeling pathways, such as cardiac hypertrophy and pulmonary fibrosis idiopathic 374 

signaling pathways (Supplemental Figures 19).   375 

 376 

Shared Proteomic Associations in CHIP and CAD 377 

We next used SomaScan proteins to investigate the shared proteomic associations between CHIP 378 

mutations and CAD. Again, we used SomaScan results to facilitate potential novel discoveries. 379 

We analyzed the cross-sectional associations between prevalent CAD, which were assessed at 380 

the visits of blood draws to maintain temporal consistency with CHIP measurement, and 381 

proteomics. Top CAD-associated proteins include known CAD biomarkers, such as N-terminal 382 

pro-BNP (NT pro-BNP; FDR = 5.7×10-13), C-reactive protein (CRP; FDR = 2.7×10-4), and 383 

troponin I and T (FDR = 5.2×10-3 and 7.4×10-3, respectively), consistent with prior studies 384 

(Supplemental Table 21)52, 53, 54, 55. A total of 68 proteins were also associated with composite 385 

CHIP, DNMT3A, ASXL1, or TET2 and CAD at the nominal significance threshold. These shared 386 

proteins have diverse functions, primarily enriched in inflammation and immune response 387 

pathways. Specifically, a number of the shared proteins were implicated in the regulation of IL-388 

1β/NLRP3/IL-6 pathways, including proteins belonging to TNFRSF (such as TNFRSF1B and 389 

TNFRSF10D), members or receptors of the IL-1 cytokine family (such as IL-36α, IL-1Ra, IL-390 

1RL1, and IL-1R2), and other chemokines (such as CXCL13 and CXCL10). Notably, Cxcl13 391 
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and several genes encoding IL-1-related proteins have been shown to have increased expressed 392 

in Tet2−/− peritoneal macrophages exposed to lipopolysaccharide and interferon-γ in vitro32. 393 

Other important inflammatory proteins are implicated, such as protein S100-A9, 394 

myeloperoxidase56, 57, as well as proteins validated in Tet2-/- Ldlr-/- mice that consumed an 395 

atherogenic diet, such as CXCL13 and lysozyme C. Consistent with the functions of proteins 396 

associated with CHIP, proteins related to both TET2 and CAD are involved in the ECM, cell 397 

adhesion, and signaling, such as metalloproteinase inhibitor 3 (TIMP-3)58. Those associated with 398 

both ASXL1 and CAD participate in enzyme and metabolism processes, such as proprotein 399 

convertase subtilisin/kexin type 9 (PCSK9). Proteins associated with both DNMT3A and CAD 400 

have diverse functions, with several proteins involved in the signaling and adhesion of neural 401 

cells, such as contactin-159, 60, 61. Furthermore, 24 proteins were found to be associated with JAK2, 402 

including key proteins involved in hematopoietic traits, such as erythropoietin and ferritin 403 

(Figure 8 and Supplemental Table 22). 404 

 405 

Discussion 406 

The various common mutations that drive CHIP yield differential associations with clinical 407 

outcomes3, 10, 13, and intermediate molecular phenotypes may facilitate a better understanding of 408 

these distinctions. Leveraging large-scale proteomics data from multiple diverse cohorts across 409 

two proteomics platforms, we identified and validated distinct proteomic signatures for common 410 

CHIP driver genes. Furthermore, our findings demonstrated the potential causal relationships 411 

between CHIP and those associated proteins through human genetics and murine ELISA 412 

experiments. More broadly, our study provides mechanistic insights offering novel CHIP driver 413 
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gene-specific therapeutic strategies toward precision prevention of CHIP-associated clinical 414 

outcomes. 415 

Despite convergence on clonal hematopoiesis2, 3, 4, mutations by CHIP driver genes had 416 

varied proteomic associations in both TOPMed cohorts and UK Biobank. Our study 417 

demonstrated that the three common driver genes linked to unique proteins with diverse 418 

functions, which subsequently aggregated into distinct pathways, suggesting these genes may 419 

associate with diseases through separate cellular pathways. For instance, although all examined 420 

driver mutations related to some proteins involved in immune responses, with particular 421 

enrichment in regulating IL-1β/NLRP3/IL-6 pathways, in line with existing knowledge that 422 

CHIP arising from several mutations induces an altered inflammatory state, different genes act 423 

differently. DNMT3A, the most prevalent CHIP driver gene, exhibited a relatively indolent 424 

profile with few and weak associations, primarily implicating first-line defense pathways. In 425 

contrast, TET2, associated with proteins predominantly involved in innate immunity, 426 

inflammation, and extracellular matrix remodeling, and ASXL1, enriched in proteins related to 427 

cell signaling and function and metabolic regulation, appeared to modulate chronic inflammation 428 

pathways, such as STAT3 and IL-6 signaling pathways. JAK2, the least prevalent CHIP mutated 429 

gene examined, was associated with the largest number of proteins exhibiting the strongest 430 

associations, enriched in hematopoietic traits. In particular, our study contributed evidence in 431 

humans of the anti-inflammatory role of ASXL1 CHIP mutations, with pathway analysis showing 432 

predicted reduction across a large number of pro-inflammatory pathways, in direct contrast with 433 

other examined CHIP driver genes. This finding corresponds with the observed coexistence of 434 

pro- and anti-inflammatory characteristics in both zebrafish and murine macrophages with Asxl1 435 

mutations, and similarly in humans with ASXL1 CHIP mutations62, 63. Moreover, leveraging 436 
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multi-ancestry data from both men and women, our study highlighted sex and race differences in 437 

CHIP-proteomic associations, with the sex differences in CHIP's impact on proteome being 438 

observed in our mice experiment as well. The factors driving differential associations across 439 

populations requires further investigation. Several of these findings agree closely with existing 440 

observations at the phenotypic level in humans or mice, substantiating the validity of our results 441 

and offering potential molecular mechanisms to explain these differential phenotypic 442 

associations13, 64, 65.  443 

Association effects can encompass bidirectional causal influences when studying the 444 

relationship between CHIP and proteomics, both of which are dynamic. We conducted MR in 445 

our human study and ELISA in mice models to disentangle and validate the causal relationship 446 

between the two. We demonstrated that proteins with strong human causal evidence, such as 447 

TET2 to MPO and LCN2, exhibit alignment in controlled murine models, supporting the validity 448 

of our human findings. 449 

By examining shared proteomic associations between CHIP and CAD, in addition to 450 

proteins implicated in regulating the established CHIP-related IL-1β/NLRP3/IL-6 pathways, we 451 

implicate new potential associations. For instance, both TET2 and CAD were linked to ECM-452 

related proteins, such as TIMP3, an ECM-bound protein inhibiting a broad range of substrates, 453 

including matrix metalloproteinase66, 67. It is a potent angiogenesis inhibitor68 and has been 454 

shown to play crucial roles in cardiac remodeling and cardiomyopathy69. Recent studies also 455 

suggest its therapeutic potential for heart failure70. Similarly, ASXL1 and CAD were associated 456 

with metabolism-related proteins like PCSK9, a key regulator of lipid metabolism. Inhibitors 457 

targeting PCSK9 lower LDL levels and reduce the risk of cardiovascular diseases71. Furthermore, 458 

DNMT3A and CAD shared associations with signaling and adhesion proteins in neural cells, such 459 
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as contactin-1. This cell adhesion molecule plays a critical role in various aspects of neural 460 

development and function59, 60, 61, and has also been identified as a cardiac biomarker by several 461 

studies72, 73. Our study has limitations. Firstly, both molecular and environmental confounders 462 

might affect the associations between CHIP and the plasma proteome. Also, SomaScan 463 

proteomics from TOPMed cohorts was measured by two SomaScan platforms (1.3K and 5K), 464 

which may introduce heterogeneity due to technical differences. To address that, we adjusted for 465 

recognized confounders, applied PEER factors to mitigate technical noise, performed sensitivity 466 

analyses to reduce residual and unmeasured confounding as much as we could, and also reported 467 

heterogeneity p-value for meta-analysis. Secondly, our study primarily utilized linear models to 468 

explore associations between CHIP driver genes and proteins. However, there may be 469 

interactions and non-linear effects at play. To address this, we assessed interactions between 470 

CHIP variables and both sex and race for proteins, demonstrating differential associations in our 471 

stratified analysis. Thirdly, the cross-sectional design of our study constrains our ability to 472 

establish temporality and causality. Nevertheless, our experimental murine data provides some 473 

ability to infer associations resulting from TET2 mutations.  474 

These results, taken together, provide a comprehensive human plasma proteomic profile 475 

of clonal hematopoiesis. These novel findings inform us of the biological mechanism of various 476 

CHIP mutations and the potential development and testing of interventions to mitigate associated 477 

diseases observed in carriers of these mutations. 478 

 479 

Materials and Methods  480 

Human study participants 481 
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TOPMed is a research program generating genomic data from DNA isolated from blood and 482 

other omics data for more than 80 NHLBI-funded research studies with extensive phenotype 483 

data22. Our current study includes five community-based cohorts: JHS, MESA, CHS, ARIC, and 484 

UKB. The secondary use of data for this analysis was approved by the Massachusetts General 485 

Hospital Institutional Review Board (protocol 2016P001308 and protocol 2021P002228) and, for 486 

the UKB data, facilitated through UKB Application 7089. 487 

JHS is a longitudinal cohort study of 5,306 self-identified Black men and women 488 

recruited in 2000-04 from Jackson, Mississippi25. Our study included 2,058 individuals with 489 

whole-genome sequencing (WGS) and plasma proteomic profiling data22. MESA is a multi-490 

ancestry prospective cohort of 6,814 self-identified White, Black, Hispanic, or Asian 491 

(predominately of Chinese descent) men and women recruited in 2000-0226. We included 976 492 

participants randomly selected for WGS and plasma proteomic profiling analysis74. CHS is a bi-493 

ancestry (White and Black) longitudinal study of 5,888 men and women 65 years or older at 494 

recruitment (1989-90 or 1992-93)27. We analyzed data from 1,689 participants with WGS and 495 

plasma proteomics measurements who consented to genetics study28. ARIC is an ongoing 496 

longitudinal cohort of 15,792 middle-aged, mostly black and white participants recruited in 497 

1987-8975. We included 8,188 participants with valid whole exome sequencing (WES) data and 498 

plasma proteomics measurements at Visit 2 or 3 in our study. These four cohorts, with data from 499 

a total of 12,911 participants, were used for the current analysis. UKB is a comprehensive, 500 

prospective cohort study consisting of approximately 500,000 men and women, predominantly 501 

of EA, who were aged between 40 and 69 years at the time of recruitment from 2006 to 2010 502 

across the UK. Our analysis included a subset of 48,922 participants for whom both WES and 503 

plasma proteomic profiling data were available23, 76. 504 
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The mean age of the participants at the time of DNA sample collection was 57.4 years 505 

(55.8 years for JHS, 60.2 years for MESA, 73.3 years for CHS, 57.8 years for ARIC, and 56.8 506 

years for UKB). Except for JHS, which includes only Black participants, all cohorts are bi-507 

ancestry or multi-ancestry. All cohorts included participants of both sexes, with the percentage of 508 

men ranging from 39% to 47%. 509 

 510 

CHIP calling 511 

WGS and CHIP calling in JHS, MESA, and CHS were previously performed and have been 512 

described in detail elsewhere13. The same procedure was applied for WES data in ARIC and UK 513 

Biobank13, 19. In brief, whole blood-derived DNA was sequenced at an average depth of 38× 514 

using Illumina HiSeq X Ten instruments. All sequences in CRAM files were remapped to the 515 

hs38DH 1000 Genomes build 38 human genome references, following the protocol published 516 

previously77. Single nucleotide polymorphisms (SNPs) and short indels were jointly discovered 517 

and genotyped across the TOPMed samples using the GotCloud pipeline 78. CHIP mutations 518 

were identified using Mutect2 software if one or more of a prespecified list of pathogenic 519 

somatic variants in 74 genes that drive clonal hematopoiesis and myeloid malignancies were 520 

present13, 79. A Panel of Normals (PON) minimized sequencing artifacts and Genome 521 

Aggregation Database (gnomAD) filtered likely germline variants from the putative somatic 522 

mutations call set80. Each Variant Call Format (VCF) file was annotated using ANNOVAR 523 

software81. Variants were retained for further curation if they met the following criteria: total 524 

depth of coverage ≥ 10, number of reads supporting the alternate allele ≥ 3,  ≥ 1 read in both 525 

forward and reverse direction supporting the alternate allele, and variant allele fraction (VAF) ≥ 526 

0.02. In particular, variants with VAF ≥ 0.1 were defined as expanded CHIP clones. 527 
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 528 

Human proteomic measurements 529 

The relative concentrations of plasma proteins or protein complexes from the blood samples of 530 

JHS, MESA, CHS, and ARIC were measured by the SomaScan (SomaLogic; Boulder, CO) 531 

using an aptamer (SOMAmer)-based approach, while proteomics of WHI was measured by 532 

Olink (Olink Proteomics; Uppsala, Sweden) using a proximity-extension immunoassay-based 533 

method. Detailed information on these technologies can be found in the corresponding 534 

manufacturer's protocols24, 82. JHS and MESA utilized a 1.3K human protein platform, while 535 

CHS and ARIC used a 5K human protein platform. We focused on 1,148 proteins shared by both 536 

SomaScan platforms. Protein measurements were reported as relative fluorescence units 537 

(RFUs)21. There were no missing values in the SomaScan proteomic data, and details of the 538 

quality control of the proteins were described elsewhere83. Proteomics measured by Olink in UK 539 

Biobank included 2,917 proteins from cardiovascular, inflammation, cardiometabolic, neurology, 540 

oncology, and other panels. Proteins with ≥ 10% missingness were excluded. Participants who 541 

had >10% missing proteomics data were excluded. When examining the associations between 542 

CHIP variables and proteomics, we did not further process the missingness. When generating 543 

PEER factors for proteomics data, which requires complete data, we used K-nearest neighbors 544 

imputation84, 85. In this study, all proteins underwent log2 transformation. UK Biobank proteins 545 

were additionally normalized centrally.  546 

 547 

Regression model and meta-analysis for human analysis  548 

We examined the cross-sectional associations between CHIP mutations and 1,148 plasma 549 

proteins measured by SomaScan within four TOPMed cohorts, which were then meta-analyzed, 550 
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and between CHIP mutations and 2,917 plasma proteins measured by Olink in UK Biobank. 551 

TOPMed cohorts and UK Biobank analysis were conducted separately, given the limited 552 

overlapping in proteins between the two platforms. CHIP was modeled both as a composite and 553 

individually for the most common or pathogenic drivers (DNMT3A, TET2, ASXL1, and JAK2), 554 

using conventional thresholds for all mutations (VAF ≥2%) and expanded forms (VAF ≥10%), 555 

resulting in a total of ten CHIP mutations. Consistent with a recent analysis31, ARIC was 556 

separated into two subcohorts: ARIC EA and ARIC AA. To reduce redundant information and 557 

multiple testing burdens, we collapsed the composite CHIP and each driver gene with their 558 

corresponding expanded forms, retaining the one with stronger associations (larger absolute Z 559 

score). Within each cohort or subcohort (ARIC), linear regression models were fitted with CHIP 560 

mutations as exposures, log-transformed proteins as outcomes, and various covariates, including 561 

age at sequencing, sex, race, batch, center, diagnoses of type 2 diabetes mellitus at the time of 562 

enrollment, ever-smoker status, first ten PCs of genetic ancestry, and PEER factors as covariates. 563 

PEER factors were adjusted to account for hidden confounders, such as batches, that may 564 

influence clusters of proteins86. The number of PEER factors varied by cohorts based on study 565 

population size: 50 for JHS, MESA, and CHS; 70 for ARIC AA; 120 for ARIC EA31, 87; and 150 566 

for UK Biobank. JAK2 analyses were only conducted in cohorts with more than 5 participants 567 

with JAK2 mutations (i.e., CHS, ARIC EA, and UK Biobank only) to optimize power and 568 

generate more reliable effect estimates; given the required subsetting; JAK2 analyses were 569 

considered secondary analyses. Next, linear regression results from each discovery cohort were 570 

meta-analyzed using inverse-variance weighted fixed-effect meta-analysis. We conducted 571 

stratified analysis by sex (female and male) and by race (Black and White; TOPMed cohorts 572 

only). For CHIP variable-protein pairs that are only significant in either male or female stratified 573 
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analysis, we introduced and tested interaction terms between the corresponding CHIP variables 574 

and sex across all discovery cohorts. Likewise, for pairs that are only significant in Black or 575 

White stratified analysis, we tested for interaction terms between the CHIP variables and race in 576 

the combined analysis of ARIC, as ARIC has a good number of and relatively balanced White 577 

and Black participants. We also conducted secondary analyses additionally adjusting for eGFR 578 

or blood cells (platelet and WBC) in ARIC88. Linear regression models were performed using R 579 

function 'glm' while fixed-effects meta-analysis and tests of heterogeneity were conducted using 580 

the R package 'meta'. We controlled the FDR using the Benjamini-Hochberg procedure and set 581 

an FDR threshold of 0.05 for significance. 582 

 583 

Cross-platform replication for human proteomic associations 584 

We assessed the compatibility of associations between CHIP mutations and proteomic data 585 

measured using two highly multiplexed technologies for large-scale proteomics measurements: 586 

aptamer-based (SomaScan 1.3K) and proximity-extension immunoassay (Olink 3K) platforms21, 587 

24. A total of 493 were overlapped between the two platforms as matched by UniProt IDs. We 588 

compared our results of these proteins between meta-analysis results from TOPMed cohorts 589 

based on SomaScan-measured proteins and results from UK Biobank based on Olink-measured 590 

proteins, with assessing shared CHIP variable-proteomic pairs between both groups.  591 

 592 

Mendelian randomization analyses 593 

We performed two-sample MR analyses for CHIP-proteomic pairs with FDR < 0.05 to estimate 594 

the causal effects of CHIP on proteomics and vice versa. CHIP variables being tested include 595 

composite CHIP, DNMT3A, and TET2, given GWAS availability. The GWAS summary 596 
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statistics for CHIP were from our CHIP GWAS meta-analysis for 648,992 multi-ancestry 597 

individuals in the UK Biobank, TOPMed, Vanderbilt BioVU, and Mass General Brigham 598 

Biobank89. For genetic instruments of proteins, we obtained SomaScan pQTL data from 35,892 599 

Icelanders49 and Olink pQTL data from 48,922 UK Biobank-Pharma Proteomics Project 600 

participants who had their circulating proteomes profiled. All GWAS summary statistics 601 

assumed an additive genetic model. We used the inverse-variance-weighted (IVW) method for 602 

genetic instruments with more than one cis-pQTL and the Wald ratio estimator for instruments 603 

with only one cis-pQTL. IVW estimates were adjusted for residual correlation between genetic 604 

variants.   605 

 606 

Mouse experiments 607 

All experiments were approved by the Institutional Animal Care and Use Committees and were 608 

conducted in accordance with the guidelines of the American Association for Accreditation of 609 

Laboratory Animal Care and the National Institutes of Health. To create animals with specific 610 

Tet2 deletion in hematopoietic cells, we crossed Tet2-floxed line B6;129S-Tet2tm1.1Iaai/J (Jax Cat. 611 

No. 017573) with mice bearing constitutive expression of Cre recombinase under control of the 612 

Vav1 promoter (B6.Cg-Commd10Tg(Vav1-icre)A2Kio/J; Jax Cat. No. 008610).  613 

At 8-9 weeks old, vav1-cre; Tet2-/- (Tet2-/-) and vav1-cre; WT (WT) mice were 614 

sacrificed by  CO2 euthanasia and blood was collected through cardiac puncture.  615 

 616 

ELISA 617 

Mouse plasma levels of MPO, LCN2, and FLT3LG were quantified by ELISA following the 618 

manufacturer's guidelines (Abcam, cat#275109; R&D systems cat# DY1857 and #DY427).  619 
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Pathway analysis for human proteomic association results 620 

We conducted pathway analyses of proteins associated with each CHIP driver gene at a P=0.05 621 

threshold. We applied a nominal threshold (P=0.05) for selecting proteomic associations for 622 

pathway analysis, ensuring a comprehensive view of pathway enrichment by including a wide 623 

range of associated proteins. We input the sets of Z-scores of 102 DNMT3A-associated proteins, 624 

123 TET2-associated proteins, and 140 ASXL1-associated proteins, which were organized into 625 

canonical pathways by the Ingenuity Pathway Analysis (IPA) tool. IPA pathways were 626 

constructed within the Ingenuity Knowledge Base, a large structured collection of findings 627 

containing nearly 5 million entries manually curated from the biomedical literature or integrated 628 

from third-party databases90. The network comprises ~40,000 nodes connected by ~1,480,000 629 

edges representing experimentally observed cause-effect relationships related to expression, 630 

transcription, activation, molecular modification, transportation, and binding events. IPA utilizes 631 

a right-tailed Fisher's exact test to evaluate the enrichment of CHIP driver genes-associated 632 

proteins in each pathway, as well as to infer their potential cause-effect relationships. 633 

 634 

Human coronary artery disease ascertainment 635 

The four TOPMed cohorts have conducted active surveillance for coronary artery disease (CAD) 636 

events through annual follow-up by phone calls, surveys, and/or interviews, and abstracting 637 

medical records, hospitalization records, and death certificates91, 92, 93, 94, 95. In JHS, CAD was 638 

defined as myocardial infarction (MI), death due to CAD, or cardiac procedures, 639 

including percutaneous transluminal coronary angioplasty, stent placement, coronary artery 640 

bypass grafting, or other coronary revascularization91. In MESA, CAD included MI, death due to 641 

CAD, resuscitated cardiac arrest, and revascularization92. In CHS, CAD included MI, death due 642 
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to CAD, angina pectoris, and cardiac procedures, including angioplasty and coronary artery 643 

bypass graft96. In ARIC, CAD included MI observed on ECG, self-reported doctor-diagnosed 644 

heart attack, or self-reported cardiovascular surgery or coronary angioplasty, as well as study-645 

adjudicated CAD cases between visit 1 and visit 2 or 397. In our study, we defined prevalent 646 

CAD cases as those occurring before the blood sample collection visit, where CHIP 647 

measurements were also taken. By aligning the time points for prevalent CAD and CHIP 648 

assessments, we ensured a fair comparison between them in later analyses. 649 

 650 

Shared proteomic associations between CHIP and CAD in human 651 

We investigated the shared proteomic associations between CHIP mutations and CAD using four 652 

discovery TOPMed cohorts (N=12,911), JHS, MESA, CHS, and ARIC, same study population 653 

for examining the associations between CHIP mutations and proteomics in the main analysis. We 654 

first examined the cross-sectional associations between prevalent CAD, assessed at the same 655 

visits as blood draws to maintain temporal consistency with CHIP measurements, and 656 

proteomics. For the associations between CAD and proteomics, we employed the same linear 657 

models used to study the associations between CHIP mutations and proteomics. Specifically, we 658 

again used processed proteomics as the outcome, replaced CHIP with CAD as the exposure, and 659 

adjusted for the same set of covariates excluding PEER factors (age at sequencing, sex, race, 660 

batch, center, type 2 diabetes mellitus diagnoses at enrollment, ever-smoker status, and the first 661 

ten PCs of genetic ancestry). Our decision not to adjust for PEER factors in the CAD and 662 

proteomics association analysis was based on a previous report indicating that PEER factors can 663 

capture proteomic variation related to disease mechanisms98. Additionally, empirical evidence 664 

from our own analysis showed that several PEER factors were associated with CAD, which 665 
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could remove relevant signals. However, PEER factors were generally not associated with CHIP 666 

mutations, and with or without adjusting for PEER factors yielded consistent associations 667 

between CHIP mutations and proteomics. Subsequently, we identified the intersection of 668 

proteins associated with both CHIP mutations and CAD ascertained at the same visits at a 669 

P=0.05 level. We then categorized these proteins according to the type of CHIP mutations and 670 

investigated any differential enrichment by distinct types of CHIP mutations. 671 

 672 

  673 
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Data availability 674 

TOPMed individual-level DNA and proteomics data used in this analysis are available through 675 

restricted access via the dbGaP. UK Biobank individual-level data are available for request by 676 

application (https://www.ukbiobank.ac.uk). All code used for the described analysis will be 677 

uploaded to GitHub once the manuscript is accepted for publication. 678 
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Figure 1: Scheme of the study design. We assessed the associations of CHIP and driver gene-specific CHIP subtypes (DNMT3A, TET2, ASXL1, 

and JAK2) with 1,148 circulating proteins measured by the SomaScan platform in 12,911 participants from TOPMed cohorts and 2,923 circulating 

proteins measured by Olink in 49,217 participants from UK Biobank. Causal relations for the associations were examined through genetic causal 

inference using Mendelian randomization and murine experiments contrasting plasma protein levels between Tet2+/+ mice and control mice using 
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 2 

ELISA. Pathway analyses were conducted using IPA tools. Finally, we investigated the associations between prevalent CAD and proteomics, 

identifying shared proteins associated with both CAD and any examined CHIP variable. CAD: Coronary artery disease. CHIP: Clonal hematopoiesis 

of indeterminate potential. TOPMed: ELISA: enzyme-linked immunosorbent assay. Trans-Omics for Precision Medicine. Parts of this figure have 

been created with BioRender.com. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2024. ; https://doi.org/10.1101/2023.07.25.550557doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.25.550557
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2024. ; https://doi.org/10.1101/2023.07.25.550557doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.25.550557
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Figure 2. CHIP and proteomics in TOPMed cohorts and UK Biobank. A, CHIP prevalence increased with donor age at the time of blood 

sampling. The center line represents the general additive model spline, and the shaded region is the 95% confidence interval (NARIC=8,188; 

NCHS=1,689; NJHS=2,058; NMESA=976; NUKB=49,217). B. More than 90% of individuals with CHIP had only one somatic CHIP driver mutation variant 

identified. C. Counts for four driver genes, DNMT3A, TET2, ASXL1, and JAK2, of CHIP mutations. D. CHIP clone size heterogeneity as measured 

by variant allele fraction by CHIP driver gene. Violin plot spanning minimum and maximum values. E. Platform and panel used for proteomics 

measurement by each cohort. CHIP: Clonal hematopoiesis of indeterminate potential.
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 6 

Figure 3. Meta-analyzed associations between CHIP mutations and circulating proteome measured by SomaScan in TOPMed cohorts. A. 

All participants (N=12,911). B. Male participants only (N=5,616) vs. Female participants only (N=7,295). C. Black participants only (N=4,452) vs. 

White participants only (N=8,076). Proteins that are associated at FDR=0.05 level (for 4,560 testings) are labeled with the corresponding SomaScan 

targets and colored in blue, red, green, and orange, indicating significant associations with composite CHIP, DNMT3A, TET2, and ASXL1, 

respectively. Associations were assessed through linear regression models adjusting for age at sequencing, sex (if applicable), self-reported race (if 

applicable), batch (if applicable), type 2 diabetes status, smoker status, first ten principal components of genetic ancestry, and PEER factors (the 

number of PEER factors varies by cohorts based on the sizes of study populations: 50 for JHS, MESA, and CHS; 70 for ARIC AA; 120 for ARIC 

EA). AA: African Ancestry; ARIC: Atherosclerosis Risk in Communities; CHIP: Clonal hematopoiesis of indeterminate potential; CHS: 

Cardiovascular Heart Study; EA: European Ancestry; FDR: False discovery rate; JHS: Jackson Heart Study; MESA: Multi-Ethnic Study of 

Atherosclerosis; PEER: Probabilistic estimation of expression residuals. 
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 7 

 

Figure 4. Associations between CHIP mutations and circulating proteome measured by Olink in UK Biobank. A. All participants (N=41,022). 

B. Male participants only (N=18,831) vs. Female participants only (N=22,191). Proteins that are associated at FDR=0.005 level (for 11,668 testings) 

are labeled with the corresponding Olink targets and colored in blue, red, purple, and green, indicating significant associations with composite CHIP, 

DNMT3A, TET2, and ASXL1, respectively. Associations were assessed through linear regression models adjusting for age at sequencing, sex, self-

reported British White ancestry (if applicable), type 2 diabetes status, current smoker status, first ten principal components of genetic ancestry, and 
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150 PEER factors. CHIP: Clonal hematopoiesis of indeterminate potential; FDR: False discovery rate; PEER: Probabilistic estimation of expression 

residuals. 
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Figure 5. Estimation of bi-directional genetic causal effects between CHIP mutations and associated 

proteins. A. Proteins measured by SomaScan in TOPMed cohorts. B. Proteins measured by Olink in UK 

Biobank. For both A and B, we examined CHIP mutations’ genetic causal effects on proteins and proteins’ 

genetic causal effects on CHIP mutations. Only CHIP mutation-protein pairs that were significantly associated 
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at FDR=0.05 level were examined. CHIP mutations were limited to overall CHIP, DNMT3A, and TET2 given 

the availability of GWAS. Some proteins were not examined as no valid instruments were available. Inverse-

variance weighted Mendelian randomization approach were used for the analysis.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2024. ; https://doi.org/10.1101/2023.07.25.550557doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.25.550557
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

 

Figure 6. ELISA results of Tet2-/- and WT mice for selected plasma proteins whose level changes are associated with and causal by TET2 

in human. A. A protein of which the causal role of TET2 is supported in both SomaScan and Olink. B. A protein of which the causal role of TET2 is 

supported in SomaScan only. C. Proteins of which the causal role of TET2 is supported in Olink only. Flt3L: FMS-related tyrosine kinase 3 ligand; 

LCN: Lipocalin 2; MPO: Myeloperoxidase; WT: wild-type  
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Figure 7. Significantly enriched and modulated pathways were identified among proteins associated with CHIP driver genes. Significantly 

enriched and modulated pathways corresponding to CHIP-associated proteins were derived based on known genetic and molecular relationships 

using IPA. The input was the Z-scores of the associations between major CHIP driver genes, i.e., DNMT3A, TET2, and ASXL1, and proteins that 

were significant at the P=0.05 level. The listed pathways fulfill two criteria: (1) within the top 30 most significantly enriched pathways by input 

proteins based on IPA analysis (P<0.05) and (2) being significantly modulated, either inhibited or activated, based on IPA analysis (Z>1.96). The 

orange indicates predicted activation, and the blue indicates predicted inhibition. The darker the color, the stronger the modulation effect. A. 

Significantly modulated canonical pathways implicated among proteins associated with DNMT3A. B. Significantly modulated canonical pathways 

implicated among proteins associated with TET2. C. Significantly modulated canonical pathways implicated among proteins associated with ASXL1. 

CHIP: Clonal hematopoiesis of indeterminate potential; IPA: Ingenuity Pathway Analysis  
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Figure 8. Upset plot showing overlapped and non-overlapped associated proteins between CHIP variables and CAD. A total of 68 proteins 

were associated with both prevalent CAD and any of the CHIP variables (composite CHIP, DNMT3A, TET2, and ASXL1) at P=0.05 level. For both 

CHIP variables and CAD, associations were assessed through linear regression models adjusting for age at sequencing, sex, race, batch (if 

applicable), type 2 diabetes status, smoker status, and the first ten principal components of genetic ancestry. PEER factors (the number of PEER 

factors varies by cohorts based on the sizes of study populations: 50 for JHS, MESA, and CHS; 70 for ARIC AA; 120 for ARIC EA) were adjusted in 

CHIP analysis only but not CAD analysis; this is because around 1/3 of them were associated with CAD, but in general not with CHIP. AA: African 

ancestry; ARIC: Atherosclerosis Risk in Communities; CAD: Coronary artery disease; CHIP, clonal hematopoiesis of indeterminate potential; CHS: 

Cardiovascular Heart Study; EA: European ancestry; FDR: False discovery rate; JHS: Jackson Heart Study; MESA: Multi-Ethnic Study of 

Atherosclerosis; PEER: Probabilistic estimation of expression residuals.  
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