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There is widespread interest in how geochemistry affects the genomic makeup

of microbial communities, but the possible impacts of oxidation-reduction (redox)

conditions on the chemical composition of biomacromolecules remain largely

unexplored. Here we document systematic changes in the carbon oxidation state, a

metric derived from the chemical formulas of biomacromolecular sequences, using

published metagenomic and metatranscriptomic datasets from 18 studies representing

different marine and terrestrial environments. We find that the carbon oxidation states

of DNA, as well as proteins inferred from coding sequences, follow geochemical

redox gradients associated with mixing and cooling of hot spring fluids in Yellowstone

National Park (USA) and submarine hydrothermal fluids. Thermodynamic calculations

provide independent predictions for the environmental shaping of the gene and protein

composition of microbial communities in these systems. On the other hand, the carbon

oxidation state of DNA is negatively correlated with oxygen concentration in marine

oxygen minimum zones. In this case, a thermodynamic model is not viable, but the

low carbon oxidation state of DNA near the ocean surface reflects a low GC content,

which can be attributed to genome reduction in organisms adapted to low-nutrient

conditions. We also present evidence for a depth-dependent increase of oxidation

state at the species level, which might be associated with alteration of DNA through

horizontal gene transfer and/or selective degradation of relatively reduced (AT-rich)

extracellular DNA by heterotrophic bacteria. Sediments exhibit even more complex

behavior, where carbon oxidation state minimizes near the sulfate-methane transition

zone and rises again at depth; markedly higher oxidation states are also associated

with older freshwater-dominated sediments in the Baltic Sea that are enriched in iron

oxides and have low organic carbon. This geobiochemical study of carbon oxidation

state reveals a new aspect of environmental information in metagenomic sequences,

and provides a reference frame for future studies that may use ancient DNA sequences

as a paleoredox indicator.
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1. INTRODUCTION

In the last decade, advances in sequencing technology have
produced large metagenomic datasets that can be queried
for geobiological information with ever increasing detail.
Customarily, studies probe the datasets to find “who is there”
and “what are they doing” (Zarraonaindia et al., 2013; Keegan
et al., 2016), with the latter question being aided by recent
developments in metatranscriptomic analysis. These efforts
provide invaluable insight on the identities of organisms,
the biogeochemical impacts of their metabolism, and their
evolution (Torti et al., 2015). For example, correlations between
metagenomic sequences and geochemical conditions have been
used to associate community types (Inskeep et al., 2013) or
metabolic and evolutionary strategies (Alsop et al., 2014) with
environmental variation at different scales. These correlations
also imply that systematic changes in the chemical composition
of DNA might be present.

As a metric derived from chemical composition, the oxidation
state of carbon can be calculated not only for any individual
organic molecule (Kroll et al., 2011), but also for complex
natural mixtures of organic molecules (Kroll et al., 2015).
Previous studies have linked the carbon oxidation state of natural
organic matter to the bioenergetics of degradation (LaRowe and
Van Cappellen, 2011) and environmental conditions (Boye et al.,
2017). Notably, in these studies, correlations of carbon oxidation
state with specific environmental redox conditions were shown
to emerge as a plausible consequence of thermodynamic
constraints. Thermodynamic calculations also offer a route to
assess the impacts of redox conditions on microbial metabolism,
which is based on oxidation-reduction reactions (e.g., LaRowe
and Amend, 2016; Canovas et al., 2017). These and other studies
demonstrate strong links between geochemical environments
and oxidation states of metabolites and natural organic matter,
but it is not known whether geochemistry also shapes the
oxidation state of biomacromolecules. Such a finding would
imply a new role for geochemical redox gradients in microbial
evolution and community structuring.

As with other organic compounds, the carbon oxidation
states of biomacromolecules can be calculated from their
chemical formulas and therefore from biomolecular sequences
(Dick, 2014). Although metabolic reactions are characterized
by large changes in oxidation state (in the extreme case of
hydrogenotrophic methanogenesis, from +4 for CO2 to –4 for
CH4), the ranges of carbon oxidation state of particular types
of biomolecules such as DNA and proteins are much smaller.
Nevertheless, systematic patterns at the biomacromolecular level
have energetic consequences that can also be quantified through
thermodynamics. For instance, it was previously shown that
the chemical compositions of metagenomically predicted protein
sequences are aligned with the gradients of temperature and
redox conditions along the outflow channel of Bison Pool hot
spring in Yellowstone National Park (Dick and Shock, 2011,
2013).

Here, we document the changes in carbon oxidation state of
metagenomic and metatranscriptomic sequences from datasets
representing different types of geochemical redox gradients.

In some environments, we find positive correlations between
environmental redox gradients and carbon oxidation state of not
only DNA, but also RNA and proteins inferred from putative
coding sequences. This relationship occurs along mixing paths
in hydrothermal systems, in depth profiles in hypersaline lakes,
and in the near-surface layers of seafloor sediments and the
Guerrero Negromicrobial mat.We hypothesize that geochemical
redox gradients give rise to thermodynamic constraints that
underlie the environmental shaping of the chemical composition
of microbial communities.

The proposed thermodynamic constraints are not dominant
in all redox gradients, as shown by the increasing carbon
oxidation state of metagenomic DNA with depth in the more
reducing conditions of marine oxygen minimum zones (OMZs).
This pattern is consistent with previously identified low GC
content arising from nutrient limitation and genome reduction
near the oligotrophic ocean surface (Mende et al., 2017).
However, we also observe species-level variability in the carbon
oxidation state, which could be a product of horizontal gene
transfer or selective degradation of extracellular DNA, if any is
present in the samples used for metagenomic analysis. Notably,
in the upper 100 m, the carbon oxidation state of proteins
increases toward the highly oxic surface waters, which may be
a signal of environmental shaping that is not recorded in the
chemical composition of DNA. In sediments, more complex
patterns in carbon oxidation state emerge, which are probably
connected with the onset of more reducing conditions at the
sulfate-methane transition zone, but may also reflect different
paleoenvironments or a return to relatively aerobic conditions in
deeper sediments.

By asking the question, “what are they made of?,” our
study reveals widespread systematic behavior of the carbon
oxidation states of DNA, RNA, and proteins from metagenomes
and metatranscriptomes along geochemical redox gradients.
Documenting these trends helps to outline a framework for
using the chemical compositions of biomacromolecules as a
source of information about the environmental factors that shape
microbial communities.

2. METHODS

2.1. Average Oxidation State of Carbon
The theory and applications of carbon oxidation state in organic
molecules have been extensively discussed elsewhere (e.g., Kroll
et al., 2011; LaRowe and Van Cappellen, 2011; Dick, 2014). The
average oxidation state of carbon (ZC) can be calculated from

ZC =
−h+ 3n+ 2o+ 2s

c
(1)

where c, h, n, o, and s are the coefficients for the corresponding
elements in a chemical formula written as CcHhNnOoSs (Dick,
2014).

If the values of Z (molecular charge) and e (coefficient
on phosphorus) are set to zero in the definition of nominal
oxidation state of carbon (NOSC) given in equation 4 of LaRowe
and Van Cappellen (2011), their equation can be rearranged
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to write Equation 1. Similarly, with n = s = 0, Equation
1 yields the formula for carbon oxidation state in common
hydrogen- and oxygen-bearing organic molecules (OSC; Kroll
et al., 2011). Ionization by gain or loss of protons, or dehydration
reactions associated with the polymerization of amino acids to
form proteins, do not alter ZC (Dick, 2014). The addition of
a phosphate group to either the 3’ or 5’ end of a deoxyribose
or ribose molecule is likewise a dehydration reaction, and the
resulting sugar-phosphate backbone involves no C–P bonds.
Therefore, accounting for the charged phosphate groups is not
necessary to calculate the ZC of a strand of DNA or RNA, which
is simply equal to that in the constituent nucleosides.

2.2. Sequence Processing
Nucleic acid FASTA files of unassembled reads were downloaded
from the NCBI Sequence Read Archive (SRA) or the MG-RAST
server (Meyer et al., 2008). Following previous recommendations
(Brazelton and Baross, 2009), we preferred to use unassembled
sequences, because assembly loses the frequency information
needed for comparative metagenomics (Meyer et al., 2008).
However, for a few datasets that are important representatives
of their environments (Bison Pool, Guerrero Negro, Shimokita
Peninsula, and Yellowstone Park), only contigs rather than
individual reads could be found in public databases; these
were downloaded from NCBI GenBank or IMG/MER (Chen
et al., 2017). The reads were processed using scripts based
on an adaptation of the MG-RAST pipeline for FASTA files
of metagenomic shotgun sequences (Meyer et al., 2008; Wilke
et al., 2017) that terminates after the RNA and protein gene-
calling steps; that is, no taxonomic or functional annotation
was performed at this stage. The scripts were downloaded from
GitHub1 and utilized via a workflow that was implemented
in R (R Core Team, 2018). This file (named ARAST.R for
“Abbreviated RAST”) and all other code and data files required
to reproduce the calculations in this paper have been deposited
in the Zenodo repository (Dick et al., 2018).

Adapter trimming was carried out using the autoskewer.py
script, which utilizes the Skewer program (Jiang et al., 2014).
Length filtering (removal of sequences with length outside of two
standard deviations of the mean, or with more than 5 ambiguous
bases) was performed using the filter_sequences command
with parameters taken from the mgrast_preprocess.pl script.
Dereplication was carried out using the dereplication.py script.
rRNA gene calling was performed using the arast_sortme_rna.pl
script, which depends on the SortMeRNA program (Kopylova
et al., 2012). This script was modified from MG-RAST’s
mgrast_sortme_rna.pl to save both rRNA and non-rRNA
sequences. The sequences remaining after the dereplication step
and the non-RNA sequences identified by the rRNA gene calling
step were used for calculation of ZC of DNA in metagenomes
and metatranscriptomes, respectively. These sequences were
base-paired to obtain the nucleobase composition of double-
stranded DNA, which was used to compute ZC. Double-stranded
DNA (dsDNA) was used in this calculation to more accurately
represent the composition of genomic DNA, since metagenomic

1 https://github.com/MG-RAST/pipeline accessed on 2018-03-07

reads represent the sequences of single strands of fragmented
DNA, and there may be significant GC skew between the leading
and lagging strands in bacterial DNA (Lobry, 1996).

Most datasets considered in this study are composed of
unassembled reads. For these datasets, following MG-RAST,
dereplication was used to remove artificial duplicate reads (ADR)
from the datasets (Keegan et al., 2016). Duplicated reads can
be especially abundant when extra PCR cycles are used for
amplification, such as in a metagenome study of the Baltic Sea
sediment (Marshall et al., 2018). Although read coverage of
assemblies is an important consideration for comparing relative
abundances of genes or organisms, the main focus of this study is
on whole metagenomes. Therefore, base frequencies and carbon
oxidation state were calculated for all reads remaining after
dereplication without any weighting.

Protein gene calling was performed using the
parallel_FragGeneScan.py script, which depends on the
FragGeneScan program (Rho et al., 2010). In contrast to MG-
RAST, which detects overlap between putative protein-coding
genes and rRNA genes (Wilke et al., 2017), our workflow just
uses the non-rRNA sequences, as identified by SortMeRNA,
for the protein gene calling step. The nucleic acid and amino
acid sequence files produced by FragGeneScan were used
for calculation of ZC of putative mRNA and proteins in
both metagenomes and metatranscriptomes. The subset of
negative-sense DNA sequences identified by FragGeneScan was
complemented, then the nucleobase composition of mRNA
corresponding to the entire (now positive-sense) set of coding
DNA sequences was used to calculate ZC of mRNA.

Intra-sample variation was calculated as the standard
deviation of the carbon oxidation state for random subsamples
of sequences in each sample. Subsamples were generated having,
on average, a total of 50,000 bases or amino acids. Subsampling
was performed 100 times; then, ZC was computed for each of
the subsamples, and the mean and standard deviation of ZC were
used to draw the lines and error bars on the plots. Note that the
subsamples generally represent only a small fraction of the total
metagenomic data; increasing the subsample size yields smaller
error bars, but has a secondary effect on the computed mean
values. The Zenodo data deposition (Dick et al., 2018) contains
the nucleobase and amino acid compositions computed from the
subsampling.

For sequence files of contigs downloaded from GenBank
or IMG, the steps up to and including rRNA gene calling
were skipped, and only the calculation of dsDNA composition
and protein gene calling were performed. Sequence processing
statistics and accession numbers for all datasets used in this
study are provided in Table S1. Due to limited computational
resources, we generally used partial FASTA files (up to 150 MB
uncompressed size) downloaded from SRA. The total number of
available reads and the number of used reads for each dataset
is given in Table S1. For estimating the chemical composition
of DNA and proteins in the whole metagenome, partial files are
sufficient. However, complete SRA files were used for taxonomic
analysis (see below), and also for the calculation of ZC for whole
metagenomes presented in Figure 5. That figure shows similar
results to the calculations based on partial files.
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2.3. Thermodynamic Calculations
The overall synthesis of different protein or DNA sequences from
inorganic constituents can be represented by writing formation
reactions from a set of basis species, then comparing the chemical
affinities (opposite of overall Gibbs energy,1G) of these reactions
to assess the relative stabilities of the molecules in a given
environment as defined by the temperature and activities of the
basis species. Although a group additivity model for proteins
including provision for variable ionization of side chains is
available (Dick et al., 2006), an analogous model is not available
for DNA, and a simplified additive estimate of thermodynamic
properties taking account of the frequencies of monomers was
used for both proteins and DNA in this study. Frequencies of
amino acids in predicted proteins and base pairs in double-
stranded DNA were retrieved from the processed metagenomic
and metatranscriptomic data and were combined with standard
Gibbs energies of amino acids (Dick et al., 2006) or +2 charged
nucleotide monophosphates (LaRowe and Helgeson, 2006) at
25 ◦C to give an average per-monomer chemical formula and
standard Gibbs energy of the biomacromolecules in each sample.
Average per-monomer reactions were written for the formation
of DNA and proteins from these basis species (with constant
logarithms of chemical activity): H2O (0), HCO−

3 (–3), H2PO
−

4
(–5), NH+

4 (-7), HS− (–9), H+ (–7, i.e., pH = 7), and e−

(represented by Eh, which is used as a variable in the plots).
Chemical affinities of the reactions were calculated as a function
of Eh at 25 ◦C and 1 bar using the CHNOSZ software package
(Dick, 2008).

A hypothetical protein consisting of 50 alanines (C3H7NO2;
ZC = 0) and 50 glycines (C2H5NO2; ZC = 1) would be represented
in the model by a chemical formula that is the average of
these amino acids (C2.5H6NO2), which has a ZC of 0.4. If the
glycines were replaced by leucine (C6H13NO2; ZC = −1), the
per-monomer formula of the protein would be C4.5H10NO2,
which is considerably more reduced (ZC = −0.67) and whose
synthesis would therefore be predicted to be energetically favored
relative to the first protein by a shift toward a more reducing
environment. Although this per-monomer model does not
account for the loss of H2O upon polymerization of amino
acids or nucleotides, a single H2O is lost for each monomer,
and therefore cancels out in the calculation of relative affinities;
furthermore, dehydration reactions do not affect the ZC of the
molecules.

2.4. Taxonomic Classification
Taxonomic classification was performed using Kraken (Wood
and Salzberg, 2014) with the “dustmasked” 8 GB MiniKraken
database2. In order to obtain sufficient numbers of reads to
represent the chemical compositions of DNA in individual
species, complete DNA sequence FASTA files were obtained
using NCBI’s SRA Toolkit (version 2.9.0)3. Source FASTA
files were processed by trimming, filtering, and dereplication

2https://ccb.jhu.edu/software/kraken/ accessed on 2018-05-27
3https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software accessed on
2018-05-28

as described above, then analyzed with Kraken. The kraken-
report command was used to produce summaries of taxonomic
classifications, which were scanned to identify taxa at the species
or subspecies level making up at least 1% of the classified
sequences in any sample. The summaries for these species are
provided in the Zenodo data deposition (Dick et al., 2018). Three
to six species were selected for each dataset, with preference
given to species that are present and relatively abundant in
multiple datasets. The reads classified to each species were
subsampled 100 times with a sample size yielding 10,000
bases on average. Because of the limited numbers of reads for
individual species, the subsample size must be smaller than
that used for the first part of the study, leading to a higher
standard deviation of the computed ZC values. The accession
numbers used, taxonomic IDs of species, and numbers of reads
classified to each species are given in Table S2. For this analysis
we used a recent metagenome for the HOT ALOHA station
(Mende et al., 2017) that is larger than the one used for the
first set of calculations displayed in Figures S1, S2 (Shi et al.,
2011).

Accurate classification of shotgun metagenomic sequences
at the species level can be problematic, but we believe that
the methods used here provide a reasonable estimate of the
composition of selected species. First, the reads used for
taxonomic classification are not extremely short. The average
length of classified reads was about 215 bp for Ginger Castle
and Shrimp Gulley 2 in the Diffuse Vents datasets, 300 bp
for other datasets in the Diffuse Vents, 460–500 bp for Menez
Gwen, 350–460 for ETNP_OMZ, 260–280 for ETSP_OMZ,
and 300 for HOT ALOHA (Table S2). Read lengths of at
least around 250 bp are needed to improve the sensitivity
of many classification methods, but increasing lengths do
not have a large impact on their precision (Peabody et al.,
2015).

Second, Kraken is notable for using an exact k-mer matching
algorithm that results in very high precision (Wood and Salzberg,
2014). Compared to alignment-based methods, Kraken was
shown to have higher precision at the genus level for Illumina
HiSeq metagenomic data with average read lengths as short
as 92 bp (Wood and Salzberg, 2014). While the precision can
be expected to drop by a few percent in species- compared to
genus-level classification, the drop in sensitivity is considerably
larger, as shown for classification of ribosomal RNA subunits
using the MiniKraken database (Martínez-Porchas et al., 2016).
The main drawback with our method is that the sensitivity is
quite low, as manifested by the low classification rate in our
analysis (median 2.2%; see Table S2). This low classification rate,
combined with our requirement for sufficient total number of
base pairs in all reads classified to a single species (20,000 bp,
which is double the subsample size indicated above) to compute
the average carbon oxidation state, greatly limits the number
of species we can include for comparative analysis. Although
this method suffers from a low sensitivity (high numbers of
false negatives), it has a high precision (low numbers of false
positives) that should give a low error in the calculation of
representative chemical compositions for metagenomic DNA of
individual species.

Frontiers in Microbiology | www.frontiersin.org 4 February 2019 | Volume 10 | Article 120

https://ccb.jhu.edu/software/kraken/
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Dick et al. Carbon Oxidation State of Metagenomes

3. RESULTS AND DISCUSSION

3.1. Environmental Context
Metagenomic and metatranscriptomic data available in
public databases were selected to represent different types of
geochemical redox gradients. Sediments, hydrothermal systems,
microbial mats, and stratified water bodies provide some of
the most well recognized examples of redox gradients, so we
have focused on these environments. Soils are another example,
but they have very complex communities, and we chose not to
include them in this study.

An important criterion for selection was the availability
of corresponding measurements of oxygen, hydrogen, sulfate,
methane, or other redox-sensitive species. The Appendix

describes the sources of sequencing data and the general redox
characteristics of the environments. In summary, the datasets
represent ocean oxygen minimum zones in the Eastern Tropical
North Pacific (ETNP) (EN; Ganesh et al., 2015; Glass et al., 2015)
and Eastern Tropical South Pacific (ETSP) (ES; Stewart et al.,
2012), relatively oxygenated ocean water at Hawaii Ocean Time-
Series (HOT) station ALOHA (HA; Shi et al., 2011), mixing of
seawater and hydrothermal fluid from diffuse vents on the Mid-
Cayman Rise and Juan de Fuca Ridge (DV; Reveillaud et al.,
2016; Fortunato et al., 2018) and Menez Gwen on the Mid-
Atlantic Ridge (MZ; Meier et al., 2016), seafloor sediments of
the Baltic Sea (BS; Thureborn et al., 2016; Zinke et al., 2017;
Marshall et al., 2018) and offshore Shimokita Peninsula in Japan
(SP; Kawai et al., 2014), rock-derived fluids in serpentinite
springs (SS; Brazelton et al., 2012), the Shin-Yan-Ny-Hu (SYNH)
terrestrial mud volcano in southwestern Taiwan (MV; Cheng
et al., 2012), stratified hypersaline environments in Mono Lake,
California (ML; Edwardson and Hollibaugh, 2017) and Organic
Lake, Vestfold Hills, Antarctica (OL; Yau et al., 2013), hot springs
in Yellowstone National Park including the outflow channel
of Bison Pool (BP; Havig et al., 2011; Swingley et al., 2012)
and different community types from multiple hot springs (YP;
Inskeep et al., 2013), and the microbial mat in Guerrero Negro,
Baja California Sur, Mexico (GN; Kunin et al., 2008).

The environmental conditions generally become more
reducing deeper into water, sediments, or microbial mats
(Nealson and Stahl, 1997; see also the references for individual
datasets in the Appendix). In submarine hydrothermal systems,
the conditions are more reducing at lower seawater mixing ratios,
which occur closer to the vents. Near-millimolar H2 is also an
indicator of more reducing conditions at the Ginger Castle and
Shrimp Gulley #2 diffuse vent sites on the Mid-Cayman rise
(Reeves et al., 2014) compared to diffuse vents on the Axial
Seamount on the Juan de Fuca Ridge, where near-micromolar
concentrations of H2 were reported (Fortunato et al., 2018). At
Bison Pool in Yellowstone National Park, different proxies for
redox conditions (dissolved oxygen, sulfate/sulfide ratios and
electrodemeasurements of oxidation-reduction potential (ORP))
indicate a redox gradient that is more oxidizing going away from
the source pool (Dick and Shock, 2011). In the comparison of
multiple hot springs in Yellowstone National Park, the presence
of sulfide and/or elemental S is taken as a proxy formore reducing
conditions (Inskeep et al., 2013). In this paper, we use “oxidizing”
and “reducing” to refer to environmental oxidation-reduction

conditions, and “oxidized” and “reduced” to indicate the relative
carbon oxidation states of biomolecules.

Because geochemical and metagenomic analyses depend on
different physical samples, there are limitations in comparing the
two. However, the errors introduced to the comparisons should
be relatively small in datasets where samples are separated
by large distances, such as depth transects in oceans. At
sampling scales of centimeters or smaller (e.g., Menez Gwen,
Mud Volcano, Guerrero Negro), there is likely to be a larger
uncertainty associated with comparisons of geochemistry and
metagenomic data from different samples. Nevertheless, we
anticipate that this type of uncertainty is secondary to our
main observation of changes carbon oxidation state that span
multiple samples along geochemical gradients. For instance,
at Menez Gwen, where the most distal sample was taken 40
cm from the vent, the oxygen, hydrogen, methane, and H2S
concentrations reported by Meier et al. (2016) are estimates
derived from a mixing model, as in-situ measurements are
not available for all samples. Our observation of a correlation
with biomolecular carbon oxidation state does not depend
on the absolute correctness of these values, only on the
redox gradient, which clearly becomes more oxidizing with
greater seawater mixing. However, we are aware that the
thermodynamic model described here uses a single range
of Eh that is probably not realistic for all environments,
and should be adjusted in future refinements of the
model.

3.2. General Characteristics of Carbon
Oxidation State of DNA and RNA
Figure 1A shows the ZC, calculated using Equation 1, of each
of the nucleobases and those of the corresponding nucleosides
in RNA and DNA. The ZC of the nucleosides is intermediate
between the relatively high ZC of the nucleobases, ranging from
0.8 for thymine to 2.4 for guanine, and the relatively low ZC of
ribose and deoxyribose, which are 0 and –0.4, respectively. Also
indicated in Figure 1A are the A–T and G–C base pairs in DNA;
the G–C pair has a higher carbon oxidation state (0.74) than the
A–T pair (0.50).

In double-stranded DNA, there is a linear relation between
ZC and GC content (percentage of bases that are either G or
C), as shown by the red line in Figure 1B. GC content in
whole genomes ranges from approximately 25–75% (Wu et al.,
2012). Given this range and the relation shown in Figure 1B, we
predict that ZC values for most bulk DNA are about 0.56–0.68.
Substituting ribose for deoxyribose contributes to increase the
ZC of RNA by 0.2 over that of DNA, as indicated by the dashed
blue line in Figure 1B. Likewise, uracil in RNA is more oxidized
than thymine in DNA. This yields another positive contribution
to ZC of RNA that is greater at low GC content (solid blue line in
Figure 1B).

In contrast to double-stranded DNA, the ZC of single-
stranded DNA and RNA depends on the relative abundances of
all bases, not only GC content. The total range is apparent in
Figures 1C,D, showing the ZC of the 61 amino acid-coding DNA
codons and the corresponding amino acids. The point sizes in
these plots reflect the codon usage frequencies in Prochlorococcus
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FIGURE 1 | (A) ZC (Equation 1) of nucleobases (black circles), ribose and deoxyribose (horizontal dotted lines), and nucleosides in RNA and DNA (blue squares and

red triangles). The dashed lines indicate the base pairs in DNA. (B) ZC as a function of GC content in double-stranded DNA (red line) and single-stranded RNA

assuming equal abundances of G and C and of A and U (blue line). As a thought experiment, the dashed blue line represents hypothetical single-stranded RNA where

T takes the place of U; the constant displacement from the red line represents the difference between DNA and RNA that is due only to the substitution of deoxyribose

by ribose. (C,D) Scatterplots of ZC of DNA codons (not double-stranded) and corresponding amino acids. Areas of points are proportional to the frequencies of the

codons in the indicated organisms, and regression lines are plotted using the frequencies as weighting factors.

marinus str. AS9601 and Thermus thermophilus HB8 using data
from the Codon Usage Database (Nakamura et al., 2000)4.
The codon usage differs considerably between these mesophilic
marine and thermophilic terrestrial organisms. However, in both
cases the ZC of amino acids is moderately correlated with that
of the DNA codons, so we expect to find an overall correlation
between ZC of metagenomic DNA and the proteins inferred from
putative coding sequences.

3.3. Carbon Oxidation State Along
Geochemical Redox Gradients
We calculated the average oxidation state of carbon (ZC) in
biomolecular sequences obtained from different redox gradients.
Chemical formulas for sequences of double-stranded DNA
(computed by base-pairing the metagenomic sequences) and
inferred sequences of messenger RNA and proteins were used to
calculate ZC (see section Methods for details).

Plots of ZC of DNA, RNA, and proteins along geochemical
redox gradients in ten representative datasets for different
environments are shown in Figure 2. Plots for all 18 datasets
considered in this study are provided in Figure S1 for DNA and
RNA and Figure S2 for proteins. The dashed lines connect the
mean values for different samples in a dataset. Because RNA
inherently has a higher ZC than DNA (see Figure 1B), an offset of

4 http://www.kazusa.or.jp/codon/ accessed on 2018-03-21

−0.28 was applied to the ZC of RNA in order to show both DNA
and RNA (in red and blue, respectively) on the plots.

In Figure 2 and Figures S1, S2, the horizontal axes are
ordered so that samples with more oxidizing conditions are
positioned toward the right-hand side. This arrangement allows
a quick visual comparison of carbon oxidation state with the
overall redox gradient in each dataset. Most datasets exhibit
either a positive or negative overall correlation, while others, such
the Guerrero Negro microbial mat and the sediments offshore
Shimokita Peninsula, exhibit a more complex behavior. The plots
also reveal generally parallel trends between the carbon oxidation
states of DNA and RNA and, for some datasets, proteins.

The relatively oxidizing surface zones of many environments
often exhibit significant increases in biomolecular carbon
oxidation state compared to regions just below the surface.
Examples are provided by both DNA and inferred proteins
from the Guerrero Negro microbial mat (Figures 2S,T) and
proteins from the ETNP and ETSP oxygen minimum zones
(OMZ) (Figures 2J,L). Moreover, an Antarctic hypersaline lake
(Organic Lake) and the SYNH Mud Volcano in Taiwan both
display increases of ZC of DNA and proteins going from
the deepest samples to the surface (Figures 2O,P; Figures S1,
S2). The seawater background of the Diffuse Vents and the
distal sample at Menez Gwen are other relatively oxidizing
environments that yield DNA and proteins with relatively
high ZC (Figures 2E–H). For stratified systems considered in
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FIGURE 2 | Carbon oxidation state (ZC) of double-stranded DNA (red symbols), messenger RNA of predicted coding sequences (blue symbols), and proteins (green

symbols) along geochemical redox gradients. Separate plots for nucleic acids and proteins are provided for two datasets each for sediment (A-D), hydrothermal vent

(E-H), ocean (I-L), hypersaline (M-P), and microbial mat (Q-T) environments. In order to plot both DNA and RNA on the same diagram, a constant of 0.28 was

subtracted from ZC of RNA. The horizontal axis in each plot is ordered so that relatively oxidizing conditions are toward the right-hand side. This figure includes

selected metagenomic datasets representing different types of environments, as indicated by the row titles. The Mono Lake dataset is a metatranscriptome. Plots for

all datasets considered in this study are in Figure S1 (DNA and RNA) and Figure S2 (proteins). Abbreviations for sample names are given in the Appendix.

this study, the only metagenomic dataset where the ZC of
proteins does not increase at the surface is the Baltic Sea
sediment (Figure 2B), but an increase can be detected in the
metatranscriptomic data (Figure S2).

3.4. Comparison of Metagenomic DNA and
Putative Proteins
The mean values of carbon oxidation state of metagenomic DNA
and inferred proteins are compared with each other in Figure 3A.
The protein sequences were obtained from FragGeneScan (see
section Methods) and reflect putative proteins coded by the
metagenome, not necessarily those that are actually expressed
or present in the communities. Notably, for datasets where ZC

of DNA is positively correlated with the redox gradient (that is,
increases toward more oxidizing conditions; see Figure 2 and

Figure S1), the ZC of proteins also parallels that of DNA. This
is most apparent for Diffuse Vents, Menez Gwen, SYNH Mud
Volcano, Organic Lake, Serpentinite Springs, and Yellowstone
Park. The samples for ocean surface and seawater endmembers,
as well as near-surface samples in terrestrial environments, are
indicated by outlined symbols in Figure 3, emphasizing their
locally higher ZC.

Phototrophic mats in Yellowstone National Park are
highlighted by green outlines in Figure 3. This is another
relatively oxidizing environment that is distinguished from
the chemotrophic communities that inhabit the hotter,
more reducing waters near the sources of hot springs. The
metagenomic data for Bison Pool (Havig et al., 2011; Swingley
et al., 2012) reveal the transitions of communities along the
outflow channel of a single hot spring, while the Yellowstone
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FIGURE 3 | Comparison of mean values of carbon oxidation state (ZC) of DNA and proteins in (A) metagenomes and (B) metatranscriptomes. Dashed lines connect

points in the same dataset, ordered by ZC of DNA; this does not necessarily correspond to the spatial order of samples. OMZ, oxygen minimum zone; SW, seawater.

Park dataset (YNP metagenome project; Inskeep et al., 2013) was
obtained from different hot springs. Despite the differences in
study design, both datasets show the same overall trends toward
more oxidized DNA, RNA, and proteins in the cooler and more
oxidizing phototrophic zones (Figures S1, S2).

In contrast to the positive correlations described above, in
the oxygen minimum zones of oceans (ETNP and ETSP) and
the deeper layers of the Guerrero Negro microbial mat, negative
correlations are apparent: the ZC of metagenomic DNA increases
despite the occurrence of more reducing conditions with depth
(Figures 2I,K,S). The ZC of proteins in these datasets shows little
correlation with that of DNA, but the ZC of proteins increases at
the surface compared to just below the surface (Figures 2J,L,T,
3A). The dataset for HOT ALOHA, where there is detectable
oxygen at all depths (Shi et al., 2011), exhibits a higher ZC of
DNA at lower oxygen concentrations, similar to the OMZs, but
in contrast has a positive correlation between ZC of DNA and
proteins (Figure 3A).

3.5. Carbon Oxidation State of
Metatranscriptomes
The trends described above are reflected to a large extent in
the metatranscriptomic datasets (Mono Lake in Figures 2M,N,
and plots labeled “MT” in Figures S1, S2). The ZC of the
expressed genes detected inmetatranscriptomes increases toward
the sediment surface in the Baltic Sea sediment and the water
surface in Mono Lake. Relatively high carbon oxidation states
of metatranscriptomic cDNA are also apparent for background
seawater compared to hydrothermal fluids in the Diffuse Vents
dataset. Although the changes of ZC of DNA and RNA
along redox gradients are to some extent correlated, some
differences between them are apparent in Figure 2 and Figure S1.

For metatranscriptomic datasets in particular (Figure S1), the
changes in ZC of RNA are relatively flat; this may reflect
physiological requirements that limit the range of chemical
composition of messenger RNA more than genomic DNA.

Notably, each of the metatranscriptomic datasets considered
here exhibits a positive overall correlation between ZC of DNA
and proteins (Figure 3B). Such a trend might be expected based
on the general correlation between carbon oxidation state of
codons and amino acids (see Figures 1C,D). However, the tightly
coupled variation ofZC of transcribedDNA and proteins inmany
metatranscriptomic datasets suggests the possibility of external
forces that may shape the chemical compositions of both types of
biomolecules.

3.6. Thermodynamic Aspects of
Correlations Between DNA, Proteins, and
Environments
In terms of ATP requirements, the biosynthesis of G and C is
more demanding than A and T (Rocha and Danchin, 2002),
but for cells that are in close contact with the environment,
the energetics of synthesis reactions depend on environmental
factors (LaRowe and Amend, 2016). For instance, the overall
Gibbs energies (1G) of synthesis of different nucleobases, amino
acids, and other biomolecules are sensitive to fluid composition
along a seawater-hydrothermal fluid mixing path (Shock and
Canovas, 2010). Here we use thermodynamic calculations to
characterize the potential for environmental constraints on the
carbon oxidation states of DNA and proteins.

The chemical affinities (i.e., the opposite of overall Gibbs
energy; A = −1G) of reactions representing the synthesis of
biomolecules from inorganic precursors are shown in Figure 4A

for the five sampling sites in the Bison Pool dataset. These
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FIGURE 4 | Thermodynamic calculations for relative potential for synthesis of DNA and proteins as a function of environmental oxidation-reduction conditions. (A)

Thermodynamic potential (chemical affinity) calculated for formation reactions of average monomer compositions of DNA (nucleotide monophosphate base pairs) and

proteins (amino acids) at Bison Pool. The x-axis shows the variation of Eh in the calculations. Lines for all 5 samples are present in each plot (red: relatively reducing

environment; blue: relatively oxidizing environment) but are nearly indistinguishable from each other. (B) Relative chemical affinity of formation per monomer of DNA

and proteins in each sample calculated by subtracting the mean value for all samples from the individual sample values. Red circles on the red lines indicate reducing

model conditions for the relatively reducing environments; blue circles and lines correspond to oxidizing conditions. (C) Cross-plots of relative affinity of formation of

monomers in DNA and proteins for different metagenomic and metatranscriptomic datasets, starting with Bison Pool. In quadrant I (white), the relative affinities of

formation of DNA and proteins are both positive, indicating a viable thermodynamic model.

sites follow the gradient from relatively hot, reducing conditions
at the source pool to cool, oxidizing conditions farther along
the outflow channel. As indicated by higher values of A at
lower values of redox potential (Eh), reactions to synthesize
the average per-monomer DNA and protein composition at all
sites become more favorable at more reducing conditions. This
result is compatible with previous calculations of the energetics
of biomolecular synthesis (e.g., LaRowe and Amend, 2016).
The different lines in Figure 4A, representing each of the five
sampling sites at Bison Pool, are nearly indistinguishable from
each other because of the large dependence of the energetics of
oxidation-reduction reactions on the redox variable (Eh) and the
use of average per-monomer compositions of both DNA and

proteins. These average compositions of biomacromolecules span
a smaller compositional range than the individual monomers that
make up the sequences. This averaging step is a way to normalize
the chemical formulas; without it, energetic differences related to
compositional variation would be obscured by the different sizes
of the biomacromolecules (Dick, 2008).

The plot in Figure 4Awould lookmuch the same for any other
dataset. However, there are small yet important differences in the
energetics of the reactions that are not easily seen in Figure 4A.
To visualize these differences, we calculated the mean value of
the chemical affinity for all samples at each point along the
Eh scale. This sample mean, or virtual baseline, was subtracted
from the chemical affinity of the samples themselves (Figure 4A)
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in order to produce the relative affinities shown in Figure 4B.
The blue lines in this figure stand for the two most oxidizing
samples (farthest from the source of Bison Pool), and the red lines
stand for the two most reducing samples (closer to the source).
Thicker red and blue lines are used to indicate themost extremely
located samples. The black line represents the sample from the
transition zone at Bison Pool, known as the “photosynthetic
fringe” (Havig et al., 2011; Swingley et al., 2012). The red and
blue dots in Figure 4B are placed on the same colored lines
at the corresponding (reducing and oxidizing) limits of the Eh
scale on the plot. It is apparent that DNA and proteins from the
samples closer to the source of the hot spring have a positive
relative affinity at reducing conditions (low Eh), and those from
the cooler, more oxidizing parts of the hot spring have a positive
relative affinity at more oxidizing conditions (high Eh).

For rapidly assessing many datasets it is more convenient to
visualize the results for DNA and proteins in a single plot. This
can be done by plotting only the value of the y-axis variables
in Figure 4B (relative chemical affinity per base pair or amino
acid) as the two axes of the plots in Figure 4C. The points at the
ends of the lines in Figure 4C have the same meaning as those in
Figure 4B, and provide an anchor that indicates which end of the
lines corresponds to the upper or lower limit of the Eh scale. For
Bison Pool, these dotted ends all lie in the first quadrant, which
indicates that the relative reaction energies are aligned with the
environmental conditions.

There are only four samples for the Mud Volcano, so no black
line is present for this dataset in Figure 4C. The two samples at
intermediate depths (13 and 23 cm) are represented by thinner
red and blue lines that are relatively short; the red one is very
short and only the dot is visible. This signifies that the energetics
of the overall synthesis of DNA and protein in these samples,
relative to the deepest and shallowest samples, are less sensitive
to changes of redox potential.

In Figure 4C, the first (upper-right) quadrant represents
a positive relative affinity. A model that “hangs together” is
indicated when the dotted ends of the lines, corresponding
to either oxidizing or reducing conditions, fall in the first
quadrant. The metagenomes of Bison Pool and SYNH Mud
Volcano and the metatranscriptomes of Baltic Sea sediment and
the Diffuse Vents all have this pattern. Therefore, a plausible
geobiochemical hypothesis is that environmental shaping of the
carbon oxidation state of metagenomic DNA and proteins arises
from thermodynamic constraints associated with geochemical
redox gradients. Because the thermodynamic model includes
both DNA and proteins, this hypothesis can account for the
coupled changes in carbon oxidation states of both types of
biomacromolecules in these settings (Figure 3).

As a counterexample, the carbon oxidation states of DNA
and proteins in the metagenomes and metatranscriptomes of the
ETNP oxygen minimum zone are not positively correlated with
the environmental redox conditions (Figures 2I,J; Figures S1,
S2). Consequently, the relative chemical affinities for the
synthesis of DNA and proteins plot as a scattered arrangement
of the lines in Figure 4C. In this case, the thermodynamic model
“falls apart” and can not feasibly connect the environmental
redox conditions to the carbon oxidation states of both types

of biomacromolecules. However, the average composition of the
proteins inferred from the metagenome in the uppermost sample
of the ETNP OMZ is relatively oxidized (Figure 2J), giving it a
positive relative affinity, as shown by the blue dot on the bold
blue line for this dataset in Figure 4C.

3.7. Inverse Trends in Oceans
The carbon oxidation state of metagenomic DNA increases with
depth in OMZs (Figures 2I,K) and at station HOT ALOHA
in the subtropical North Pacific open-ocean gyre (Figure S1).
Because oxygen concentrations are actually lower at depth, we
investigated the literature and datasets in greater detail to find an
explanation for this inverse trend of ZC.

We consider four alternative explanations. First, horizontal
gene transfer (HGT) in some environments could impact the
composition of metagenomes. A possible impact of HGT on
chemical composition of DNA is supported by experiments with
Salmonella showing the silencing of low GC content sequences
acquired from foreign DNA, and a preference for AT-rich
sequences in “selfish” genetic elements (Navarre et al., 2006). In
addition, the proportions of mobile genetic elements are higher
in vent metagenomes compared to oceans (Anderson et al.,
2014), and bacteria and archaea aremore prone to gene sharing in
high-temperature and anaerobic settings (Fuchsman et al., 2017).

A second candidate explanation could be provided by
downward transport of DNA from near-surface waters on
sinking particles. Previous authors have noted that downward
transport of DNA adsorbed to particles could increase the GC
content of metagenomes from deeper regions (Eloe et al., 2011),
which would also give a higher ZC (Figure 1B). Large particles, or
the guts of eukaryotes that inhabit the particles, are hot spots for
microbial activity that are likely to develop anoxic microniches
(Fontanez et al., 2015). Therefore, the contribution of sinking
particles to metagenomic DNA at depth is probably derived from
both the ocean surface and anoxic microniches in the particles.
Although particle transport could provide for some surface-
derived features at depth, at best it would tend to flatten the
compositional patterns and can not explain the strong inverse
trends we see for the OMZs in Figure 2.

A third candidate explanation comes from a recent paper
by Mende et al. (2017), who identified increasing GC content
in metagenomes below the mesopelagic zone at HOT ALOHA.
Parallel patterns in GC content were observed for many clades,
and could be attributed to selection for lowGC content associated
with genome reduction in nitrogen-limited surface waters
(Grzymski and Dussaq, 2012). Nitrogen limitation impacts the
usage patterns of both codons and amino acids; not only does
the GC base pair have one more nitrogen atom than the AT base
pair, but the amino acids coded by nitrogen-rich codons also
have more nitrogen (Bragg and Hyder, 2004). The observation
by Mende et al. (2017) of increasing GC content with depth
corroborates our findings of higher carbon oxidation state
of metagenomic DNA in the deeper water at HOT ALOHA
(Figures 1B, 5E; Figure S1).

The fourth candidate explanation is connected with our
observation of variable ZC at the level of species. We obtained
taxonomic classifications using Kraken (Wood and Salzberg,

Frontiers in Microbiology | www.frontiersin.org 10 February 2019 | Volume 10 | Article 120

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Dick et al. Carbon Oxidation State of Metagenomes

FIGURE 5 | Carbon oxidation state of DNA sequences for individual species in metagenomes from different types of marine environments: (A,B) hydrothermal vents,

(C,D) oxygen minimum zones, and (E) relatively oxic ocean gyre. Colors are used to identify species that are present in multiple datasets, small dots indicate species

with reads that make up >1% of the total number of classified reads in that sample, and bold lines indicate the entire metagenomes. The horizontal dotted line in the

lower plots indicates the average ZC of DNA from Ca. Thioglobus singularis in the vent datasets. The calculations for HOT ALOHA shown here use a more recent and

larger dataset than the one shown in Figure S1; see Appendix for description. To avoid clutter from the high density of near-surface samples, depths greater than

500 m at ETSP OMZ and HOT ALOHA are not shown here. Results for the deeper samples are shown in Figure S3. The bold lines in these plots represent entire

metagenomes (after cleaning and dereplication), which are larger than the partial datasets used to make Figure 2 and Figures S1, S2; the only significant difference

is the higher ZC apparent here for the 10 cm Menez Gwen sample.

2014) (see section Methods) and calculated the species-level
carbon oxidation state for selected relatively abundant species
(Figure 5). The absence of representative species with ZC higher
than the whole-metagenome average in Figure 5 is probably
due to limitations of the reference database used for taxonomic
classification or the occurrence of relatively numerous but low-
abundance species with high genomic ZC (i.e., high GC content).
As shown in Figures 5A,B, DNA sequences for most of the
species identified have only slightly variable ZC along redox
gradients in hydrothermal vents (Diffuse Vents and Menez
Gwen), which is the expected outcome if the metagenomes are
random samples of the intracellular DNA from different species,
each with a constant genome composition. On the other hand,
metagenomic sequences of some species in the oxygen-minimum
zones and HOT ALOHA exhibit a systematic variation in ZC that
is parallel to the changes in the entire metagenome instead of
relatively constant (Figures 5C–E). This is particularly evident
for sequences assigned to Ca. Thioglobus singularis, which has
nearly constant ZC in the vents, but a variable ZC that tracks the
differences at the metagenomic level in the OMZ datasets.

Keeping in mind that the species-level assignments used here
should be interpreted with care (see section Methods for details),
variability of the carbon oxidation state of DNA in oceanic

metagenomes is visible even at the species level (Figures 5C–E).
We suggest that pervasive metagenomic reshaping, which
might affect taxonomic levels even lower than the genus- to
phylum-level transitions reported by Mende et al. (2017), might
be an indicator of some extracellular process that modifies
metagenomic DNA. A recent study reported the preferential
removal of low-GC extracellular DNA due to heterotrophic
degradation in an anoxic sediment (Vuillemin et al., 2017),
which may be due in part to faster bacterial degradation
of adenosine monophosphate than cytidine monophosphate
(Therkildsen et al., 1996; Dell’Anno et al., 2002). Heterotrophic
microbes are abundant in OMZs, where they are responsible
for the depletion of oxygen (Stewart et al., 2012). If they
selectively degrade extracellular DNA that is rich in A–T base
pairs (which is relatively reduced; see Figures 1A,B), it could
potentially bias the entire metagenomic DNA pool to higher
GC content and account for the changes in ZC at the species
level in the OMZs and HOT ALOHA (Figures 5C–E). However,
this explanation depends on a significant representation of
extracellular DNA in the metagenomes. Dissolved extracellular
DNA is plentiful in seawater (Nagler et al., 2018), and considering
the tendency for fine particles to adsorb DNA (Liang and Keeley,
2013), extracellular DNA that passes through a prefilter might
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be encountered in the filtrate used for metagenomic analysis.
In addition, some dissolved DNA can be adsorbed to filter
material, although its contribution to metagenomes becomes
proportionally smaller with higher filtering volumes (Boström
et al., 2004). Besides these potential direct contributions
of extracellular DNA to metagenomes, we speculate that
extracellular processing of mobile genetic elements could modify
the composition of foreign DNA that is subjected to HGT, which
would then be incorporated as cellular genomic material that is
detected by metagenomic analyses.

Overall, it seems that the inverse trend of ZC in the
oceans primarily reflects the transition of GC content that is
driven by nutrient limitation near the surface (Mende et al.,
2017). Not only is lower GC content associated with lower
ZC (Figure 1B), but selection for lower nitrogen content in
proteins would also tend to decrease ZC (Equation 1) and
potentially counteract the contribution made by higher oxygen
concentrations. Selective degradation of extracellular low-ZC

(AT-rich) DNA is an additional hypothesis that may explain
the species-level trends, but requires confirmation of the extent
of extracellular DNA represented in metagenomic data. The
potential for heterotrophic degradation is not limited to the
OMZs, and can occur near vents such as Menez Gwen (Meier
et al., 2016). However, except for Sulfurimonas autotrophica in
the Diffuse Vents, our data do not show significant species-level
changes in the ZC of metagenomic DNA among different vent
samples (Figures 5A,B).

It appears that the geobiochemical hypothesis that redox
gradients result in thermodynamic constraints on the chemical
compositions of multiple types of biomacromolecules is more
relevant to environments characterized by mixing of fluids
or the upper surface layers of stratified systems, than to the
interiors of stratified systems like oxygen minimum zones. In
this sense, microbial mats like Guerrero Negro may be similar
to the stratified zones of oceans. Although there is not sufficient
sequence data to quantify the species-level carbon oxidation state
of metagenomic DNA in the Guerrero Negro microbial mat,
selective degradation of AT-rich, relatively reduced extracellular
DNA might contribute to the rise of ZC in the deeper layers of
the mat (Figure 2S). Supporting this idea, ferredoxins and genes
for sugar degradation pathways are more abundant in the deeper
layers, indicating the genetic potential for anaerobic respiration
and heterotrophic metabolism of sugars (Kunin et al., 2008).

3.8. Carbon Oxidation State Reflects
Complex Processes in Sediments
The carbon oxidation state of DNA in the Baltic Sea sediment
metagenomes and metatranscriptomes decreases between the
surface and 41–42 mbsf (Figure 2A, Figure S1), tracking the
transition to more reducing conditions at depth. Microbial
nitrate and sulfate reduction take place in the surface sediments
of the Baltic Sea, but common electron acceptors are depleted
in the deeper subsurface sediments, where methanogenesis
and reductive dehalogenation are likely metabolic strategies
(Zinke et al., 2017). However, the deepest sampled sediments
(47 m below seafloor (mbsf) at Landsort Deep and 67 and

81 mbsf at Little Belt) may also develop relatively oxidizing
conditions. These deep sediments were deposited in the
freshwater glacial Baltic Ice Lake (Marshall et al., 2018) and have
lower organic carbon and higher iron oxide content than the
overlying brackish-water sediments (Egger et al., 2017). These
environmental differences may contribute to the sharp rise of ZC

of metagenomic DNA in the deeper sediments.
The depth profile of carbon oxidation state of metagenomes in

sediments offshore from the Shimokita Peninsula has a V-shape
with a minimum ZC at 5.1 mbsf (Figure 2C), which coincides
with the sulfate-methane transition zone (SMTZ) (Nunoura et al.,
2016). Highly reducing conditions at this depth are suggested
by shipboard detection of a sulfidic odor and methane in the
headspace of core fluids, but not at deeper intervals (to 107
mbsf) where metagenomes were obtained (Aoike, 2007). This
pattern is reversed for the culturability of aerobic heterotrophs,
which minimizes at 4.8–8.0 mbsf and is higher at both 0.5 mbsf
and greater depths (Kobayashi et al., 2008). The deep sediments
also yield an unexpectedly high activity of catalase, an enzyme
used by aerobic organisms (Kobayashi et al., 2008). This may be
indirect evidence for less strongly reducing conditions below the
SMTZ, which would provide an environmental context for the
observed rise of metagenomic ZC. A reversal of redox zonation
may be common in marine sediments, as aerobic metabolism
can be fueled by upward diffusion of sulfate from ancient
brines or oxygen and nitrate from underlying basaltic aquifers
(D’Hondt et al., 2004). Selective degradation of extracellular DNA
also offers a potential explanation for the gradual rise of ZC

of metagenomes below 5.1 mbsf offshore Shimokita Peninsula
(Figure 2C), as aerobic heterotrophic microbes are present in the
deep sediments (Kobayashi et al., 2008). However, for the Baltic
Sea sediment (Figure 2A), the change in carbon oxidation state
of metagenomic DNA is sharper and more likely associated with
a paleoenvironmental transition.

A potential source of uncertainty in some of the datasets is the
use of whole genome amplification, which was performed for all
but the shallowest sample at Shimokita Peninsula (Kawai et al.,
2014), and for the TLE sample of the Serpentinite Springs study
(Brazelton et al., 2012). More work is needed to determine to
what extent the overall oxidation state of metagenomic DNA and
predicted proteins is altered by whole genome amplification and
other sample preparation techniques.

3.9. Global Differences in Oxidation State
of DNA and Proteins
Among all the datasets, the TLE sample from the Serpentinite
Springs study has the most oxidized proteins inferred from
metagenomes. This sample consists of spring fluid that mixed
with a significant fraction of surface runoff from snowmelt
(Brazelton et al., 2012); the other samples in that study, which
were primarily rock-derived fluids, have markedly lower ZC of
both DNA and proteins (Figure 3). Other datasets with relatively
oxidized proteins are the most vent-distal (plume-like) fluid
of Menez Gwen, the surface of Organic Lake in Antarctica,
and the Guerrero Negro microbial mat. The most reduced
proteins are found in hot springs in Yellowstone, followed by
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the hydrothermal fluids of the Shrimp Gulley #2 and Ginger
Castle vent sites at the Mid-Cayman Rise, which are part of the
dataset for the Diffuse Vents in this study. Thus, in addition to
the strong local correlations that are apparent in many individual
datasets, there is a global trend for proteins in hydrothermal
fluids to be more reduced than those in other environments.
However, the oxygenated ocean water at HOTALOHA also hosts
relatively reducedDNA and proteins, while the oxygenminimum
zones have more oxidized proteins, so the links between redox
conditions and the carbon oxidation state at the global scale in
oceans are more ambiguous.

The distribution of points in Figure 3A suggests that the
carbon oxidation state of DNA, in contrast to proteins, falls
into two groups, with relatively low and high ZC in marine
and terrestrial environments, respectively. Note that although
Organic Lake is near the shore of Antarctica and has a marine-
derived biota, it experiences input from terrestrial sources such
as penguins and algae (Yau et al., 2013), and is classified as
a terrestrial environment here. Metagenomic DNA from deep
sediments of the Baltic Sea has a relatively high ZC, but this
signal can be argued to have a terrestrial origin, as these sediments
were deposited in a freshwater setting (Marshall et al., 2018). The
highest range of ZC of metatranscriptomic cDNA is found for the
terrestrial environment represented by Mono Lake (Figure 3B).
Because ZC of double-stranded DNA scales linearly with GC
content (see Figure 3B), our findings are consistent with previous
reports of significantly higher whole-genome GC content in
terrestrial organisms than marine organisms (Wu et al., 2012).

Multiple environmental factors impact the GC content, and
fully sequenced genomes of aerobic organisms also exhibit higher
GC content than those of anaerobic organisms (Naya et al., 2002).
Several biological explanations can be invoked for this trend,
including different patterns of amino acid utilization, higher
stability of the G–C base pair, and greater codon degeneracy
(Naya et al., 2002). The thermodynamic analysis presented

above implies that relatively oxidizing environments favor the
usage of the G–C pair owing to its higher carbon oxidation
state compared to A–T (see Figure 1A), so we suggest that
environmental shaping of chemical composition is another factor
that contributes to the higher GC content in aerobic organisms.

3.10. Prospects for a Paleoredox Indicator
There is little doubt that microbial community composition
dictates to a large extent the chemical composition of
metagenomic DNA. However, there are many different
combinations of microbial assemblages that are identified in
datasets where carbon oxidation state is correlated with the redox
gradient (Table 1). We therefore suggest that the major trends
in carbon oxidation state emerge mainly from environmental
rather than phylogenetic constraints.

Environmental constraints on carbon oxidation state could
play a key role in microbial community assembly. Foerstner
et al. (2005) observed the slow timescale of genomic evolution
compared to community dynamics and argued that “community
GC-content patterns originate at the time of community
assembly, by selective pressures restricting the set of appropriate
organisms from a larger pool of available organisms.” Because
it is strongly related to GC content, patterns in ZC may have a
similar origin. Our results suggest that redox conditions provide
an important selective pressure, since differences in ZC, of nucleic
acids as well as proteins, are the predicted consequence of
thermodynamic forces acting within a redox gradient.

Projecting events in geological history onto phylogenetic
trees is an attractive goal for paleoenvironmental studies (Shock
and Boyd, 2015), but accurate representations require time
calibration of evolutionary steps as well as development and
verification of sequence proxies for environmental conditions
(Boussau and Gouy, 2012). A recent study found that the carbon
oxidation state of proteomes from genomes of organisms bearing

TABLE 1 | Major taxonomic groups in datasets where carbon oxidation states of DNA and proteins are positively correlated with the geochemical redox gradient.

Location and References Reducing Transition Oxidizing

Baltic Sea Sediment

(Thureborn et al., 2016; Zinke et al., 2017)

Euryarchaeota, Atribacteria,

Chloroflexi

Atribacteria, Euryarchaeota, Chloroflexi,

Deltaproteobacteria

Cyanobacteria, Euryarchaeota,

Deltaproteobacteria

Bison Pool

(Dick and Shock, 2013)

Aquificae, Crenarchaeota Deinococcus-Thermus, Firmicutes Chloroflexi, Cyanobacteria

Diffuse Vents

(Reveillaud et al., 2016; Fortunato et al., 2018)

Archaeoglobaceae,

Epsilonproteobacteria

Epsilonproteobacteria,

Gammaproteobacteria

Alphaproteobacteria,

Gammaproteobacteria,

Nitrosopumilus

Menez Gwen

(Meier et al., 2016)

Epsilonproteobacteria, Aquificae Gammaproteobacteria,

Alphaproteobacteria (Rhodobacterales)

Gammaproteobacteria,

Alphaproteobacteria (SAR11)

Mono Lake

(Edwardson and Hollibaugh, 2017)

Firmicutes, Proteobacteria

(Deltaproteobacteria, Clostridia)

Firmicutes, Proteobacteria

(Gammaproteobacteria)

Bacteriodetes, Actinobacteria

SYNH Mud Volcano

(Cheng et al., 2012)

Methanomicrobiales,

Methanosarcinales,

Deltaproteobacteria, Bacteroidetes

Methanomicrobiales, Methanosarcinales,

Firmicutes, Bacteroidetes

Methanosarcinales, ANME-1,

Cyanobacteria,

Gammaproteobacteria

Serpentinite Springs

(Brazelton et al., 2012)

Thiomicrospira Burkholderiales (dominant), Firmicutes Burkholderiales, Firmicutes

Taxonomic summaries are taken from the cited references.
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different isoforms of the nitrogenase gene (Nif-A, Nif-B, Nif-
C, and Nif-D) is linked to the evolutionary transition from
anaerobic to aerobic metabolism (Poudel et al., 2018). Additional
research aimed at clarifying the evolutionary trajectory of ZC and
other dimensions of biomolecular composition could uncover
deeper links with Earth’s changing environments.

Here, we suggest a conservative outlook for using the
carbon oxidation state of DNA as a novel paleoredox proxy.
Within marine environments, the compositional trends must be
interpreted carefully, as negative correlations between carbon
oxidation state and environmental O2 concentrations are likely.
However, the Baltic Sea sediment dataset reveals a strong link
between an oxidizing paleoenvironment (less organic carbon
and more iron oxides) and higher ZC of DNA sequences, but
not proteins (Figures 2A,B). Although the metagenomic DNA
from these sediments is derived mainly from modern organisms,
its carbon oxidation state reflects changes in mineralogy and
geochemical conditions brought on by a geological process.

As a more global prediction for paleoredox applications,
we would expect a shift from reducing hydrothermal fluids to
oxidizing marine and freshwater environments to be reflected
more strongly in the carbon oxidation state of ancient proteins
than DNA (see Figure 3). Although we have focused on
community-wide metagenomic trends in this study, systematic
differences in carbon oxidation state of proteins also occur
within phylogenetic lineages, which is evident for some phyla
that inhabit both high- and low-temperature (i.e., reducing
and oxidizing) locations in Bison Pool (Dick and Shock,
2013). Groups that display ambiguous and smaller changes
in carbon oxidation state, such as the Proteobacteria (see
Figure 1 in Dick and Shock, 2013), may be less attractive
for potential paleoredox applications. Taken together,
these results indicate new opportunities for developing a
biomacromolecular paleoredox proxy in sediment environments
and for identifying ancient systems dominated by hydrothermal
input, but the extension to ocean environments is more
challenging.

4. CONCLUSIONS

We have shown that the oxidation state of carbon in
DNA and protein sequences derived from metagenomes
changes systematically along geochemical redox gradients. A
geobiochemical hypothesis for the positive correlations is that
redox gradients result in thermodynamic constraints on the
chemical compositions of different types of biomacromolecules.
We derived support for this hypothesis from a thermodynamic
model that accounts for the overall positive correlations of
oxidation states of DNA and proteins with redox gradients in hot
springs and submarine hydrothermal systems.

This systematic behavior is reversed in oceanic oxygen
minimum zones, yielding strong negative correlations between
biomolecular oxidation state and oxygen concentration with
depth. We recognize that a thermodynamic model is not
applicable in these cases. It might be that the geobiochemical
hypothesis is more applicable to redox gradients associated
with mixing of fluids than stratified systems. In the latter,
biological processes including genome reduction and horizontal

gene transfer, possibly influenced by selective degradation
of extracellular DNA, probably dominate. However, positive
correlations are evident in particular layered systems, such
as hypersaline lakes and the uppermost layers of oceans
and a microbial mat. More work is needed to identify the
evolutionary and ecological factors that allow the compositions
of biomacromolecules in these environments to be shaped by the
redox gradients.

This study promotes a perspective in which life emerges
from, and is part of, the environment. Just as evolutionary
constraints are regarded as limitations on the variability available
to natural selection (Schwenk, 1995), the manifestation of
putative thermodynamic constraints is not an indicator of
biological adaptation to geochemical gradients, but of limitations
on the chemical compositions of biomolecules. Our exploration
of these constraints is a novel counterpart to functional studies
in geomicrobiology and is a source of independent predictions
linking biological and geochemical data. The carbon oxidation
state can be calculated for annotated genes, hypothetical genes,
and non-coding sequences, making it applicable to a wider range
of sequence data than is available for taxonomic and functional
analysis. Further quantifying this variable and characterizing the
thermodynamic constraints on it may lead to new applications
for geobiochemistry, such as using reconstructed ancestral
sequences as a paleoredox proxy.
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