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Brain metabolic dysfunction is known to influence brain activity in several neurological
disorders, including Alzheimer’s disease (AD). In fact, deregulation of neuronal
metabolism has been postulated to play a key role leading to the clinical outcomes
observed in AD. Besides deficits in glucose utilization in AD patients, recent evidence
has implicated neuroinflammation and endoplasmic reticulum (ER) stress as components
of a novel form of brain metabolic stress that develop in AD and other neurological
disorders. Here we review findings supporting this novel paradigm and further discuss
how these mechanisms seem to participate in synapse and cognitive impairments
that are germane to AD. These deleterious processes resemble pathways that act in
peripheral tissues leading to insulin resistance and glucose intolerance, in an intriguing
molecular connection linking AD to diabetes. The discovery of detailed mechanisms
leading to neuronal metabolic stress may be a key step that will allow the understanding
how cognitive impairment develops in AD, thereby offering new avenues for effective
disease prevention and therapeutic targeting.
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Introduction

Incidence of Alzheimer’s disease (AD) will greatly increase as world population ages (Prince et al.,
2013) and changes in lifestyle observed in recent decades seem to be major contributors to such
increased prevalence (Mattson, 2012; De Felice, 2013). Likewise, common diseases of modern
adulthood, including obesity and diabetes mellitus, have been often regarded as AD risk factors
(De Felice, 2013). Pioneering epidemiological studies connecting AD to diabetes initiated in the
1990s (Ott et al., 1996, 1999; Kalmijin et al., 1997) and were followed by several reports providing
both clinical and experimental evidence into how these two disorders may course together (de la
Monte, 2009; Matsuzaki et al., 2010; Crane et al., 2013; De Felice, 2013; De Felice et al., 2014).

Metabolic derangements, including inflammation, insulin resistance and endoplasmic
reticulum (ER) stress, are known to underlie glucose intolerance and type 2 diabetes mellitus
(T2DM) in peripheral tissues (Hotamisligil et al., 1995, 1996; Ozcan et al., 2004, 2006; Hotamisligil,
2006). A similar scenario has been recently described in the brains of patients that suffer from
neurodegenerative disorders, such as AD. Neuropathology investigations have revealed that AD
brains present several markers of insulin resistance, inflammation and ER stress (Hoozemans et al.,
2005; Steen et al., 2005; Moloney et al., 2010; Bomfim et al., 2012; Talbot et al., 2012; O’Neill, 2013;
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De Felice et al., 2014). In the following sections, we review current
evidence indicating that a newly defined form of metabolic stress
leads the path to cognitive decline in AD. The understanding of
molecular mechanisms driving AD pathogenesis may shed new
light on novel targets for drug development and offer strategies
for disease prevention.

AD Pathogenesis

AD pathophysiology includes neuroinflammation, oxidative and
ER stress, synapse loss and degeneration of specific neuronal
populations (Selkoe, 2002; Ferreira and Klein, 2011; Mucke and
Selkoe, 2012). Amyloid-β peptide (Aβ) is the main component
of senile plaques that accumulate in AD brains (Masters
et al., 1985), and substantial evidence indicates that Aβ is
causally involved in AD (Mucke and Selkoe, 2012). Consolidated
knowledge has established that soluble Aβ oligomers (AβOs;
Lambert et al., 1998), and not necessarily the insoluble amyloid
fibrils detected in senile plaques, promote direct damage to
synapses, besides stimulating inflammatory response and cellular
stress (Ferreira and Klein, 2011; Viola and Klein, 2015). These
findings prompt AβOs, which are increased in AD brains (Gong
et al., 2003; Xia et al., 2009), to be considered neurotoxins
responsible for synapse and memory loss in AD early
stages.

Very recent data has demonstrated that AβO actions
stimulate pro-inflammatory mechanisms to impair neuronal
insulin signaling and to trigger stress kinase activation, resulting
in synapse and memory impairments in AD models (Bomfim
et al., 2012; Lourenco et al., 2013; Ma et al., 2013). These
events are quite similar to those acting in peripheral tissues
to impair metabolism in diabetes and obesity (De Felice and
Ferreira, 2014), in line with the idea that a form of metabolic
stress develops in AD brains (Kapogiannis and Mattson, 2011;
Yoon et al., 2012; De Felice and Ferreira, 2014). Such findings
may impact translational research, as treating brain metabolic
dysfunction might be a key strategy to fight neurological
disorders.

Brain Metabolic Stress Mechanisms in AD

In peripheral tissues, prolonged inflammatory cascades lead
to the activation of multiple cellular stress mechanisms
that ultimately impair cell function and body metabolism
(Hotamisligil, 2006; Gregor and Hotamisligil, 2011). In AD,
evidence arising from in vitro, in vivo and neuropathology
studies supports that such events occur throughout disease
development and are linked to AβO neurotoxicity. Oligomers
promote neuronal stress by instigating abnormal elevations in
levels of tumor necrosis factor α (TNF-α) and reactive oxygen
species (ROS), as well as activation in JNK/PKR signaling
and increased eIF2α phosphorylation (eIF2α-P) levels in AD
models (De Felice et al., 2007, 2014; Ma et al., 2009, 2013;
Bomfim et al., 2012; Lourenco et al., 2013). In this context,
pro-inflammatory signals appear to be directly responsible for
defective insulin signaling and stress-mediated synapse loss
caused by AβOs in neurons (Bomfim et al., 2012; Lourenco

et al., 2013). This has led to a concept in which AβOs build
up in pre-AD brains to cause inflammation (e.g., gliosis and
cytokine production) and neuronal metabolic stress, ultimately
leading to synaptic dysfunction and behavioral alterations. We
next detail some of the mechanisms recently implicated in AD
pathogenesis.

Unfolded Protein Response
Unfolded Protein Response (UPR) is defined as a collection of
signaling pathways that respond to ER stress due to accumulation
of misfolded proteins and/or impaired homeostasis. ER
membrane sensors activate three signaling axes (ATF6α, IRE-
1α/XBP-1s and PERK/eIF2α-P) to instigate transcriptional and
translational alterations aimed at restoring cell homeostasis
(Lai et al., 2007; Hetz et al., 2013). UPR signaling attenuates
global translation and favors the synthesis of select transcription
factors, such as ATF4, CHOP and Nrf2 (Buffington et al., 2014;
Hetz and Mollereau, 2014). Under continued stress, however,
these pathways may promote cell damage and death. This
hormetic response pattern is thus critical to determine cell fate
in such conditions (Mattson, 2008; Hetz, 2012).

Evidence for canonical UPR activation has been found in
AD neurons (Hoozemans et al., 2005, 2009; Yoon et al., 2012)
and in AD mouse models (Yoon et al., 2012; Ma et al., 2013).
In accordance, AβOs trigger UPR in hippocampal neurons in
vitro and in vivo (Chafekar et al., 2007; Casas-Tinto et al.,
2011; Lourenco et al., 2013; Barbero-Camps et al., 2014), and
experimental induction of ER stress leads to neuronal metabolic
stress (Yoon et al., 2012), tau phosphorylation (Bose et al.,
2011; van der Harg et al., 2014), stress kinase activation (Bose
et al., 2011; Paquet et al., 2011) and cognitive impairment in
mice (Lourenco et al., 2013). Further, alleviating ER stress with
4-phenylbutyrate, a chemical chaperone, promotes cognitive
benefits in AD mouse models (Ricobaraza et al., 2009, 2010;
Wiley et al., 2011; Lourenco et al., 2013).

Substantial recent evidence has proposed that UPR activation
is a common feature of different neurodegenerative diseases,
as deleterious impacts of UPR branches were reported in AD
(Lourenco et al., 2013; Ma et al., 2013; Barbero-Camps et al.,
2014; van der Harg et al., 2014), Parkinson’s (Bellucci et al.,
2011; Colla et al., 2012), Huntington (Lajole and Snapp, 2011),
amyotrophic lateral sclerosis (ALS; Hetz et al., 2009; Kim et al.,
2013) and prion diseases (Moreno et al., 2012). Correcting UPR
activation further appears to be effective in preclinical models
of prion infection (Moreno et al., 2012, 2013; Halliday et al.,
2015) and ALS (Hetz et al., 2009; Kim et al., 2013), in addition
to AD models (Ricobaraza et al., 2009, 2010; Lourenco et al.,
2013; Ma et al., 2013). Therefore, it is likely that aberrant UPR
signaling mediates brain dysfunction in a variety of neurological
conditions (Figure 1).

eIF2α-P and Translational Repression
Under cellular stress, translational repression can be mediated
by increased eIF2α phosphorylation (eIF2α-P), a regulatory
factor essential for translation initiation in eukaryotes (Raven
and Koromilas, 2008). PERK-mediated eIF2α-P is the main
UPR branch leading to general protein synthesis repression and
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FIGURE 1 | Endoplasmic reticulum (ER) stress as a common
denominator of neurodegenerative diseases. Brain ER stress is caused
by several disease-associated stressors, including amyloid-β (Aβ; Alzheimer
disease), α-synuclein (α-syn; Parkinson disease), prion protein (PrP;
prion-related diseases), mutated huntingtin (Huntington and poly-Q diseases)
and TAR DNA-binding protein of 43 kDa (TDP-43; amyotrophic lateral
sclerosis, ALS). In such disorders, abnormal ER stress leads to the activation
of three signaling pathways (ATF6; IRE1α/XBP1 s and PERK/eIF2α-P)
collectively termed unfolded protein response (UPR). In parallel, events of
infection, inflammation, nutrient deprivation and oxidative stress activate
additional eIF2α kinases (namely PKR and GCN2), leading to abnormally high
eIF2α-P levels, increased ATF4 production and impaired translation. Excessive
UPR activity, eIF2α-P signaling and their downstream effectors impair cell
function and may result in brain dysfunction and neurodegeneration, possibly
explaining the clinical outcomes observed in neurodegenerative conditions.

facilitation of select mRNA translation (Buffington et al., 2014).
Both PERK and eIF2α-P appear to be elevated in AD brains
(Chang et al., 2002b; Yoon et al., 2012; Ma et al., 2013) and are
induced by Aβ aggregates in neurons (Lee et al., 2010). Increased
eIF2α-P has been further verified in other AD mouse models
(Segev et al., 2012; Devi and Ohno, 2014).

Two other eIF2α kinases, namely the stress kinase PKR and
the nutrient sensor GCN2, are enriched in the brain and have
been reported to increase neuronal eIF2α-P (Costa-Mattioli et al.,
2005; Lourenco et al., 2013; Roffé et al., 2013; Hetz andMollereau,
2014), and thus emerge as candidates to explain increased eIF2α-
P in AD.

Interestingly, deletion of either PERK or GCN2 in the brains
of APP/PS1 mice decreases eIF2α-P levels, rescuing synapse
plasticity and cognition (Ma et al., 2013). AβOs increase eIF2α-
P through TNF-α-dependent PKR activation, thereby promoting
synapse loss in hippocampal neurons and cognitive impairment
in mice (Paquet et al., 2011; Lourenco et al., 2013). Providing

clinical relevance to the findings observed in experimental
models, PKR was found to be abnormally active in AD brains
(Chang et al., 2002a; Paquet et al., 2011; Mouton-Liger et al.,
2012b). Therefore, it is likely that PERK, GCN2, and PKR lead
to increased eIF2α-P levels in AD.

Increased eIF2α-P levels also facilitate the translation of
a small fraction of mRNAs (Buffington et al., 2014), among
which is activating transcription factor 4 (ATF4), a protein
linked to oxidative stress, enhanced γ-secretase activity and
neuronal dysfunction when abnormally elevated (Mitsuda et al.,
2007; Lange et al., 2008). ATF4 signaling further counteracts
CREB1 pro-memory actions in mice (Costa-Mattioli et al., 2005;
Rajasethupathy et al., 2012).

Recent findings demonstrated that ATF4 levels are increased
in AD brains (Yoon et al., 2012; Baleriola et al., 2014) and in
AD animal models (Ma et al., 2013; Devi and Ohno, 2014).
Furthermore, soluble Aβ species appear to locally stimulate
axonal ATF4 translation to propagate a neurodegenerative
message in mice (Baleriola et al., 2014). Hence, eIF2α-P/ATF4
signaling has the potential to explain, at least in part, how disease
progresses from defined brain regions in the beginning to a
widespread forebrain dysfunction at later stages.

Translational repression instigated by eIF2α-P may be
harmful to cognition, given that normal protein synthesis is
required for memory (Flexner et al., 1964; Rossato et al.,
2007). Accordingly, APP/PS1mice present reduced brain protein
synthesis in parallel to memory loss, and AβOs impair LTP-
induced hippocampal protein synthesis (Ma et al., 2013).
Nevertheless, the identity of memory-relevant translational
products that are impacted in AD still remains to be
determined.

Stress Kinase Activation
Cellular stress is also known to activate a family of protein
kinases that mediate adaptive responses (Calay and Hotamisligil,
2013). These proteins are termed stress-sensitive kinases (or
simply stress kinases) and include JNK, p38 MAPK, PKR,
PERK and IKK, among other serine/threonine kinases (Vallerie
and Hotamisligil, 2010; Hetz and Mollereau, 2014). Active
stress kinases phosphorylate several protein targets to restore
homeostasis. Nevertheless, their excessive or prolonged actions
may trigger cell injury and, later, programmed cell death
(Mattson, 2008; Vallerie and Hotamisligil, 2010; Hetz, 2012; De
Felice et al., 2014).

Neuropathology studies have demonstrated abnormal
activation of neuronal stress-sensitive kinases in AD brains.
Indeed, abnormal phosphorylation of p38 MAPK (Hensley et al.,
1999), JNK (Ma et al., 2009; Bomfim et al., 2012; Yoon et al.,
2012), PERK (Hoozemans et al., 2005, 2009), PKR (Chang et al.,
2002a; Paquet et al., 2011) and IKK (Talbot et al., 2012) have
been reported in AD brains and might be core mediators of
neuronal dysfunction. Accordingly, AβOs have been described
to activate neuronal JNK and PKR to impair insulin signaling
and synapse function (Ma et al., 2009; Bomfim et al., 2012;
Lourenco et al., 2013), and transgenic animal models of AD
exhibit similar alterations in JNK and PKR activity (Ma et al.,
2009; Bomfim et al., 2012; Lourenco et al., 2013). Consistently,
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blocking either PKR or the brain-enriched JNK3 rescue cognitive
impairments in AD mouse models (Yoon et al., 2012; Lourenco
et al., 2013), suggesting that stress kinase activation lies upstream
of synapse and memory impairment in AD.

An attractive possibility is that PKR further drives the
activation of other MAPKs, such as p38MAPK and JNK, thus
exacerbating neuronal damage. Very recent findings suggest
that the interaction between PKR and the RNA-binding protein
TRBP is essential to promote eIF2α-P and JNK activation
under obesity-induced metabolic stress (Nakamura et al.,
2015). A similar scenario might also develop in AD even
independently of TNF-α, given that oxidative stress has been
reported to activate neuronal PKR (Mouton-Liger et al., 2012a).
Moreover, AβOs could activate PKR in glial cells to instigate
MAPK-dependent actions, exacerbating neuroinflammatory
responses in AD brains. These notions still demand further
investigation.

Neuroinflammation
Elevated markers of inflammation are found in both AD animal
models and human AD brains (Ferreira et al., 2014; Monson
et al., 2014; Heneka et al., 2015). Consistently, evidence for gliosis
and central infiltration of peripheral immune cells is often found
in histopathological studies in AD mouse models (Yamanaka
et al., 2012; Lourenco and Ledo, 2013; Yang et al., 2013; Baik et al.,
2014; Ferreira et al., 2014; Monson et al., 2014).

Amyloid aggregates (ranging from oligomers to fibrils)
induce a neuroinflammatory profile that may lead to synapse
and neuronal damage (Combs, 2009; Pan et al., 2011;
Lourenco et al., 2013; Medinas and Hetz, 2013; Parajuli
et al., 2013; Heneka et al., 2015). Nevertheless, rather than
deposited plaques, AβOs are thought to be core inducers
of brain inflammation, given that they are potent microglial
activators (Floden and Combs, 2006; Dhawan et al., 2012;
Ledo et al., 2013) and diffuse throughout brain regions
(Lambert et al., 1998; Forny-Germano et al., 2014; Viola
and Klein, 2015). Accumulating evidence suggests that AβO-
inducedmicroglial activation releases TNF-α and other cytokines
that, in turn, act on neurons to cause stress signaling and
synapse injury (Floden and Combs, 2006; Sondag et al., 2009;
Bomfim et al., 2012; Dhawan et al., 2012; Lourenco et al.,
2013).

Therefore, neuroinflammation is considered to take place
over the degenerative course of AD and to be linked to
cognitive dysfunction. In fact, our recent results showed that
AβO-triggered elevations in TNF-α levels orchestrate neuronal
stress mechanisms to impair brain insulin signaling (Bomfim
et al., 2012), synapses and cognition in animal models of AD
(Lourenco et al., 2013; Figure 2). This cascade is mediated by
stress kinases, including JNK and PKR, in the brains affected
by AβOs (Lourenco et al., 2013). Since evidence suggests that
reducing neuroinflammation can counteract memory deficits in
AD mouse models (Medeiros et al., 2007; McAlpine et al., 2009;
Kiyota et al., 2010; Bachstetter et al., 2012), a more complete
understanding of how brain inflammation develops may lead to
effective targeting of aberrant mechanisms underlying cognitive
symptoms in AD.

FIGURE 2 | AβOs trigger brain metabolic stress in Alzheimer’s Disease
(AD). Accumulation of AβOs in pre-AD brains instigates an inflammatory
response that involves increased TNF-α production. TNF-α, in turn, acts on
neurons to promote the activity of stress kinases (e.g., PKR, JNK, IKKα),
which will serine phosphorylate both eIF2α-P to attenuate translation, and
IRS-1 to impair insulin signaling. The combination of repressed protein
synthesis and defective insulin signaling are components of a novel form of
neuronal metabolic stress that may contribute to synapse deregulation and
cognitive impairment in AD.

Metabolic Stress and Cognitive Function
in AD

Experimental evidence has gathered inflammation, defective
insulin signaling and cell stress to AD-linked neurotoxicity
and neurodegeneration in a revised concept of metabolic stress
(Paquet et al., 2011; Mouton-Liger et al., 2012a; Yoon et al.,
2012; Ledo et al., 2013; Lourenco et al., 2013; Ma et al., 2013;
Baleriola et al., 2014; De Felice et al., 2014). Although the
classical alterations in glucose metabolism germane to metabolic
impairments are observed in AD brains (Hoyer et al., 1988;
Kapogiannis and Mattson, 2011; Chen and Zhong, 2013), the
modern notion of metabolic stress also includes disturbances in
proteostasis and activation of signaling pathways that mediate
cellular stress.

In this context, the progressive build-up of AβOs in AD brains
might trigger the activation of immune mechanisms, including
glial cell reactivity and cytokine release that, in turn, lead to
neuronal metabolic stress. A point of convergence of multiple
stress pathways is found on elevated eIF2α-P levels. Accordingly,
PKR, ER stress, eIF2α-P and ATF4 have been described as
negative modulators of memory (Costa-Mattioli et al., 2007; Zhu
et al., 2011; Rajasethupathy et al., 2012; Lourenco et al., 2013;
Stern et al., 2013; Di Prisco et al., 2014; Ounallah-Saad et al.,
2014). By acting together, such pathways might disrupt brain
homeostasis and contribute to the cognitive decline observed
in AD.
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The precise mechanisms linking metabolic stress to synapse
defects are still not fully understood, but the findings that
increased eIF2α-P levels lead to LTP impairments (Ma et al.,
2013) and synapse loss (Lourenco et al., 2013) in mice have
provided initial clues on this causal relationship. Consistently,
restoring normal brain eIF2α-P levels was shown to abrogate
deficient levels of synaptic proteins and cognition (Lourenco
et al., 2013;Ma et al., 2013), indicating a tight connection between
eIF2α-P and synapse/memory integrity.

It is noteworthy that activation of PKR/eIF2α-P signaling
(O’Connor et al., 2008; Devi and Ohno, 2010; Mouton-Liger
et al., 2012a), as well as high-fat diet-induced metabolic stress
(Wang et al., 2013) was shown to promote amyloidogenesis in a
feed-forward cycle that might exacerbate amyloid pathology. It is
thus tempting to speculate that accumulating injuries throughout
life, including infections, diabetes and obesity, could instigate
a brain metabolic stress scenario that includes ER stress and
neuroinflammation to facilitate Aβ accumulation and sporadic
AD onset at later stages of life (Herrup, 2010; Mattson, 2012; De
Felice, 2013).

An unresolved question relates to whether brain insulin
resistance could itself trigger AD-related phenomena, even
in the absence of inflammation. In this regard, early studies
using neuronal insulin receptor knockout (NIRKO) mice found
that deficient brain insulin signaling causes abnormal tau
phosphorylation without spatial memory impairment (Schubert
et al., 2004). Recently, NIRKO mice were shown to develop
anxiety and depressive-like behavior linked to altered dopamine
metabolism (Kleinridders et al., 2015), and deletion of a single
gene copy that encodes an insulin receptor subunit in the
brain impairs synaptic plasticity and cognition (Nisticò et al.,
2012). Nonetheless, it remains to be determined whether such
mice develop brain metabolic stress in the presence or absence
of neurotoxic stimuli. Future investigation may dissect the
molecular steps that are required for metabolic stress-induced
synapse impairments in an AD context.

Conclusions

Recent exciting evidence has connected AβO-induced neuronal
stress to cognitive impairments in AD, in a mechanism

that includes cytokine-induced activation of stress kinases
and ultimately leads to neuronal and synapse dysfunction
in AD experimental models (De Felice et al., 2007; Yoon
et al., 2012; De Felice, 2013; Lourenco et al., 2013; Ma
et al., 2013; Baleriola et al., 2014; De Felice and Ferreira,
2014; Ferreira et al., 2014). Hence, the combination of
inflammation, neuronal insulin resistance, oxidative/ER stress
and translational repressionmight generate a noxious scenario of
brain metabolic stress to mediate and propagate synapse defects,
resulting in cognitive deficits. In this context, ER stress and
abnormal eIF2α-P levels emerged as key players in neuronal
damage.

Sporadic AD is largely idiopathic, and it is noteworthy that
Aβ-centric views of AD pathogenesis remain controversial
(see Morris et al., 2014 for a critical review). Nonetheless,
recent progress summarized here may have deep implications
for disease prevention, as avoiding harmful events throughout
life might reduce the risk of brain inflammation, metabolic
stress and, consequently, of developing AD at later stages
of life. Interrupting deleterious molecular pathways at
prodromal stages will likely be the ideal strategy to delay
AD progression. The identification of common AD drivers
is imperative to establish effective therapeutics, and blocking
neuronal metabolic stress at the earliest cognitive symptoms
could offer a promising approach to minimize neuronal
dysfunction and AD progression. Repurposing labeled anti-
diabetic compounds could constitute an interesting option
as they have been shown to attenuate AD-linked brain
metabolic stress and memory dysfunction (Craft, 2012; De
Felice et al., 2014). Future clinical trials may reveal whether
these drugs, alone or in combination, are indeed effective
in AD.
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