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Abstract

Background: The presence of the apolipoprotein E (APOE) ¢4 allele is a major risk factor for the
development of Alzheimer's disease (AD), and has been associated with metabolic brain changes several
years before the onset of typical AD symptoms. Functional MRI (fMRI) is a brain imaging technique that
has been used to demonstrate hippocampal activation during measurement of episodic encoding, but the
effect of the &4 allele on hippocampal activation has not been firmly established.

Methods: The present study examined the effects of APOE genotype on brain activation patterns in the
medial temporal lobe (MTL) during an episodic encoding task using a well-characterized novel item versus
familiar item contrast in cognitively normal, middle-aged (mean = 54 years) individuals who had at least
one parent with AD.

Results: We found that €3/4 heterozygotes displayed reduced activation in the hippocampus and MTL
compared to €3/3 homozygotes. There were no significant differences between the groups in age,
education or neuropsychological functioning, suggesting that the altered brain activation seen in £3/4
heterozygotes was not associated with impaired cognitive function. We also found that participants' ability
to encode information on a neuropsychological measure of learning was associated with greater activation
in the anterior MTL in the €3/3 homozygotes, but not in the £3/4 heterozygotes.

Conclusion: Together with previous studies reporting reduced glucose metabolism and AD-related
neuropathology, this study provides convergent validity for the idea that the MTL exhibits functional
decline associated with the APOE &4 allele. Importantly, these changes were detected in the absence of
meaningful neuropsychological differences between the groups. A focus of ongoing work in this laboratory
is to determine if these findings are predictive of subsequent cognitive decline.
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Background

Family history of dementia and the apolipoprotein E
(APOE) genotype are significant risk factors for the devel-
opment of Alzheimer's disease (AD). The APOE gene,
found on chromosome 19, has three allele variants (i.e.,
€2, €3 and €4) and six possible genotypes, with the €3/3
genotype being most prevalent in the general population
(but see [1,2]). The presence of the g4 allele significantly
increases the risk and reduces the age of onset in people
with the late-onset form of AD, the most common form of
this disorder [1,3,4]. Previous studies have reported esti-
mated cumulative lifetime risk percentages based on
APOE genotype in individuals with a family-history of AD
to be 30%, 46% and 61% for £€3/3 homozygotes, €3/4 het-
erozygotes and €4/4 homozygotes, respectively [5].

Impairment in the encoding and retrieval of episodic
memories, presumably caused by neurodegeneration of
the hippocampus and other medial temporal lobe (MTL)
structures [6,7], is one of the earliest symptoms in AD [8].
Recent evidence suggests that healthy €4 carriers (mean
age = 56 years) with a family history of AD show a greater
longitudinal, age-related episodic memory decline than
non-carriers [9-11]. Furthermore, some structural MRI
studies have found reduced hippocampal volume in older
cognitively normal &4 carriers [12-16] (but see [17-19]).
Taken together, these results suggest that there may be an
age-related phenotype for €4 carriers involving cognitive
decline and brain atrophy prior to the onset of AD. An
important question is how early these changes occur and
whether they can be detected in vivo using existing func-
tional imaging methods.

The use of neuropsychological measures and brain imag-
ing to examine cognitively normal individuals with AD
risk factors such as family history or APOE genotype could
potentially yield valuable information about preclinical
alterations in neural function that precede the sympto-
matic stages of AD. Functional MRI (fMRI) is a non-inva-
sive brain imaging technique that has been used
successfully to demonstrate hippocampal and MTL activa-
tion during several tasks thought to reflect aspects of epi-
sodic memory [20-25]. The few studies that have
examined brain activation differences between ¢4 carriers
and non-carriers have reported inconsistent findings on
measures of episodic memory.

One episodic encoding paradigm that has been used to
demonstrate robust hippocampal activation is novelty
detection, in which individuals discriminate between
events that were previously learned from events that are
novel [26-31] (see [32,33] for reviews). Tulving and Kroll
[34] have suggested that episodic encoding processes are
more evident during the processing of novel information
versus previously learned (or familiar) information.
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Therefore, novelty detection appears to be an important
cognitive process involved in MTL-dependent episodic
memory formation. Novel/familiar discrimination para-
digms might therefore yield valuable information about
functional changes in the MTL that precede overt changes
in cognitive function in individuals at risk of AD.

The purpose of the present study was to use fMRI to test
the hypothesis that cognitively normal €3/4 heterozygotes
with a family history of AD would display reduced activa-
tion in the hippocampus during a novel picture-encoding
paradigm. We also used voxel-based morphometry (VBM)
of T1 weighted images to determine whether any observed
differences in fMRI activation between the groups were
the result of differences in modulated GM volume. In
addition, we compared hippocampal activation against a
neuropsychological measure of episodic learning ability.
Because prior research has shown that brain changes pre-
cede cognitive changes in this population, and because
carriers of the ¢4 allele may have altered hippocampal
function, we hypothesized that there would be less sys-
tematic shared variance, disrupting the normal relation-
ship between MTL activation and neuropsychological
status in the €3/4 heterozygotes as compared to &3/3
homozygotes.

Methods

Subjects

Subjects who enrolled in this fMRI study were grouped by
APOE genotype. The statistical analyses included 23 £3/4
heterozygotes and 17 €3/3 homozygotes. All participants
in the study were recruited from the Wisconsin Registry
for Alzheimer's Prevention (WRAP) [35], a longitudinal
study designed to identify and evaluate factors that may
delay or prevent the onset of AD. This cohort includes cog-
nitively normal adult subjects (total N > 350 participants
at the time of enrollment) between the ages of 40 and 65
with at least one biological parent who was diagnosed
with AD by physicians affiliated with the Memory Clinics
at the University of Wisconsin - Madison. The initial clin-
ical diagnosis of AD in the parent was confirmed using
published DSM-IV and NINDS-ADRDA criteria by a diag-
nostic consensus panel of experienced physicians and
neuropsychologists. The adult children of these AD
patients were then approached to participate in the WRAP
study. The self-reported mean age at onset of memory
problems in the parent diagnosed with AD was reported
by the children to be 73 years old (range = 55 - 89 years).

All subjects in the WRAP underwent baseline medical lab-
oratory tests, which included measurements of total non-
fasting blood cholesterol, blood pressure, homocysteine,
hemoglobin and hematocrit levels, and APOE genotyp-
ing. All participants also received detailed neuropsycho-
logical evaluations and baseline medical screening that
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included documentation of current medication usage. An
important characteristic of this cohort is that 46% have at
least one copy of the €4 allele [35], compared to approxi-
mately 15% in the general population [2,36]. The battery
of neuropsychological tests included the following:
Wechsler Abbreviated Scale of Intelligence (WASI) verbal
and performance 1Q indexes [37], Wechsler Adult Intelli-
gence Scale-1IT (WAIS-IIT) working memory index [38],
the Controlled Oral Word Association Test (COWAT)
[39], Rey Auditory Verbal Learning Test (RAVLT) [40],
Boston Naming Test (BNT) [41], Trail Making Test A and
B [40,42], and the Center for Epidemiological Studies
Depression Inventory (CES-D) [43].

WRAP subjects were invited to participate in this fMRI
study by direct mailings and newsletters. Subjects express-
ing interest in participating were contacted by phone and
screened to determine if they met study eligibility require-
ments. The inclusion criteria consisted of the following:
no current diagnosis of major psychiatric disease or other
major medical conditions (e.g. diabetes, myocardial inf-
arction or recent history of cancer), intact cognitive func-
tions, and MRI scanner compatibility. Of the subjects
included in this study, 55% had elevated (> 200 mg/dl)
non-fasting total blood cholesterol (10 subjects in the €3/
3 group and 12 in the €3/4 group) and 23% had elevated
(> 140 mmHg) systolic blood pressure (5 subjects in the
€3/3 group and 4 in the £3/4 group). There were no sub-
jects in either groupwith high levels of homocysteine (>
14 pmol/l). Several participants were also taking a variety
of medications, 4 subjects were using cholesterol-lower-
ing medications (2 in the €3/3 group and 2 in the €3/4
group), 8 female subjects were current users of estrogen
replacement therapy (5 in the €3/4 group and 3 in the €3/
3 group), and 6 subjects were using selective serotonin
reuptake inhibitors (5 in the €3/4 group and 1 in the €3/3

group).

Subjects included in the overall statistical analysis were
required to have useable imaging data (movement in the
x, y and z planes < 3 mm) and at least 90% accuracy on
the fMRI memory task. We restricted our analyses to sub-
jects with a homozygous €3/3 or heterozygous €3/4 APOE
genotype to reduce the potential genetic variability in
brain activation patterns, and because there was an insuf-
ficient number of individuals with other APOE genotypes
(e.g. €4/4 homozygotes or €2/3 heterozygotes) to make
meaningful inferencesregarding other APOE genotypes.
The data from 6 additional subjects (3 €3/3 homozygotes
and 3 €3/4 heterozygotes) were excluded from the overall
statistical analyses: 1 subject for excessive motion during
scanning, 1 subject for scanner error, 3 subjects who did
not achieve 90% accuracy on the fMRI task, and 1 subject
who had a previously undiagnosed tumor. The final
number of subjects included in the statistical analysis was

http://www.biomedcentral.com/1741-7015/4/1

Figure |

Activation Maps for fMRI task. Statistical parametric
maps of the single-group analyses for €3/3 homozygotes
(panel A) and £3/4 heterozygotes (panel B), and for regions
where the €3/3 homozygotes activated to a greater extent
than the £3/4 heterozygotes (panel C). The left side of each
coronal section represents the left hemisphere. The dark-
shaded area represents the MTL region to which the statisti-
cal analyses were confined. The lighter-shaded areasrepre-
sent regions outside of the MTL mask.

40 (23 €3/4 heterozygotes and 17 €3/3 homozygotes).
Athena Diagnostics (Worchester, MA) conducted APOE
genotyping for all subjects using their patented proce-
dures.

fMRI task

Blood oxygen level dependent (BOLD) signal was
detected using a variant of a well-known fMRI paradigm
in which participants distinguished between novel and
previously learned items. This paradigm is well-suited to
examining potential differences in hippocampal activa-
tion based on APOE genotype because several previous
PET and fMRI studies have demonstrated robust hippoc-
ampal activation for novel relative to familiar contrasts.
The task consisted of serial presentations of line drawings
obtained from the Snodgrass and Vanderwart [44] set that
were matched for complexity and frequency. The previ-
ously learned pictures were presented in a training session
45 minutes prior to the task, and again during scanner
setup 15 minutes prior to the task. The items were pre-
sented repeatedly in pseudorandom fashion for 15 expo-
sures in each of the two training trials for a total of 30
exposures to each item. The participants were instructed
to view the pictures and try to remember them.

During the fMRI test session, pictures were presented con-
tinuously at 3 s intervals for the entire experiment. For
each picture, the participant decided whether the picture
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Table I: Demographic, neuropsychological and fMRI task performance data

€3/e3 (n=17) €3/e4 (n = 23)
Age (years) 52.1 (6.8) 54.0 (5.6)
Age Range (years) 42 - 65 43 -65
Education (years) 15.9 (2.1) 16.5 (2.6)
Gender Ratio: Female/Male 13/10
Handedness (% righthanded) 96%
Homocysteine (umol/l) 82 (1.8) 7.9 (1.5)
Blood Cholesterol (mg/dl) ! 215.8 (32.6) 204.9 31.4)
Hematocrit (mL/dl) 40.0 (2.1) 40.6 (2.6)
Hemoglobin (g/dl) 13.8 (0.8) 13.9 (0.9)
Systolic Blood Pressure (mmHg) 131.5 (14.1) 132.6 (17.8)
WASI Verbal IQ 112.8 (8.6) 113.6 (10.5)
WASI Performance 1Q 114.0 (8.4) 111.9 (8.5)
WAIS-IIl Working Memory 109.5 (14.5) 104.4 (13.5)
COWAT adjusted raw score 42.8 (10.9) 47.1 (10.0)
Boston Naming Test 56.6 (2.7) 56.6 (1.8)
RAVLT total recall trials 1-5 54.0 (5.2) 52.1 (7.5)
RAVLT short delay recall 11.6 (2.6) 11.0 (2.1)
RAVLT long delay recall 11.7 (2.3) 10.7 (2.9)
RAVLT recognition 14.1 (1.2) 14.0 (1.4)
Trail Making Test A (s) 27.1 (6.0) 27.0 (8.1)
Trail Making Test B (s) 55.4 (19.7) 67.0 (22.3)*
CES-D 42 (44) 4.1 (4.2)
Snodgrass Accuracy (%) 99.1 (1.2) 98.6 (2.2)
Snodgrass RT (sec) 0.81 (0.2) 0.89 (0.1)
Snodgrass Misses 0.3 (0.8) 0.7 (1.6)

Data are presented as mean (SD). * denotes significant differences (p < 0.05) between the groups. WASI = Wechsler Abbreviated Scale of
Intelligence, WAIS = Wechsler Adult Intelligence Scale, COWAT = Controlled Oral Word Fluency Test, RAVLT = Rey Auditory Verbal Learning
Test, CES-D = Center for Epidemiological Studies — Depression Inventory. See text for further discussion of test measures. | = total non-fasting

Blood Cholesterol

was previously learned or novel. Each picture was pre-
sented for 2800 ms with a 200 ms interstimulus interval.
The novel pictures (condition 1) were intermixed with the
presentation of previously learned pictures (condition 2)
using a variable-length block (boxcar) paradigm. There
were no periods of rest or fixation during the entire test
session. Epoch length was variable, but appropriately bal-
anced between conditions and ranged from single events
to 5 consecutive items. The order of condition presenta-
tion and length were pseudorandom. Variable-length
epochs rather than a fully event-related approach were
used to reduce the condition predictability while main-
taining some of the statistical power of the boxcar para-
digm [45,46]. Two alternate forms of the task were
presented (order counterbalanced), using the same previ-
ously learned items but different novel items. The dura-
tion of the entire task was 9 minutes and 24 seconds.
Responses to the novel and previously learned pictures
were made with a two-button response device held in the
right hand. The index finger was used to identify previ-
ously learned pictures, whereas the middle finger was
used to identify novel pictures. As in previous studies [see

also [31]], we referred to encoding as the contrast of novel
relative to familiar pictures.

Imaging procedures

A GE 3.0 Tesla MRI scanner outfitted with an MR-compat-
ible button-box and high-resolution goggles set at 800 x
600 (Resonance Technology; Northridge, CA) were used
for fMRI imaging and stimulus presentation. Foam pad-
ding was placed around the head to reduce head motion.
The software Presentation http://www.neuro-bs.com was
used to deliver visual stimuli and record responses in pre-
cise synchrony with slice acquisition and stimulus deliv-
ery. A T2*-weighted gradient-echo, echo-planar image
(EPI) pulse sequence was obtained with higher order
shimming during the functional trials for each subject.

The EPI parameters included: echo time flip angle = 90°;
acquisition matrix = 64 x 64 voxels; field of view (FOV) =
240 mm; echo time (TE) = 30 ms; repetition time (TR) =
2000 ms. Thirty sagittal slices of the brain were acquired
within the TR at each time point, with a voxel resolution
of 3.75 x 3.75 x 4 mm and a 1-mm skip between slices.
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Table 2: Montreal Neurological Institute (MNI) Coordinates for peak activation differences (p < 0.01; uncorrected) for the random-
effects group analysis between £3/4 heterozygotes and £3/3 homozygotes for the functional MRI encoding contrast of novel versus

familiar pictures. k = cluster size

Contrast Region (k) Montreal Neurological Institute (MNI) coordinates Peak t value P (uncorrected)
X y z
Novel vs. Familiar
€3/3 > e3/4 Right anterior entorhinal cortex (60) 22 2 -34 3.56 0.001
- Right parahippocampal gyrus 22 -8 -34 2.99 0.002
Right hippocampus (93) 30 -14 -16 3.0l 0.002
- Right hippocampus 36 -24 -6 2.99 0.003

Over the entire test session, a total of 141 time points were
collected. Three images acquired during the first 6 seconds
of each scanning run were discarded. Following the func-
tional scans, an axial T1-weighted inversion recovery pre-
pared volume (124 slices; 1.2 mm thick; FOV 240 mm;
matrix 256 x 256), and fast recovery fast spin echo T2
weighted anatomic images (TE 90 ms; 70 slices; 1.7 mm
thick; 0.3 mm skip; FOV 240; matrix 256 x 256) were
acquired. The images were later reviewed by a neuroradi-
ologist for the presence of brain abnormalities that might
exclude subjects from the statistical analyses. The T1
weighted images were also used for the VBM analysis.

Functional image processing

The time series images were motion-corrected to reduce
the effects of head movement during the scan session. 3 D
field maps across the brain taken co-planar with the fMRI
slices were used to correct distortions in the image files by
measuring the phase of non-EPI gradient echo images at
two echo times (7 and 10 ms). The continuous B field
map was estimated using a 3 D phase-unwrapping algo-
rithm based on Jenkinson et al. [47]. Image unwrapping
was performed using a nonlinear pixel shifting and B
splines interpolation algorithm. The images were then
normalized into standard atlas space (using the T2*
weighted template from SPM2), written outata 2 x 2 x 2
voxel resolution, and then smoothed with an 8 mm full-
width, half-maximum Gaussian kernel.

Data analysis

Analyses of the time-series data were performed using the
General Linear Model using the Statistical Parametric
Mapping (SPM2) statistical software [48]. For each partic-
ipant, the time-series statistical model included convolu-
tion with the canonical hemodynamic response function
and a high frequency signal filtering (high pass filter = 128
seconds). Temporal autocorrelation was estimated using
the first-order autoregressive (AR1) method on suprath-
reshold voxels. This method estimates the actual autocor-
relation from the fMRI time series rather than imposing a

generic temporal smoothing filter (see [49] for further dis-
cussion).

The primary contrast used to evaluate group differences
was novel versus familiar pictures. For completeness, we
also examined group differences in activation for the
familiar versus novel contrast. All single-subject analyses
for both contrasts were computed for each participant and
entered into a random effects group analysis. Each of the
single-subject analyses was completed in the same semi-
automated fashion regardless of APOE genotype. The ran-
dome-effects group analysis and the correlational analyses
were constrained to the right and left MTL, with an ana-
tomical mask described previously by Johnson et al. [50].
The mask extended from the anterior aspect of the amy-
gdala to the posterior aspect of the tail of the hippocam-
pus, and also included the fusiform and parahippocampal
gyri (See Figure 1). All possible voxels within each hemi-
sphere of the MTL mask were considered potential
dependent variables. The mask was used to impose more
stringent hypothesis-driven restrictions on the number of
simultaneous comparisons. Uncorrected p-values were
used for this restricted region of interest (ROI) approach.
In a second step, we conducted whole brain between-
group analyses for both contrasts (p < 0.05; False Discov-
ery Rate corrected for multiple comparisons) (see [51]).

Voxel-based Morphometry processing steps

The detailed processing methodology for VBM has previ-
ously been reported in detail. Briefly, we used the opti-
mized VBM approach described by Good et al. [52] (see
also [53,54]) using SPM2. This procedure involves seg-
mentation of the images into gray matter (GM), white
matter (WM) and cerebrospinal fluid (CSF), and normal-
ization of the GM images to the GM template in standard
space. The GM images were then modulated using the
Jacobian values derived from spatial normalization and
smoothed with a 12 mm isotropic Gaussian kernel. The
smoothed GM images were then entered into a random-
effects two-sample t-test in SPM2 to examine GM volume
differences between the groups.
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Results

Neuropsychological functioning and fMRI task
performance

The mean scores and standard deviations for the demo-
graphic and laboratory test variables and neuropsycholog-
ical test performance are presented in Table 1. Between-
group differences were examined using two-sample t-tests
with a Bonferroni-corrected alpha level set at p < 0.002
(i.e., p < 0.05 divided by 22 comparisons). There were no
significant differences between the groups in respect of
age, education, laboratory test results or fMRI task per-
formance. Both groups achieved at least 98% accuracy on
the fMRI memory task and there were no differences in
reaction times. Furthermore, there were no significant dif-
ferences between the groups in terms of neuropsycholog-
ical functioning or subjective memory complaints. The
two-sample t-tests for each neuropsychological measure
revealed no significant differences between the two
groups for any of the neuropsychological test measures at
the corrected threshold of p < 0.002. However, €3/4 heter-
ozygotes took longer to complete Trail Making Test B than
€3/3 homozygotes, but this finding was only significant
using an uncorrected threshold of p < 0.05, whereas no
significant differences between the groups were found for
any of the other test measures. The performances of both
groups on Trail Making Test B were within the normal
range based on age-matched normative data from Spreen
and Strauss (1998), as was performance on the rest of the
neuropsychological test battery.

A follow-up analysis that included all WRAP subjects that
were €3/3 homozygotes (n = 154) and €3/4 heterozygotes
(n = 142), including those who did not participate in the
fMRI study, revealed no significant difference on Trails
Making Test B or any of the other neuropsychological
measures. Therefore, the significantly slower time to com-
plete Trails B in the €3/4 heterozygotes who participated
in the fMRI study does not appear to generalize to the
WRAP cohort overall, and does not appear to be a general
effect of the APOE ¢4 allele.

Imaging results

Figure 1 depicts MTL activation for the novel versus famil-
iar contrast in the €3/3 homozygotes and €3/4 heterozy-
gotes separately. The €3/3 homozygotes show a greater
level of activation for the novel versus familiar contrast in
the MTL including the hippocampus compared to the €3/
4 heterozygotes.

The single group analyses provide a qualitative descrip-
tion of differences in MTL activation between &3/4 heter-
ozygotes and €3/3 homozygotes. To determine whether
there were significant differences between the groups, a
randome-effects 2-group t-test (with age as a covariate) for
the novel versus familiar contrast was performed in the

http://www.biomedcentral.com/1741-7015/4/1
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Graph of signal change in the MTL. Plot of the signal
change (adjusted fitted responses) for £3/3 homozygotes and
€3/4 heterozygotes averaged over a 2 mm radius spherical
ROI at the local maxima in the right hippocampus (x, y, z: 30,
-14, -16), and at the same location in the left hippocampus (x,
y, z: -30, -14, -16). Data are presented as mean signalchange
for each group. Error bars represent the standard error of
the mean. * denotes significant difference between the two
groups.

MTL ROI. There was a significant main effect of APOE
genotype (x, y, z: 30, -14, -16; t = 3.01, p = 0.002, uncor-
rected) with €3/4 heterozygotes showing less activation
for the novel versus familiar pictures contrast in the MTL
than the €3/3 homozygotes (see Figure 1). A plot of the
mean signal change averaged over a 2 mm radius sphere
in the hippocampus depicts the group difference (x, y, z:
30, -14, -16; see Figure 2). For completeness, we extracted
mean signal change at the same location in the left hip-
pocampus, and the €3/3 homozygotes displayed numeri-
cally but not significantly (p > 0.25) greater signal change
in the left hippocampus as well (see Figure 2). Table 2 pro-
vides statistics, locations and cluster size for all signifi-
cantly activated regions for the genotype effect. There were
no significant differences in MTL activation for the con-
trast of familiar relative to novel pictures.

The whole brain analyses for the novel vs familiar and
familiar vs novel contrasts (p < 0.05; FDR corrected for
multiple comparisons) revealed no significant differences
between the groups for either contrast. In order to exam-
ine potential compensatory activity in the cortical regions
of €3/4 heterozygotes, we conducted a follow-up analysis
(p <0.01, uncorrected) using a two-sample t-test in which
the analysis was constrained to include only those regions
that were active for each contrast (i.e. novel versus familiar
or familiar versus novel) collapsed across all 40 subjects
(i.e. a one-sample t-test). In addition to reduced MTL acti-
vation, the €3/4 heterozygotes also displayed reduced acti-
vation compared to the €3/3 homozygotes for the novel
versus familiar contrast in the right ventral temporal cor-
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RAVLT versus Signal Change. Scatter plot of the association between total words learned on the RAVLT and signal change
within the left amygdala (left panel) and left anterior hippocampus (right panel) for £3/3 homozygotes (black circles, solid lines)

and €3/4 heterozygotes (white squares, hashed lines).

tex and left parietal cortex. Importantly, the £3/4 hetero-
zygotes did not display greater activation compared to the
€3/3 homozygotes in any brain region even at the uncor-
rected threshold of p < 0.01. There were no differences
between the groups for the familiar versus novel contrast.

To determine whether the significantly greater MTL activa-
tion displayed by the €3/3 homozygotes relative to the €3/
4 heterozygotes was attributable todifferential MTL atro-
phy, we used VBM analysis [53] of the T1 weighted scans
restricted to the MTL anatomical mask in these same par-
ticipants. This analysis revealed no significant differences
in modulated GM volume between the £3/3 homozygotes
and €3/4 heterozygotes even at a threshold of p < 0.05,
uncorrected. The absence of differential MTL atrophy indi-
cates that the observed differences in fMRI activation were
not attributable to GM volume differences in this group of
subjects.

Relationship between RAVLT and MTL activation

We also examined whether the total number of words
learned on the RAVLT was associated with fMRI activation
in the MTL for the novel relative to previously learned pic-
tures contrast in €3/4 heterozygotes and €3/3 homozy-
gotes. Since RAVLT variables are highly correlated, we
chose to use total words recalled on the RAVLT because
this measure has previously been shown to be sensitive to
the preclinical detection of early AD [55]. These analyses
revealed that total words learned on the RAVLT was posi-
tively associated (see Figure 3) with increased activation
in the left anterior hippocampus (x, y, z: -28, -6, -26; 1 =
0.58; p < 0.01), and the left amygdala (x, y, z: -38, 4, -26;
r=0.78;p < 0.0001) in the £€3/3 homozygotes, but was not
significantly associated with activation in the MTL in €3/4
heterozygotes (r values = -0.26 and -0.10 for left amygdala

and hippocampus, respectively). Furthermore, the magni-
tude of the correlations was significantly different
between the two groups for both the left amygdala (p <
0.0001) and hippocampus (p = 0.01). In contrast, RAVLT
total word recall was associated with activation in the left
(x, 9, 2:-12,-38,12; r=0.65, p < 0.0001) and right (x, y, z:
4,-40,4;r=0.65,p <0.0001) isthmus of the cingulate cor-
tex in €3/4 heterozygotes.

For completeness, we also determined the association
between RAVLT total word recall and signal at the same
coordinates in the right amygdala and hippocampus.
These analyses failed to reveal a significant correlation
between RAVLT total word recall and signal change in the
right amygdala or hippocampus of the €3/3 homozygotes
(r values = 0.03 and 0.11 for the right amygdala and hip-
pocampus, respectively) or the £3/4 heterozygotes (r val-
ues = 0.19 and 0.11, for the right amygdala and
hippocampus, respectively).

Discussion

The present study examined the effects of APOE genotype
on brain activation patterns in the MTL during an episodic
encoding task in cognitively normal individuals with a
family history of AD who were on average 15-20 years
younger than the age at which AD symptoms typically
develop. We found that €3/4 heterozygotes displayed
reduced fMRI activation compared to €3/3 homozygotes
in the right hippocampus and entorhinal cortex for the
contrast of novel relative to familiar pictures. Importantly,
there were no fMRI activation differences between the
groups for the reverse contrast (i.e. familiar relative to
novel), suggesting that the reduced activation found in the
right hippocampus and MTL of €3/4 heterozygotes was
not caused by greater fMRI activation to the previously
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learned items in the €3/4 heterozygotes, at least when
measured relative to novel items. In subsequent whole-
brain analyses, no brain regions were found to display
greater activity in the €3/4 heterozygotes than in the €3/3
homozygotes for either contrast.

There were also no significant differences between the
groups in age, education or memory function, and neu-
ropsychological performance was within the normal
range for both groups. This suggests that the reduced MTL
activation to novel items (relative to familiar items) in €3/
4 heterozygotes was not caused by impaired cognitive
function, and that the observed neurobiological changes
in MTL function precede the onset of measurable decline
in cognitive function.

We also found no evidence for differences in regional GM
volume as measured by VBM, suggesting that the observed
activation differences were not caused by reduced MTL
GM volume in our cohort of middle-aged subjects. Previ-
ous volumetric studies have reported inconsistent find-
ings regarding the effects of the €4 allele on regional brain
volume. Reiman et al. [56] reported nonsignificant trends
towards smaller left and right hippocampal volumes in
€4/4 homozygotes (mean age = 58 years), and smaller
hippocampal volumes were associated with reduced long-
term memory ability. Den Heijer et al. [13] found that eld-
erly €4 carriers (mean age = 72 years) displayed signifi-
cantly greater hippocampal and amygdalar atrophy and
poorer memory ability relative to €3/3 homozygotes. Mof-
fat et al. [15] found that older 4 carriers (mean age = 69
years) displayed a significantly greater rate of hippocam-
pal volume loss over a 3-year follow-up period, although
g4 carriers were also found to display mild decline in
memory ability over the same time frame. In a recent
large-scale (N = 750) VBM study, Lemaitre et al. [14]
found significantly reduced MTL (including hippocam-
pus) volume in elderly (age range 63-75 years) €4/4
homozygotes compared to both £€3/4 heterozygotes and
non-carriers, whereas no significant differences were
found between the £3/4 heterozygotes and the non-carri-
ers. Furthermore, these authors also found that the rela-
tive risk of cognitive impairment over a 4-year follow-up
period was substantially greater in €é4/4 homozygotes rel-
ative to both &3/4 heterozygotes and non-carriers. Other
studies have also failed to demonstrate reduced regional
brain volume in €4 carriers [17-19]. The results of the
present study are consistent with these findings.

Since the risk of memory impairment and AD is signifi-
cantly greater in elderly €4 carriers relative to non-carriers
and younger €4 carriers [57], cognitive status and age
might interact with regional changes in brain volume.
Therefore, it is quite possible that the MTL volume reduc-
tions found by previous studies in elderly populations
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were caused by the inclusion of APOE &4 carriers who
were more likely to be in the early stages of AD relative to
non-carriers. This interpretation is supported by the find-
ings of previous studies that reduced MTL volume in &4
carriers was associated with poorer memory performance
and increased risk for AD. In any case, the results of the
present study failed to demonstrate significant differences
in regional GM volume in middle-aged APOE ¢3/4 heter-
ozygotes, further supporting the notion that reduced fMRI
activation in €3/4 heterozygotes preceded overt changes in
hippocampal volume. More studies are needed to deter-
mine the conditions under which the APOE ¢4 allele
results in reduced MTL volume.

In the present study, we also found that greater encoding
ability on a neuropsychological measure of learning (i.e.
RAVLT) was positively associated with fMRI activation in
the left anterior MTL in the £€3/3 homozygotes but not in
the €3/4 heterozygotes. This signifies that among the non-
carriers (in whom the MTL is presumably more intact) the
strength of the MTL response was closely matched with
better learning ability, whereas among the £€3/4 heterozy-
gotes this relationship was disrupted. The amygdala and
anterior hippocampus relationships found in €3/3
homozygotes are consistent with a facilitative role for the
amygdala in processing novel episodic information [58].
There was no significant difference in the magnitude of
the correlations in the amygdala and hippocampus of the
€3/3 homozygotes, so conclusions regarding any differen-
tial contribution of these regions to encoding ability are
limited. Future studies examining amygdala-hippocampal
connectivity during encoding, as well as psychological fac-
tors (e.g. context, affective valence) that may modulate
neural activity in these regions would be required to deter-
mine the role of the amygdala in encoding of novel visual
information in people at risk of AD. Nevertheless, this
finding does suggest that the left anterior MTL was
recruited to a greater extent in £€3/3 homozygotes, whereas
€3/4 heterozygotes with better encodingability may have
used encoding strategies that did not actively involve the
anterior MTL. The fact that the correlation was found in
the left hemisphere in €3/3 homozygotes is consistent
with previous studies that have reported primarily left
MTL activation for encoding of verbal material (see [59]
for review but see also [60]), suggesting that subjects with
greater activation may have used a verbal encoding strat-
egy. In contrast, previous studies in cognitively healthy
young individuals (mean age = 30) have reported correla-
tions between memory ability and right hippocampal sig-
nal change [60]. The exact reason for the divergent
findings is not known. More studies examining correla-
tions between memory ability and fMRI signal change in
the left and right hippocampus during episodic encoding
are needed to clarify these findings.
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To date, six studies have examined brain activation differ-
ences between £3/3 homozygotes and g4 carriers using
fMRI, but only two of these used an activation task that
had an episodic encoding component. In a series of stud-
ies, Smith et al. [61-63] compared fMRI activation
between a group of cognitively healthy subjects with a
high risk of AD (i.e. €4 carriers with a family history of
AD) versus a low risk group (¢3/3 homozygotes with no
family history of AD) during letter fluency and object
naming tasks relative to a low-level, resting baseline con-
dition (responding to a grayscale square that randomly
changed in intensity). These authors found that €4 carriers
displayed increased activation in the left parietal region
during a letter fluency task, and reduced activation in the
inferotemporal cortex during the object-naming task.
Longitudinal follow-up of a smaller subset (N = 25) of
these participants four years later with the same object
naming task revealed a greater longitudinal decline in
fMRI activation in the inferotemporal cortex of the €4 car-
riers compared to €3/3 homozygotes. Since object naming
and letter fluency are generally affected after episodic
memory symptoms appear in AD [64], it may be that an
episodic memory task would be more helpful in assessing
the primary area of early pathology in AD - the MTL [6].

Bookheimer et al. [65] compared brain activation differ-
ences between cognitively normal €4 carriers and €3/3
homozygotes (age range: 47-82 years) using a paired-
associate task as a probe of episodic memory. In their task,
subjects were to encode seven unrelated word pairs over
six learning trials, in which each learning trial was fol-
lowed by 30-second periods of rest. The encoding phase
was followed by six recall trials in which subjects heard
the first word of each pair and were asked to recall the sec-
ond word silently. The major contrast used to examine
group differences was encoding + recall relative to the rest-
ing baseline. Whole-brain analysis revealed greater activa-
tion in the left prefrontal cortex, bilateral orbitofrontal,
superior temporal, and inferior and superior parietal
regions in &4 carriers relative to the €3/3 homozygotes for
the contrast of encoding + recall relative to rest. In follow-
up ROI analyses, these authors reported that €4 carriers
displayed greater signal change in the left MTL as well. In
a follow-up study, Burrgren et al. [66] reported no differ-
ences between €4 carriers and &3/3 homozygotes during
performance of a modified digit-span (forwards) working
memory task relative to a baseline condition that was a
single digit. They hypothesized that their results reflected
a compensatory response in which €4 carriers require
additional cognitive effort to achieve comparable per-
formance during episodic memory encoding tasks.

More recently, Bondi et al. [67] found that cognitively-
healthy, older (mean age = 76) &4 carriers displayed
greater activation in the fusiform gyrus, parietal cortex and
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frontal gyrus compared to £3/3 homozygotes using a par-
adigm in which subjects had to discriminate novel pic-
tures from a single repeating picture. Follow-up ROI
analysis revealed that €3/3 homozygotes displayed greater
activation in the left MTL compared to €4 carriers, consist-
ent with the findings of the present study. In contrast, the
opposite pattern of results was found in the right MTL (i.e.
¢4 carriers displayed greater activation in the right MTL).
These authors also reported correlations between memory
ability on a word-list learning task and right and left hip-
pocampal activation during picture encoding (i.e. a posi-
tive correlation in €3/3 homozygotes and a negative or
zero correlation in carriers of the €4 allele) that were sim-
ilar to the correlations found in the present study. They
suggested that their results were consistent with the com-
pensatory response hypothesis described by Bookheimer
etal. [65].

The exact reason for these contradictory findings is not
knownp; however, there are several demographic and
methodological differences between our study and the
two previous fMRI studies that employed an episodic
memory task. First, our subjects were on average 10 to 23
years younger than the participants in Bookheimer et al.
[65] and Bondi et al [67], complicating comparisons
between studies. Cabeza et al. [68] found that older indi-
viduals (mean age = 70 years) displayed reduced hippoc-
ampal activation during episodic retrieval, but greater
activity in the prefrontal and parahippocampal cortices
compared to young individuals (mean age = 23 years) [see
also [69]]. Second, 60% of the subjects in Bookheimer et
al. [65] had a family-history of AD, whereas 100% of our
subjects had at least one biological parent with AD (Bondi
et al. [67] did not report the percentage of subjects in his
study with and without a family history of AD). Therefore,
differences in these demographic variables might be
responsible for the discrepant findings. Longitudinal
studies similar to Smith et al. [63] that use episodic mem-
ory tasks and employ a 2 x 2 x 2 factorial design with fam-
ily history of AD and APOE genotype as grouping
variables are needed to help clarify these findings.

Third, it is possible that the divergent findings may have
resulted from differences in the episodic memory task
employed. In the present study, we employed a relatively
straightforward novel/familiar discrimination paradigm
as the probe of episodic encoding. In contrast, Bookhe-
imer et al. [65] used a paired associate learning/recall task
that was presumably more difficult than the paradigm
used to define encoding in the present study [see [70]].
The paradigm used in the present study also differed from
the encoding task used by Bondi et al. [67]. We presented
familiar pictures in two separate trials before the fMRI
scan. In contrast, first exposure to the repeating picture
was during the fMRI task in the paradigm employed by
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Bondi et al. [67] and also by others e.g. [30], therefore
some reduction in hippocampal signal during the presen-
tation of the repeating novel stimulus may have occurred
(see [50]).

Fourth, it is also possible that the compensatory response
in g4 carriers is more evident in elderly 4 carriers rather
than middle-aged €4 carriers. Presumably, the negative
effects of the APOE ¢4 allele on hippocampal structure
and function accelerate with increasing age. It is therefore
possible that reduced hippocampal volume in elderly ¢4
carriers [12-16,19,56,71] (but see [18]) might lead to the
recruitment of structures to compensate for accumulating
neuropathology in the MTL. Smith et al. [62] suggested
that increased activation in €4 carriers might be caused by
a disruption in upstream elements of a functional net-
work, resulting in decreased input from regions that are
affected early in AD such as the MTL.

Finally, an important methodological difference between
our study and previous studies was the baseline condition
used. In the present study, we contrasted novel relative to
familiar pictures, whereas previous studies reporting
increased activation in €4 carriers used lower level base-
line conditions. Since most fMRI designs employ a sub-
traction method (activation - baseline), the baseline task
chosen has a major effect on brain activation patterns
observed. Using rest as a baseline condition may augment
unintended effects in the experimental task such as lan-
guage or sensorimotor processes, and increase inter-sub-
ject variability in brain activation during the baseline
condition since there is less control over the mental state
of the subject (i.e. what is the subject thinking about dur-
ing the resting condition?).

To address this issue, Stark and Squire [72] designed an
elegant study to examine the effects of several different
baseline conditions including resting fixation on MTL
fMRI activation during presentation of novel and familiar
pictures. These authors found that MTL activation to
novel and familiar pictures was significantly greater when
an active task was used as a baseline (in their case, an odd/
even number comparison task) than when passive rest
was used as the baseline. In fact, several MTL regions were
found to display increased activation during rest relative
to familiar or novel pictures. In contrast, when the active
baseline task was used, both novel and familiar pictures
were associated with significant bilateral activity through-
out much of the MTL. These authors suggested that using
rest as the baseline condition may reduce, eliminate or
even reverse the sign of activity during a cognitive task. At
the very least, the lack of control over the mental state of
subjects during the resting state makes it not ideal to serve
as a baseline condition for comparison to cognitive tasks.
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More recent evidence suggests that the hippocampus is
coactive during the resting state with several cortical struc-
tures including precuneus and posterior cingulate cortex
[73], and this resting state activation is disrupted in indi-
viduals with MCI and AD [74,75]. These new data make
the previous findings of increased task-related activation
relative to low-level baseline conditions in €4 carriers
more difficult to interpret, and argue against the use of
resting baseline conditions in fMRI studies targeting these
brain regions, especially in individuals with AD or at risk
for AD.

Several positron emission tomography (PET) imaging
studies have also reported reductions in resting state cere-
bral metabolic rate of glucose (CMRgl) in the MTL and
cortical regions of AD patients and cognitively normal ¢4
carriers between the ages of 20 and 65 years [76-82], sug-
gesting different baseline neural activity in individuals at
risk for AD. Reduced cerebral glucose utilization has also
been shown to inhibit the induction of synaptic plasticity
in the hippocampus of rats [83] and impair learning and
memory on hippocampus-dependent tasks [84]. Prior
research has demonstrated that CMRgl is coupled to
regional cerebral blood flow (rCBF) [85,86], and both
CMRgl [87] and rCBF [88,89] are coupled to the neural
response. The current finding of reduced hippocampal
BOLD signal during episodic encoding in €3/4 heterozy-
gotes is consistent with these studies, supporting the idea
that reduced glucose metabolism would lead to reduced
neuronal activation in the MTL during encoding. More
research is needed to determine the relationship between
reduced resting levels of CMRgl in g4 carriers and task-
related changes in the fMRI BOLD signal.

Reduced hippocampal activation in €3/4 heterozygotes is
consistent with several previous fMRI studies of memory
encoding in patients with AD and MCI. For example, AD
patients display reduced hippocampal activation com-
pared to elderly controls during memory encoding
[90,91], whereas no differences were found in the motor
cortex during a sensorimotor task [90]. Machulda et al.
[90] also reported similar findings in MCI patients [see
also [92]]. Johnson et al. [50] found that elderly normal
subjects displayed a hippocampal adaptation response
(i.e. reduction in signal intensity) to repeating unfamiliar
faces that was not displayed by age-matched patients with
MCI. Taken together, these prior results indicate that MTL
activation is reduced in AD and MCI patients with objec-
tive memory impairment relative to elderly, cognitively
normal controls.

In a recent study, Dickerson et al. [93] examined differ-
ences in the extent of brain activation (i.e. number of con-
tiguous as well as non-contiguous voxels), but not the
magnitude of activation, during episodic encoding in AD
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patients and elderly individuals with and without subjec-
tive memory complaints who did not meet the clinical cri-
terion for MCI [94]. These authors manually traced
bilateral ROIs of the hippocampus and entorhinal cortex
from each participant's structural MRI. They found that
individuals with memory complaints displayed increased
extent of activation in each of the four ROIs relative to age-
matched subjects with no memory complaints. AD
patients were found to display significantly less extensive
activation relative to both groups. Furthermore, APOE &4
carriers were found to display a greater extent of activation
relative to non-carriers when collapsed across the memory
complaints factor.

Dickerson et al. [93] suggested that increased extent of
MTL activation early in the course of prodromal AD was
followed by a subsequent decrease in the extent of activa-
tion as the disease progresses. An important caveat to
these findings is that the individuals with memory com-
plaints had significantly greater education and total word
recall on a word-list learning task relative to individuals
without memory complaints. Therefore, increased extent
of activation may have been related to the paradoxically
better encoding ability in individuals with memory com-
plaints. This interpretation is supported by the finding of
the present study that total word recall on the RAVLT was
associated with increased magnitude of activation during
episodic encoding, at least in the £3/3 homozygotes. Pre-
vious studies have also reported similar findings
[60,95,96], suggesting that individuals with better epi-
sodic memory ability display greater fMRI activation in
the MTL during episodic encoding tasks.

Reduced neural function in the MTL of asymptomatic 4
carriers may also lead to a greater age-related decline in
episodic memory over time. Several studies have reported
that older €4 carriers display significantly greater longitu-
dinal age-related decline in episodic memory functions
than non-carriers [9-11,97,98]. For example, Caselli et al.
[97] reported that cognitively normal &4 carriers (mean
age = 60 years) displayed significantly greater longitudinal
decline during a three-year follow-up period for total
word recall on the RAVLT and delayed recall of complex
figures. Our findings that hippocampal activation during
a novel-picture encoding task is reduced in €3/4 heterozy-
gotes, and that memory encoding ability is positively
associated with anterior MTL activation in €3/3 homozy-
gotes but not €3/4 heterozygotes, are consistent with pre-
vious findings that MTL-dependent memory processes
decline at a greater rate in individuals who are g4 carriers
and have a family history of AD. These results leave open
the possibility that €4 carriers recruit other brain regions
and/or rely on other compensatory psychological proc-
esses (e.g. verbal rehearsal of visual information) during
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encoding to compensate for early pathological changes in
MTL structure and function [65,67].

Studies in transgenic mice expressing a human form of the
APOE ¢4 allele also support the negative effects of the g4
allele on hippocampal function. For example, the pres-
ence of the APOE ¢4 allele increases the production of B-
amyloid (the main constituent of the senile plaques in
AD) in cultured hippocampal neurons [99], reduces syn-
aptic plasticity in the hippocampus [100], promotes B-
amyloid induced blockade of plasticity in the hippocam-
pus [101] and impairs hippocampus-dependent spatial
memory [102,103]. Our results are consistent with these
findings as well.

This study has several limitations. We did not include a
low-level baseline condition (for the reasons discussed
above), limiting our ability to compare and contrast our
results directly to previous fMRI studies of APOE geno-
type. Furthermore, the findings of fMRI activation differ-
ences associated with APOE genotype were restricted to
€3/3 homozygotes and €3/4 heterozygotes with a parental
history of AD. Therefore, our results only generalize to
individuals with these APOE genotypes and a family his-
tory of AD. More studies are needed to determine the
effects of other APOE genotypes (e.g. €4/4, €2/3) and fam-
ily history of AD on brain activation during memory
encoding. Third, we also did not include a post-scan rec-
ognition memory test to determine if the novel pictures
were encoded into memory. While conclusions regarding
APOE genotype differences in encoding related processes
cannot be made directly from this study, they can be
inferred on the basis that novel information is more likely
to be encoded than familiar information (see also [31]).

Fourth, several of the subjects in this study had elevated
total blood cholesterol and/or high blood pressure.
Importantly, there were no group differences in the per-
centage of subjects with these conditions, and these per-
centages were also no greater than observed prevalence
rates in the general US population. Fifth, several subjects
in each group were current users of medications that influ-
ence brain function and may affect the hemodynamic
BOLD response. More studies are needed to determine the
effects of these drugs and/or medical conditions on the
fMRI signal. Finally, the subjects in this study were pre-
dominantly Caucasian, highly educated and female. Addi-
tional studies are needed to determine whether our
findings can be confirmed in subjects with other demo-
graphic characteristics. Despite these limitations, the
results of the present study provide converging evidence
for the idea that the MTL displays functional decline asso-
ciated with the APOE &4 allele in individuals with a family
history of AD.
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If compromised MTL function continues to be observed in
healthy €4 carriers, this group of subjects may represent a
good study population for novel treatments designed to
delay the onset of or to prevent AD. More studies are
needed to clarify inconsistent findings and to determine
the reliability, validity and clinical utility of hippocampal
activation paradigms for the early detection of AD.
Although the results of the present study indicate cross-
sectional differences in MTL activation based on APOE
genotype, future studies employing longitudinal designs
will be required to determine whether or not differences
in MTL activation in individuals at genetic risk for AD can
be used to improve the detection of incipient AD.

Conclusion

This study found that APOE &3/4 heterozygotes with a
family-history of AD displayed reduced activation com-
pared to €3/3 homozygotes in the MTL during a novel pic-
ture-encoding task. Importantly, these changes occurred
in the absence of cognitive differences between the
groups. We also found that greater encoding ability on a
neuropsychological measure of learning (i.e. RAVLT) was
positively associated with fMRI activation in the left ante-
rior MTL in the £€3/3 homozygotes but not in the £3/4 het-
erozygotes. Together with previous studies reporting
reduced glucose metabolism and AD-related neuropa-
thology, this study provides convergent validity for the
idea that the MTL exhibits functional decline associated
with the APOE &4 allele.
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