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Review

A Balancing Act: MDA5 in Antiviral Immunity
and Autoinflammation

Antonio Gregorio Dias Junior,1,@ Natalia G. Sampaio,1 and Jan Rehwinkel1,*

Induction of interferons during viral infection is mediated by cellular proteins
that recognise viral nucleic acids. MDA5 is one such sensor of virus presence
and is activated by RNA. MDA5 is required for immunity against several classes
of viruses, including picornaviruses. Recent work showed that mutations in the
IFIH1 gene, encoding MDA5, lead to interferon-driven autoinflammatory dis-
eases. Together with observations made in cancer cells, this suggests that
MDA5 detects cellular RNAs in addition to viral RNAs. It is therefore important
to understand the properties of the RNAs which activate MDA5. New data
indicate that RNA length and secondary structure are features sensed by
MDA5. We review these developments and discuss how MDA5 strikes a bal-
ance between antiviral immunity and autoinflammation.

MDA5, a Key RNA Sensor
Mammalian cells use pattern-recognition receptors (PRRs) to detect the presence of infectious
microorganisms [1]. These receptors are activated by pathogen-associated molecular patterns
(PAMPs). In the case of virus infection, PAMPs are often nucleic acids [2,3]. For example, viral
RNAs trigger PRRs, including the endosomal toll-like receptors (TLRs) 3 and 7 and the cytosolic
RIG-I-like receptors (RLRs) [2,3]. The RLR family comprises three members: retinoic acid
inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of
genetics and physiology 2 (LGP2) [2,3]. These proteins are ubiquitously expressed at low levels.
All RLRs contain a DExD/H-box RNA helicase domain and a C terminal domain (CTD), both
responsible for RNA binding [4]. In addition, RIG-I and MDA5 have two N terminal caspase
activation and recruitment domains (CARDs). Upon activation of RLRs by RNA binding, the
CARDs interact with the adaptor mitochondrial antiviral signalling protein (MAVS), ultimately
leading to the transcription of the genes encoding type I interferons (IFNs) (see Glossary) [2–4]
(Figure 1). Autocrine and paracrine IFN stimulation subsequently induces transcription of
hundreds of IFN-stimulated genes (ISGs), several of which encode proteins with direct antiviral
functions [5]. RLRs themselves are encoded by ISGs, constituting a feed-forward loop. Type I
IFNs further coordinate cellular immune responses to virus infection and are thus essential for
antiviral immunity [6]. In addition to inducing type I IFNs, RLRs and MAVS also activate
apoptosis, leading to the elimination of the infected cell [7].

Given the abundance of nucleic acids in healthy cells, a key question is to understand the
mechanisms by which nucleic acid-sensing PRRs become activated specifically following virus
infection. The features of RIG-I-stimulatory RNAs are well understood and include the presence
of two or three phosphate groups at the 50-end, the absence of 50-cap methylation, and base-
pairing adjacent to the 50-end [8–15]. These features are characteristic of viral RNAs produced
by some viruses, such as influenza A virus or reovirus [8,9,12], but are not typically found in
cellular RNAs present in the cytosol of healthy cells, explaining selective activation of RIG-I in
virus-infected cells. It is also possible that, in some settings, mislocalised cellular RNAs activate
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RIG-I and other nucleic acid sensors of the innate immune system [16,17]. Although RIG-I and
MDA5 share similar domains, they detect different viral infections [18]. For example, RIG-I
detects infection with orthomyxoviruses, such as influenza A virus, while MDA5 senses
picornavirus infection. In contrast to RIG-I, the mechanisms that allow MDA5 to recognise
viral RNAs while avoiding cellular RNAs are less well understood. Biochemical and structural
work using recombinant MDA5 protein demonstrated that MDA5 senses RNA length and
secondary structure [19–21]. Understanding molecular features of MDA5-stimulatory RNAs is
important for another reason: in addition to its protective role in antiviral defence, MDA5 has
been implicated in autoimmune and autoinflammatory diseases such as type 1 diabetes (T1D),
systemic lupus erythematosus (SLE) and Aicardi–Goutières syndrome (AGS) [2,3,22].
Moreover, new data indicate that MDA5 is activated during some forms of cancer treatment
[23,24] or in settings where mitochondrial RNA degradation is compromised [17]. These
observations highlight that, in some circumstances, cellular RNAs trigger MDA5. Indeed,
transcripts from repetitive genome segments, including endogenous retroelements, such
as Alu elements, and mitochondrial RNA have been suggested to bind and activate MDA5
[17,23–26]. Here, we review RNA sensing by MDA5 in the context of antiviral immunity and
autoinflammation. We discuss how important recent developments in this area set the stage for
future exploration of MDA5-RNA interactions in living cell systems, including models of
authentic virus infection and autoinflammation.

The Discovery of MDA5
MDA5 was first described in 2002 as a helicase protein in mouse and human cells [27,28].
Interestingly, these initial reports suggested that MDA5 is involved in the execution of apoptosis.
In 2004, Rick Randall’s group found that overexpression of MDA5 alone induces the expression
of IFN-b, a type I IFN [29]. Furthermore, this study showed that the IFN-b response of cells
stimulated by transfection of polyriboinosinic:polyribocytidylic acid (poly I:C), a synthetic RNA,
is greatly enhanced by MDA5 overexpression [29]. Shortly afterwards, knockouts of the mouse
Ifih1 gene encoding MDA5 demonstrated that MDA5 is essential for the type I IFN response to
poly I:C [18,30]. Together, these landmark studies established MDA5 as an RNA sensor
inducing type I IFN (Figure 1).

Activation of MDA5 by Synthetic RNAs
Poly I:C is often used as a synthetic mimic of double-stranded RNA (dsRNA). This led to the
hypothesis that the PAMP recognised by MDA5 is the double-stranded conformation of RNA.
Indeed, structural studies of MDA5 show that the protein adopts a ring-like conformation
around dsRNA [21]. Contacts between MDA5 and dsRNA are along the phosphodiester
backbone, suggestive of sequence-nonspecific binding [21]. Experiments in the test tube
using recombinant MDA5 and in vitro transcribed dsRNAs established that MDA5 forms
filaments along dsRNA [19,31]. These filaments are particularly stable on long dsRNA mole-
cules and are mediated by both protein–RNA and protein–protein interactions [20,21]. These
biophysical studies used filament formation and ATP hydrolysis by the helicase domain of
MDA5 as surrogates for its activation. Consistent with these data is the finding in cells that the
IFN response to transfected poly I:C depends on length: long poly I:C molecules preferentially
trigger MDA5, whereas short poly I:C activates RIG-I [32]. Together, these observations have
led to the widely held notion that MDA5 detects long dsRNA. However, other observations
suggest that dsRNA – that is, two complementary RNA molecules annealed to form a helical A-
form duplex – may not always be sufficient to explain activation of MDA5. For example, IFN
induction is particularly strong in response to poly I:C, while other dsRNAs such as poly A:U,
trigger no response [33,34]. It should nevertheless be noted that, compared with G:C and I:C
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IFNs that are detectable in the
patients’ blood and cerebrospinal
fluid [22]. AGS can manifest at birth
and has some phenotypic overlap
with congenital virus infection as well
as with SLE. Mutations in any one of
seven genes cause AGS. The
proteins encoded by these genes are
all enzymes involved in nucleic acid
or nucleotide metabolism.
Alu elements: endogenous
retroelements of the short
interspersed nuclear element (SINE)
class that are ca. 300 nt in length.
They are present in the human
genome in more than one million
copies, and some Alu elements are
arranged as inverted repeats [118].
The vast majority of Alu elements do
not complete retrotransposition, and
Alu elements are absent in mice.
Endogenous retroelements: a
large proportion of mammalian
genomes consists of endogenous
retroelements, which are subdivided
into endogenous retroviruses and
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by annealing inosine and cytidine
homopolymers. Poly I:C is frequently
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used to stimulate type I IFN
production and engages both TLR3
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Systemic lupus erythematosus
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of symptoms, including rash, photo-
sensitivity, arthritis, fatigue, and
nephritis. IFN-a and autoantibodies
play crucial roles in the development
of SLE.

duplexes, A:U duplexes have a lower stability, which could explain their lower signalling activity.
It is also noteworthy that poly I:C consists of annealed inosine and cytidine homopolymers.
These are produced enzymatically from ribonucleoside diphosphates, using polynucleotide
phosphorylase, and are heterogeneous in length [35]. Annealing thus results in double-
stranded regions with single-stranded overhangs. These are available for base-pairing with
other molecules, potentially resulting in the formation of more complex, branched RNA
structures, which have been proposed to play a role in MDA5 activation [34].

RNA Sensing by MDA5 during Virus Infection
Early studies in MDA5-deficient mice reported that these animals are highly susceptible to
infection with encephalomyocarditis virus (EMCV), failing to induce type I IFNs [18,30]. More
recently, MDA5 deficiency in humans has been shown to increase susceptibility to viral infection
[36–38]. EMCV is a widely used model belonging to the Picornaviridae family that includes
important human pathogens such as hepatitis A virus, coxsackie B virus, enterovirus, and
rhinovirus. As summarised in Table 1, subsequent work by many laboratories revealed that
MDA5 is involved in type I IFN induction during infection with several other types of viruses. This
includes virus families characterised by genomes consisting of single-stranded (ss), positive- or
negative-sense RNA, dsRNA, and dsDNA. However, in contrast to EMCV infection, in which
MDA5 is essential for type I IFN induction, MDA5 plays a partial role in other infections (Table 1).
For example, dsDNA viruses are also detected by the cytosolic DNA sensing pathway, and
some RNA viruses trigger both MDA5 and RIG-I.

Immunofluorescence experiments using monoclonal antibodies, called J2 and K1, that recog-
nise dsRNA [39] revealed strong staining in cells infected with many of the viruses that activate
MDA5 [34,40–42]. In the case of ssRNA viruses, this dsRNA is likely to be generated during
replication of the viral genome, which involves the synthesis of a complementary RNA molecule.
For dsDNA viruses, overlapping transcription of both the positive and negative DNA strand may
generate dsRNA [42].

Since many viruses have evolved mechanisms to inhibit nucleic acid sensors, one protocol to
study immunostimulatory RNAs is to isolate total RNA from virus-infected cells, followed by
retransfection of this sample containing both cellular and viral RNAs into uninfected reporter
cells. The transfected RNA then stimulates innate immune receptors in recipient cells without
the presence of inhibitory viral mechanisms. For example, total RNA from cells infected with
picornaviruses or Zika virus triggers MDA5-dependent IFN responses [34,43,44]. Fractionation
of the RNA isolated from infected cells can be used to further characterise MDA5 agonists.
Using two picornaviruses, Mengo virus and Coxsackievirus B3, Feng at al. showed that RNA
from a band containing long viral dsRNA, called the replicative form, triggers MDA5 [43], and
similar results were reported by Triantafilou et al. [41]. In another study using EMCV, fraction-
ation revealed that the activity stimulating MDA5 is not found in a dsRNA band specifically
present in infected cells [34]. Instead, MDA5-stimulatory RNA was recovered from a high-
molecular-weight fraction containing both ssRNA and dsRNA, and similar observations were
made analysing RNA from vaccinia virus-infected cells [34].

Although a useful approach, transfecting total RNA from infected cells has limitations; for
example, the role of RNA-binding proteins may be overlooked. In order to directly study MDA5-
stimulatory RNAs generated during virus infection, a number of studies attempted to purify
these RNAs from infected cells using different pull-down approaches [45–47]. Indeed, immu-
noprecipitations (IPs) have been used successfully to identify RIG-I-associated RNAs
[8,9,12,16,48]. However, in contrast to RIG-I, we and others found that similar protocols using
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Table 1. Viral Infections Detected by MDA5

Virus family Genome Examples Role of MDA5 in type I IFN induction Selected Refs

Picornaviridae ssRNA (+) Encephalomyocarditis virus; Rhinovirus; Coxsackie B virus Essential [18,30,43,102,103]

Flaviviridae ssRNA (+) West Nile virus; Hepatitis C virus; Zika virus Partial [44,104,105]

Togaviridae ssRNA (+) Sindbis virus Partial [34,106,107]

Coronaviridae ssRNA (+) SARS coronavirus Partial [57,108,109]

Paramyxoviridae ssRNA (�) Measles virus; human Metapneumovirus; Sendai virusa Partial [110–112]

Reoviridae dsRNA Rotavirus Partial [8,32,113]

Poxviridae dsDNA Vaccinia virus Partial [34,114]

Herpesviridae dsDNA Herpes simplex virus 1 Partial [115]

Hepadnaviridae dsDNA Hepatitis B virusb Partial [116]

aSome Sendai virus stocks, particularly the Cantell strain, activate mostly RIG-I.
bHepatitis D virus, a satellite virus that only infects HBV-infected cells and has a circular, ssRNA(�) genome, is also sensed by MDA5 [117].

Poly I:C

Virus

RNA
ligand

MDA5 domains

CARD Helicase CTD

MDA5

MAVS

TBK1–IRF3Type I IFN responseNucleus

Self-RNA

Mitochondria

Cytoplasm

Figure 1. Overview of the MDA5 Pathway. MDA5 comprises two N terminal CARD domains, a central helicase
domain, and a C terminal domain (CTD). Both the helicase domain and the CTD are involved in RNA binding. MDA5
recognises synthetic RNAs, such as poly I:C, viral RNAs, and endogenous RNAs. Length and secondary structure are likely
to be key determinants of MDA5 activation, which has been suggested to be mediated by multimerisation of the protein on
RNA agonists. This results in the clustering of multiple CARD domains, which, in turn, allows the engagement of MAVS.
Activation of this adaptor protein triggers a signalling cascade involving TBK1 and IRF3, leading to transcriptional induction
of the genes encoding type I IFNs and other antiviral genes. CARD, caspase activation and recruitment domain; MAVS,
mitochondrial antiviral signalling protein.
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native conditions for IP of MDA5 do not copurify IFN-stimulatory RNAs [25,47]. One possible
explanation for this observation is that MDA5 forms multimers on its natural RNA agonists, as
has been reported for synthetic RNAs, and that such MDA5 filaments are unstable after cell lysis
[19,20,25]. To circumvent this technical obstacle, one study used photoactivatable ribonucle-
oside enhanced crosslinking and immunoprecipitation (PAR-CLIP) [46]. This method involves
incubating cells with modified nucleosides, which are incorporated into newly synthesised RNA
and allow UV-A-induced cross-linking of the RNA to nearby proteins [49]. Using antibodies
against endogenous MDA5, Runge et al. isolated IFN-stimulatory RNAs from cells infected with
measles virus (MV, a paramyxovirus) [46]. Sequencing of these RNAs revealed an enrichment of
AU-rich sequences derived from mRNA of the MV L gene [46]. A later study using a strepta-
vidin-based pull-down approach and native conditions, however, concluded that MDA5 binds
to the MV N mRNA [45] and did not confirm the preference of MDA5 for AU-rich sequences
observed with PAR-CLIP [45,46]. The reason for these different results is currently unclear and
may relate to the different experimental methods used. Another approach to purify MDA5-
stimulatory RNAs from virus-infected cells utilised IP of LGP2 [47]. This RLR lacks CARD
domains and plays a dual role regulating both RNA interference by association with Dicer [50]
as well as RIG-I and MDA5 signalling [51]. Indeed, LGP2 may enhance MDA5-dependent type I
IFN responses by facilitating the access of MDA5 to RNA agonists [52,53]. IP of LGP2 from
EMCV-infected cells under native conditions captures an RNA that activates MDA5 upon
retransfection into reporter cells [47]. Deep sequencing of this RNA revealed an enrichment of
negative-sense RNA corresponding to the L region of the EMCV genome [47]. Further experi-
ments showed that in vitro transcribed L antisense RNA activates MDA5, and that the L region
is required for type I IFN induction following EMCV infection in cells and mice [47].

Despite the differences in methodologies employed and results obtained, all of these studies
find that MDA5-stimulatory RNAs are derived from one strand of the investigated viral sequen-
ces, namely, positive-sense RNA for MV [45,46] and negative-sense RNA for EMCV [47].
Although a degree of intramolecular base-pairing is conceivable, these findings are consistent
with the notion that physiological MDA5 agonists may not always simply correspond to viral
dsRNA. Instead, dsRNA – as a product of infection – might be a correlate of MDA5 activation
[34,40,42]. We speculate that a more complex RNA motif or structure may activate MDA5 in
some settings. Further studies are needed to identify and characterise this viral PAMP detected
by MDA5 with precision. The recently described MDA5-RNase-protection assay [25], and
advances in CLIP technologies [49], are likely to facilitate research into this question. Although
CLIP analysis reveals both activating and nonactivating RNA ligands, it may be particularly
informative as it allows interrogation of MDA5-associated RNAs in virus infected cells. This is
important because viral RNAs are typically coated by viral proteins, and RLRs have been
suggested to compete with viral RNA-binding proteins [54]. As such, the actual RNA agonist
recognised by MDA5 in infected cells is likely to be determined by a combination of factors,
including (i) the RNA binding preferences of MDA5, (ii) accessory host factors such as LGP2
[53], DHX29 [55], and LncITPRIP-1 [56] that facilitate RNA binding by MDA5, (iii) the abundance
and properties of viral RNA-binding proteins [54], and (iv) viral evasion strategies such as RNA
methylation [57] and RNA degradation [58]. Another interesting avenue for future research is to
study at the subcellular level MDA5 activation, the formation of aggregates or filaments, and
interaction with MAVS. For example, the subcellular localisation of MAVS suggests that active
MDA5 signalling complexes may be formed on mitochondria and/or peroxisomes [59–61].
Super-resolution and live-cell microscopy methods should be utilised to address these
questions.
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Activation of MDA5 in Autoimmune and Autoinflammatory Diseases
In addition to its role in the detection of viral infections, MDA5 has also been implicated in a
number of sterile, inflammatory conditions. For example, single-nucleotide polymorphisms
(SNPs) in IFIH1, the gene encoding MDA5, have been associated with T1D, psoriasis,
rheumatoid arthritis, vitiligo, multiple sclerosis, and SLE [62–68]. How IFIH1 risk alleles relate
to the development of these diseases is not fully understood but it is likely that this involves
chronic induction of type I IFNs, which then initiate or enhance autoinflammation and autoim-
mune responses. In the context of T1D, the IFIH1 risk alleles may result in increased MDA5
protein levels or increased responses to RNA derived from cellular sources or viral infection
[69–71]. Alternatively, it is possible that some IFIH1 SNPs change the conformation of MDA5
such that the protein becomes constitutively active, irrespective of RNA binding [72].

IFIH1 mutations can also cause a number of rare disorders characterised by aberrant type I IFN
production, some of which are monogenic diseases and, as such, are good models for
molecular studies [22]. This includes Singleton–Merten syndrome [73] and AGS [74,75].
AGS is characterised by severe neurological dysfunction and often results in death in childhood
[76]. Type I IFNs are detectable in cerebrospinal fluid and in peripheral blood [77]. The AGS-
associated IFIH1 mutations result in substitutions of single amino acids in the helicase domain
of MDA5 [74,75]. How do these missense mutations lead to chronic type I IFN production? In
overexpression assays, mutated versions of MDA5 are more potent than wild-type MDA5 in
activating the IFN-b promoter in the absence of an exogenous stimulus [74,75]. Two explan-
ations have been proposed for this. In one, mutated MDA5 signals constitutively in an RNA-
independent manner [75]. Indeed, Oda et al. find that type I IFN induction following EMCV
infection is not enhanced by expression of mutated MDA5 [75], and similar observations were
reported in a mouse model in which an Ifih1 mutation leads to type I IFN induction [72]. The
other explanation suggests that MDA5 mutations alter the interaction between the protein and
RNA, resulting in spontaneous signalling triggered by cellular RNAs. In line with the idea of
enhanced RNA sensing, Rice et al. found that overexpression of mutated MDA5 in cell lines
potentiates the type I IFN response to transfected synthetic RNA agonists [74]. Furthermore,
coexpression of viral RNA-binding proteins prevents the response triggered by overexpression
of MDA5 without additional stimulation [25]. This observation suggests that mutated MDA5
aberrantly detects cellular RNAs.

In order to identify cellular RNAs that stimulate mutant MDA5, Ahmad et al. recently described
an RNase protection assay where total RNA extracted from cells is mixed in the test tube with
recombinant MDA5 protein bearing a mutation in its helicase domain, which had been identified
in an AGS patient [25,74]. RNA not bound by MDA5 is then degraded with RNase A and any
remaining material is sequenced [25]. This analysis revealed that RNA derived from Alu
elements arranged as inverted repeats (IRs) is bound by MDA5 [25]. Transcription of IR-Alu
elements generates single-stranded RNA molecules with extensive self-complementarity,
resulting in the formation of a long, base-paired stem. In cell-free systems, mutant MDA5
forms filaments on synthetic IR-Alu RNAs, which also stimulate its ATPase activity and MDA5-
dependent dimerisation of a key downstream transcription factor, IRF3 [25]. Ahmad et al.
further propose that the presence of mismatched bases in RNA stem structures formed by IR-
Alu elements prevents recognition by wild-type MDA5 [25]. These elegant experiments provide
a molecular explanation for type I IFN induction in cells from AGS patients: mutant MDA5 is less
selective than wild-type MDA5 in terms of RNA binding and associates with base-paired RNA
stems formed by IR-Alu elements containing bulges and mismatches [25]. Furthermore, these
data lend support to the notion that nucleic acids derived from endogenous retroelements play
important roles in autoinflammatory responses [78].
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In addition to IFIH1, mutations in six other genes have been shown to cause AGS: TREX1,
RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1 and ADAR1 [22]. TREX1, RNASEH2A-C and
SAMHD1 mutations all result in aberrant activation of the dsDNA sensing cGAS-STING
pathway, driving chronic type I IFN production [79–84]. In contrast, the molecular consequence
of ADAR1 mutations is the engagement of MDA5 [85–87]. ADAR1 (adenosine deaminase
acting on RNA 1) is an RNA-editing enzyme that binds to dsRNA and converts adenosine to
inosine (A-to-I). A-to-I edits are predicted to change RNA structure and stability, in addition to
introducing mutations into proteins as the translational machinery reads ‘I’ bases as guano-
sines instead of adenosines [88]. ADAR1 has two isoforms: ADAR1-p110 is constitutively
expressed, and localises to the cell nucleus, while ADAR1-p150 is type I IFN-inducible and
additionally found in the cytoplasm. In AGS patients, mutations in the ADAR1 gene mostly map
to regions of ADAR1 involved in A-to-I editing [89], and some mutations diminish editing activity
[89,90]. In mice, ADAR1-deficiency triggers a type I IFN response and is embryonically lethal
[91]. This phenotype is partially rescued by crossing Adar1–/– mice with either Ifnar–/– animals
lacking the type I IFN receptor or Mavs–/– mice lacking the common adaptor protein for RLRs
[87,90]. Similarly, IFN induction and embryonic lethality are rescued in Adar1–/– mice by
additional knock-out of MDA5, but not RIG-I [87]. Interestingly, much like the situation in
Adar1–/– mice (lacking both ADAR1-p110 and -p150), specific knock-out of ADAR1-p150
results in embryonic lethality that can be rescued by additional MAVS-deficiency [87]. Further
evidence for the role of MDA5 and MAVS in inducing type I IFN downstream of ADAR1-
deficiency was obtained in animals expressing an editing-deficient version of ADAR1 (E861A)
[86]. Adar1E861A/E861A animals die during in utero development and recapitulate the type I IFN
induction seen in Adar1–/– mice, and these effects are reversed in Adar1E861A/E861A; Ifih1–/–

animals [86,92].

Sites bound and edited by ADAR1 have been identified and, in human cells, are often found
within or close to Alu elements [85,93–95]. Moreover, in the RNase protection assay described
above, wild-type MDA5 protects IR-Alu RNAs amongst total RNA extracted from ADAR1-
deficient cells, but not amongst RNA from wild-type cells [25]. Together with the MDA5-
dependency of type I IFN induction in ADAR1-deficient mice and cells [85–87], these data
suggest an attractive model: ADAR1 edits RNAs derived from IR-Alu repeats, leading to
destabilization of their base-paired structure, which in turn prevents activation of MDA5
[25,96]. This model is further consistent with the notion that IFIH1 mutations found in AGS
change the RNA specificity of MDA5 such that it binds to IR-Alu elements containing mis-
matches and bulges [25].

Collectively, these observations highlight the importance of long base-paired stretches of RNA
formed by IR-Alu elements in the activation of MDA5 in autoinflammatory disease. It is
interesting, however, to note that Chung et al. recently reported that adenosines edited by
ADAR1 tend to be found in single-stranded, rather than base-paired, regions of both single Alu
and IR-Alu elements [85]. Moreover, A-to-I editing can in some circumstances stabilise RNA
duplexes formed by Alu elements [96] and inosine-containing RNAs may in some settings
inhibit RLRs [97]. Finally, RNAs derived from IR-Alu elements are bound by additional proteins
such as DHX9 [98], which may compete with ADAR1 and MDA5. It will therefore be important to
study RNAs bound by MDA5 in living cells harbouring ADAR1 or IFIH1 mutations.

A recent study found that mitochondrial dsRNA escapes into the cytosol when the mitochon-
drial enzymes SUV3 and PNPase, which are involved in RNA degradation, are depleted from
cells or are dysfunctional due to mutations [17]. At the same time, type I IFN is induced in an
MDA5-dependent manner. This observation further highlights the potential of MDA5 to detect
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cellular RNAs and parallels the finding that RIG-I can detect nuclear RNAs mislocalised to the
cytosol [16].

The Role of MDA5 in Cancer
In addition to its myriad roles in viral and autoimmune diseases, MDA5 has recently been found
to be activated during cancer treatment with DNA-demethylating agents [23,24]. Indeed, much
like during viral infection, exposure of colorectal cancer cells to inhibitors of DNA methylation,
such as 5-azacytidine-2-deoxycytidine, results in accumulation of RNAs detected by the
dsRNA-specific antibody J2 [23]. Furthermore, these and similarly treated ovarian cancer cells
contain extractable IFN-stimulatory RNAs, secrete type I and III IFNs, and upregulate ISGs
[23,24]. These effects are MDA5- and MAVS-dependent and result in reduced cell growth and
self-renewal [23,24]. Mechanistically, demethylation of normally repressed areas of the genome
may result in transcription of endogenous retroviruses, and such RNAs have been suggested to
activate MDA5 [23,24]. In broad agreement with these data, a recent study, using acute
myeloid leukemia cell lines, also shows that loss of epigenetic regulation can result in
de-silencing of retroelements, dsRNA accumulation, and MDA5 activation [99]. It would be
interesting to systematically investigate expression, subcellular localisation, and MDA5-
association of RNAs derived from endogenous retroviruses and other endogenous retroele-
ments such as Alu elements in cancer cells. Furthermore, IFIH1 genotype and MDA5 expres-
sion levels may be instructive in predicting the response of patients to drugs targeting
epigenetic regulation. In another study, overexpression of MDA5 using adenoviral vectors
induced cell death in cancer cells and also facilitated antitumour immunity via type I IFN
production [100]. Taken together, these observations further support the notion that self-
RNAs can trigger MDA5. In addition, synthetic MDA5-stimulatory RNAs, such as poly I:C, may
induce cancer cell apoptosis and immune responses against tumours (reviewed in [101]).

Concluding Remarks
MDA5 is an important RNA sensor implicated in the detection of viral infections, in a range of
autoimmune and autoinflammatory diseases, as well as in cancer. Recent efforts in identifying
an RNA molecular pattern detected by MDA5 suggest that length and secondary structure of
RNA are important determinants; however, we speculate here that activation of MDA5 in some
settings may require more than simply dsRNA and that a yet-to-be identified consensus RNA
PAMP detected by MDA5 may exist. We predict that recent technical advances, including an
RNase protection assay [25] and, in particular, CLIP protocols [49], will facilitate research in this
direction. The description of a defined RNA that selectively activates MDA5 would be of great
value (see Outstanding Questions). MDA5 agonists could be used to boost antiviral and
antitumoural immunity and may guide the developments of MDA5 antagonistic RNAs for
use in autoinflammation.
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