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Defining molecular basis for longevity traits in natural
yeast isolates
Alaattin Kaya1,3, Siming Ma1,3, Brian Wasko2, Mitchell Lee2, Matt Kaeberlein2 and Vadim N Gladyshev1

BACKGROUND: The budding yeast has served as a useful model organism in aging studies, leading to the identification of genetic
determinants of longevity, many of which are conserved in higher eukaryotes. However, factors that promote longevity in a
laboratory setting often have severe fitness disadvantages in the wild.
AIMS AND METHODS: To obtain an unbiased view on longevity regulation, we analyzed how a replicative lifespan is shaped by
transcriptional, translational, metabolic, and morphological factors across 22 wild-type Saccharomyces cerevisiae isolates.
RESULTS: We observed significant differences in lifespan across these strains and found that their longevity is strongly associated
with up-regulation of oxidative phosphorylation and respiration and down-regulation of amino- acid and nitrogen compound
biosynthesis.
CONCLUSIONS: As calorie restriction and TOR signaling also extend the lifespan by adjusting many of the identified pathways, the
data suggest that the natural plasticity of yeast lifespan is shaped by the processes that not only do not impose cost on fitness, but
also are amenable to dietary intervention.
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INTRODUCTION
The idea of slowing aging and extending lifespan of organisms
has attracted much attention, leading to the identification of
numerous factors that mitigate the effects of the aging process. At
the cellular level, the driving force behind aging may be the
inevitable accumulation of a myriad different forms of molecular
damage.1 Many genetic and pharmacological interventions have
been discovered that increase the lifespan of model organisms,
including some with single-gene effects.2,3 In addition, diverse
classes of genes have been reported to be involved in lifespan
control, pointing to several key regulatory pathways. However, it
remains to be seen whether similar strategies may be applied to
combat aging in humans. A major challenge in the field is that
many of the findings apply to model organisms in laboratory
settings, but these longevity conditions may come at the expense
of fitness, making them detrimental when organisms are in their
natural environment.
Aging is a process that involves complex gene networks. While

broad genome manipulation is not yet practical in higher
eukaryotes, fine tuning these gene networks by environmental
or dietary factors may offer a solution. It has been shown that
manipulations such as calorie restriction (CR), oxygen availability,
pH, and alternative carbon sources can modulate gene expression
and the aging process.4–7 CR is among the most studied and
widely used longevity interventions, which can extend lifespan in
almost all model organisms.2 Although the precise mechanisms of
CR-mediated lifespan extension remain debatable, it is known that
CR causes a metabolic shift from fermentation to respiration in
yeast and that mitochondrial metabolism tends to increase in
multicellular eukaryotes subjected to CR.8–10 These findings
also agree with the effects observed by manipulating various
lifespan-regulating pathways, such as target of rapamycin (TOR)

signaling.11 Suppression of TOR signaling mimics the reduction of
nutritional input under CR in yeast and extends lifespan while
concomitantly increasing mitochondrial respiration.11,12 Taken
together, these studies link elevated mitochondrial function
with lifespan, suggesting that a metabolic switch to oxidative
metabolism is beneficial with regard to delaying aging.
The fact that metabolic pathways can be modulated by both CR

and TOR inhibition suggests that complex processes such as aging
may also be amenable to environmental and genetic manipula-
tions. It is conceivable that the interaction between environmental
factors and gene networks can explain the diverse phenotypes of
species inhabiting different ecological niches. It is known that
environmental adaptation and parallel evolution help create
the genetic diversity for selection in natural populations.13 By
evaluating the lifespan differences among natural populations of
closely related strains or species, one may obtain insights into the
underlying mechanisms that modulate aging and longevity.
Toward this goal, in the current work we employed a powerful
aging model, the budding yeast. Analyses of the aging process in
Saccharomyces cerevisiae have mostly been performed on a small
number of laboratory-adapted strains, but whether the identified
mechanisms can explain the lifespan variation across natural
strains is unknown. We evaluated the lifespans of 22 natural
isolates of S. cerevisiae14 and used transcriptome, proteome,
metabolome, and morphology data15 to identify the signatures
associated with natural lifespan variation. Our data suggest that
increased replicative lifespan (RLS) in natural yeast populations
is associated with increased oxidative phosphorylation and
reduced amino-acid biosynthesis. Our study also represents a
new approach that combines phenotypic variation across yeast
populations with high-throughput data to elucidate underlying
molecular mechanisms driving this variation.
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MATERIALS AND METHODS
Yeast strains
Diploid natural isolates of S. cerevisiae were obtained from the Sanger
Institute and are summarized in Table 1. These strains are well
characterized.14,16 The diploid laboratory strain BY4743 was purchased
from American Type Culture Collection (ATCC).

Replicative lifespan assay
For each strain, cells were freshly grown on yeast extract peptone dextrose
plates before dissections. Several colonies were streaked onto new yeast
extract peptone dextrose plates using pipette tips. After overnight growth,
40–50 dividing cells were lined up. Newborn daughter cells were chosen
for RLS assays after the first division using a micromanipulator. Plates were
incubated at 30 °C between dissections and left at 4 °C during night. All RLS
assays were performed in standard yeast extract peptone dextrose plates
with 2% glucose or 3% glycerol as previously described.17 For each natural
isolate, at least two independent assays were performed. Each assay
contained 20–40 mother cells.

Phenotypic data
Growth rates were determined using a Bioscreen C MBR (http://www.
bioscreen.fi/) machine by analysis of optical density in the OD420–580 range
as previously described in combination with the YODA software package.18

The data on transcripts, peptides (proteins), metabolites, and morphology
were downloaded from Yeast Resource Center (http://www.yeastrc.org/
g2p/download.do). Values corresponding to the 22 strains were extracted;
metabolite data were not available for 378604X. Metabolites with missing
values in more than one strain (other than 378604X) were discarded; the
remaining missing values (6 out of 107 metabolites) were imputed based
on 10 nearest neighbors, using ‘knnImputation’ function of R package
‘DMwR’. For comparison across the phenotypic data, the values were
standardized across the strain by setting mean= 0 and s.d. = 1. In addition,
for genes represented by multiple peptides, we calculated the mean
standardized values to perform the regression.

Principal component analysis
Principal component analysis was performed on standardized values using
R package ‘stats’.19 To identify the underlying pathways, the factors in each
of the first three principal components (PCs) were ranked by their
contributions, and pathway enrichment analysis was performed on the top
10% factors using DAVID (https://david.ncifcrf.gov/), after correcting for
background.

Phylogenetic regression by generalized least squares
Phylogenetic regression was performed by generalized least squares
method using R packages ‘nmle’ and ‘phylolm’.20,21 Four models of trait
evolution were tested: (i) complete absence of phylogenetic relationship
(‘Null’); (ii) Brownian Motion model (‘BM’); (iii) BM transformed by Pagel’s
lambda (‘Lambda’); and (iv) Ornstein–Uhlenbeck model (‘OU’). For Lambda
and OU models, the parameters were estimated simultaneously with the
coefficients using maximum likelihood. The best-fit model was selected
based on maximum likelihood. Strength of correlation was based on the
p-value of regression slope. To confirm robustness of the results,
regression was performed by leaving out each strain, one at a time, and
computing P values using the remaining strains.

Relative coverage of mitochondrial DNA
Genomic reads of strains examined in our study were downloaded from
Yeast Resource Center (http://www.yeastrc.org/g2p/download.do) and
mapped to reference genome of S. cerevisiae strain S288c (http://www.
yeastgenome.org/download-data/sequence). The average coverage per
base across the chromosomes (excluding positions 45,000–50,000 of
chromosome XII) was calculated using R package ‘ShortRead’ for each
strain. The relative coverage of mitochondrial DNA was expressed as the
normalized ratio of per-base coverage of mitochondrial DNA to normalized
per-base coverage of chromosomes.

Differential expression between long-lived and short-lived groups
Six closely related strains were grouped into long lived (YJM981, YJM975,
and DBVPG1373) and short lived (YJM978, NCY361, and YS2). Differential

Table 1. Strains used in this study

Strain name Strain type Source Replicative lifespan Doubling time
in glucose (min)

Doubling time in
glycerol (min)

Relative coverage of
mitochondrial DNA

Cell size
(μm)

Maximum Mean s.e. Mean s.e. Mean s.e.

Y55 Lab Grape 47 27 3.43 63.79 3.56 110.31 1.13 4.46 10
SK1 Lab Soil 45 27 3.39 51.62 33.95 189.60 11.74 5.36 13
UWOPS87-2421 Wild Plant 35 19 3.72 32.91 5.96 107.01 0.74 4.16 12
UWOPS05-227.2 Wild Bee 37 23 3.39 56.03 8.23 116.59 4.93 4.41 11
UWOPS05-217.3 Wild Plant 42 24 3.51 62.77 9.14 115.71 5.52 4.41 11
UWOPS83-787.3 Wild Fruit 52 30 4.16 42.96 9.47 106.65 1.46 4.49 10
Y12 Fermentation Palm wine 55 37 3.92 58.91 1.83 117.73 3.92 4.79 10
YPS606 Wild Oak tree 44 38 1.76 35.43 7.22 98.50 1.29 3.85 10
YPS128 Wild Oak tree 54 33 4.61 34.78 5.68 97.67 1.83 3.02 10
378604X Clinical Sputum 31 23 2.06 65.04 2.64 204.72 10.88 4.42 12
273614N Clinical Fecal 45 28 3.55 72.75 3.63 109.31 1.24 5.60 13
YS9 Baking Unknown 37 21 2.90 63.08 4.15 131.35 0.91 3.29 14
BC187 Fermentation Barrel 60 39 5.39 64.03 2.46 117.93 0.35 7.38 10
L-1374 Fermentation Must 47 30 3.63 58.68 1.75 104.74 1.34 4.99 12
DBVPG6765 Unknown Unknown 16 10 1.76 62.60 2.91 99.16 5.06 4.00 13
DBVPG1106 Fermentation Grapes 32 24 2.00 64.70 2.26 109.41 1.52 5.46 12
YJM978 Clinical Vaginal 18 9 1.76 64.20 1.89 110.30 4.21 5.75 12
YJM981 Clinical Vaginal 50 25 4.78 67.68 1.43 102.18 3.16 7.98 14
YJM975 Clinical Vaginal 52 34 5.18 63.07 2.89 106.81 3.28 5.95 11
DBVPG1373 Wild Soil 35 23 3.02 66.58 4.93 123.39 2.48 4.87 11
NCYC361 Fermentation Wort 7 3 0.53 62.97 2.84 117.85 0.75 5.19 12
YS2 Baking Unknown 9 3 0.57 87.55 4.67 216.05 2.31 4.24 11
BY4743 Lab Grape 44 28 1.67 76.38 2.89 163.62 7.17 4.46 NA

Natural isolates of yeast strains are shown along with their environmental niche, mean and maximum lifespan, maximum doubling time in glucose and
glycerol media, relative coverage of mitochondrial DNA, and cell size.
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expressions of the phenotypic data were calculated using R package
‘limma’.19

Mitochondrial protein expression
Logarithmically growing cells (5 ml and OD600=0.6) were harvested and
incubated in 150 μl extraction buffer (1.85mmol/l NaOH and 2%
β-mercaptoethanol) on ice for 10min. Then, 150 μl of 50% trichloroacetic
acid was added and incubated for 30min on ice. After incubation, the cells
were pelleted and supernatant aspirated. After 30min of air drying, the
pellets were heated at 60 °C in sodium dodecyl sulfate loading buffer
and 4 μl of each sample was analyzed by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis. To examine the expression of mitochon-
drial proteins, western blotting was carried out with antibodies against
mitochondrial outer membrane protein Por1 (Abcam, Cambridge, MA, USA,
cat:ab110326). The membranes were stripped and developed with antibodies
against phosphoglycerate kinase (Pgk1; Life Technologies, Grand Island, NY,
USA, cat:459250) as an internal loading control.

RESULTS
Variation in replicative lifespan across natural yeast isolates
Phylogenetic analysis using complete genome sequence
alignment of 22 natural S. cerevisiae isolates revealed a complex
cladogram that could be divided into two main groups (Figure 1).
Assaying these isolates at 30 °C on standard yeast extract peptone
dextrose plates, we observed over 10-fold variation in RLS
(Pearson correlation coefficient = 0.95 between mean and
maximum lifespans; Figure 1b and Table 1). BC187 showed the
largest number of cell divisions (mean= 39; maximum=60);
NCYC361 and YS2 had the fewest (mean= 3 for both;
maximum=7 for NCYC361 and 9 for YS2); and many strains
produced on average 20–30 daughter cells, similar to BY4743, a
standard laboratory diploid strain and the parental strain of the
yeast open reading frame deletion collection (Table 1).

Growth of wild-type isolates in liquid culture
Changes in growth rate have previously been shown to affect
mRNA, protein, and metabolite levels,22–24 and a recent study has
reported a positive correlation between time spent in the G1 phase
of the cell cycle and RLS in the yeast.25 To determine a potential
relationship between growth rate and lifespan, we monitored the
growth of these strains by automated Bioscreen-C growth analyzer
and calculated the doubling time in both glucose and glycerol
medium. Of the 22 isolates, 21 grew faster than BY4743 strain, and
four strains doubled in o50min (Figure 1c, Table 1) in glucose
medium. However, we found only a weak negative correlation
between the doubling time and mean lifespan (Pearson correlation
coefficient =− 0.42). In addition, we observed that all strains can
utilize glycerol as a carbon source, which indicates these strains are
capable of mitochondrial respiratory metabolism (Table 1).

Phenotypic variation across strains
Gene expression, proteomic, metabolomic, and morphological
data for these 22 strains have been reported previously.15 After
our filtering and quality control, the data set contained RNA-seq
reads for 6,207 transcripts; proteomic measurement of 6,842
peptide fragments corresponding to 1,643 unique genes; mass
spectrometric quantification of 107 metabolites; and quantitative
microscopy of 392 morphological phenotypes (Materials and
Methods). In particular, 1,641 unique genes were represented by
both transcripts and peptides, but the correlation between the
transcript and protein levels was not strong (median Spearman
correlation coefficient = 0.31; Supplementary Figure 1A). Similar
conclusions were reached when we used the mean peptide
values for each gene instead (median Spearman correlation
coefficient = 0.28; Supplementary Figure 1B).
To visualize phenotypic variation across these strains, we

performed PC analysis on each type of the phenotypic data

as well as on the combined data (Figure 2a, Supplementary
Figure 2A–D; the combined data excluded metabolites as values
were not available for strain 378604X). The observed patterns
resembled the phylogenetic relationship, with the first three PCs
explaining 36–53% of total variance (Supplementary Figure 2E).
Examination of the genes contributing to the first three PCs in the
combined data revealed a distinctive set of Gene Ontology (GO;
http://geneontology.org/) terms and Kyoto Encyclopedia of Genes
and Genomes (KEGG; http://www.genome.jp/kegg/) pathways,
including oxidative phosphorylation (PC1), aerobic respiration
(PC1), mitochondrion (PC1), response to temperature stimulus
(PC1), ribosome (PC2), protein synthesis (PC2), regulation of
translation (PC2 and PC3), ribonucleoprotein complex (PC3), and
ribosome biogenesis (PC3) (Supplementary Table 1). These results
suggest that the strains predominantly differ in energy metabo-
lism, protein synthesis, and ribosome regulation. Consistent with a
previous report,15 along PC1 the strains segregated largely
according to their relative preferences for aerobic respiration or
fermentation (Figure 2b).

Correlation between phenotype and lifespan
To identify a link between phenotypic variation and lifespan,
we performed phylogenetic regression by generalized least
squares, uncovering the phenotypes associated with longevity
after accounting for the phylogenetic relationship of these
strains.26–28 Regression was performed between phenotypic
values and any one of the following lifespan measurements:
mean RLS, maximum RLS (Max RLS), log mean RLS, and log
maximum RLS. Different models of trait evolution were tested and
the best-fit model was then selected based on maximal likelihood
(Materials and Methods). To assess robustness of the relationship,
we also left out one yeast strain at a time and recalculated
regression slopes using the remaining strains. This ensured the
overall relationship did not depend on a particular isolate.
The four different RLS measurements yielded very similar

results, with Pearson correlation coefficients ranging between
0.90 and 0.98 for the regression slopes. We defined the top
hits as phenotypes with statistically significant regression
slopes under at least two different RLS measures, and identified
249 gene transcripts, 347 peptide fragments (representing
216 unique genes), 5 metabolites, and 43 morphology features
(Supplementary Table 2). Among the top gene transcripts and
protein fragments, only 10 unique genes were supported by both
measures (Supplementary Figure 3), consistent with the weak
correlation between transcript and protein levels noted above
(Supplementary Figure 1). When the mean protein values were
used for calculation, 88 genes reached statistical significance,
80 of which were also supported based on protein fragments
(Supplementary Figure 3, Supplementary Table 2).
With regard to morphology measures, features such as ‘maximal

intensity of nuclear brightness divided by average’, ‘nucleus
roundness in mother cell’, and ‘length from bud tip to mother
cell’s short axis on nucleus C’ showed significant negative
correlation with RLS, whereas ‘fitness in nucleus C’ correlated
positively with longevity (see Saccharomyces Cerevisiae Morpho-
logical Database (http://scmd.gi.k.u-tokyo.ac.jp/datamine/Parame
terHelp.do) for detailed descriptions of the parameters). Among
the metabolite top hits, asparagine showed negative correlation
with Max RLS (P value = 0.014) and Log Max RLS (P value = 0.017;
Figure 3a). A related amino acid, glutamine, also negatively
correlated with Max RLS (P value = 0.042) and weakly with Log
Max RLS (P value = 0.055; Figure 3b). This was of note, as the TOR
pathway is known to be regulated by the levels of amino acids,
especially intracellular glutamine.29 Treating yeast cells with
methionine sulfoximine, an inhibitor of glutamine synthetase,
has been shown to decrease both intracellular glutamine levels
and TOR-dependent signaling30 while increasing RLS,31 whereas
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removal of either asparagine or glutamate from the medium
produced a dose-dependent effect on chronological lifespan32

(chronological lifespan is the survival time of populations of non-
dividing cells, while RLS is the number of daughter cells produced
by a mother cell before senescence; they are related but not
identical). We also found 2-octenoic acid to correlate negatively
with Max RLS (P value = 0.019) and Log Max RLS (P value = 0.014;
Figure 3c). This compound is known to be elevated in
mitochondria, but its effect on aging is not known. Some of the
transcript and protein top hits have also been implicated in
lifespan regulation in yeast. For example, the protein levels of
ADH1p (alcohol dehydrogenase, coded by YOL086C) correlated

negatively with both mean RLS and Max RLS, and deletion of
ADH1 was found to extend RLS by 23% in MATα and 15% in MATa
(ref. 33). DCW1 (also known as YKL046C, coding for a putative
mannosidase in cell wall biosynthesis), whose transcript levels
correlated negatively with all four RLS measurements, was
previously identified in a genetic screen to increase yeast
chronological lifespan when deleted.34 In addition, a number of
top hits correlating positively with longevity at the transcript
(e.g., VRP1 (YLR337C), KGD1 (YIL125W)) and protein (e.g., PET9p
(YBL030Cp), SP160p (YJL080Cp), GSY2p (YLR258Wp)) levels were
previously shown to decrease RLS or chronological lifespan when
deleted or mutated.33,35–37

Figure 1. Yeast strains examined in this study. (a) Phylogenetic relationship. The tree was constructed based on the alignment of
complete genome sequences of the strains, using MEGA 6.0649 and neighbor joining method.50 The branches are colored according to strain
types shown in the legend in the lower right corner. (b) Mean replicative lifespan and (c) mean growth rate (doubling time) of the strains in
glucose media. The strains are ordered by phylogeny. The error bars indicate s.e. Red dotted lines indicate the mean replicative lifespan (b)
and doubling time (c) of the reference strain BY4743.
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Networks and pathways represented by top hits
To further understand the biological pathways underlying
natural regulation of lifespan, we performed pathway enrichment
analysis using DAVID38 (Supplementary Table 3). The enrichment
results for the protein fragments were especially significant.
Among the protein fragments correlating positively with long-
evity, the enriched terms included ‘oxidative phosphorylation’,
‘mitochondrial respiratory chain’, ‘ion transport’, ‘hexose metabolic
process’, ‘glucose metabolic process’, and ‘aerobic respiration’.

On the other hand, for those correlating negatively with longevity,
‘amino-acid biosynthesis’, ‘organic acid biosynthetic process’,
‘nitrogen compound biosynthetic process’, ‘nucleotide binding’,
‘cofactor binding’, and ‘glycolysis’ were enriched. Many of these
terms were similarly enriched when we carried out calculations
using the mean protein values (Supplementary Table 3). In
comparison, the enrichment statistics were weaker for the
transcripts, even though the numbers of top hits were similar.
Among those with positive correlation, enrichment was observed
for ‘ion transport’, ‘mitochondrial membrane part’, ‘ATP biosyn-
thetic process’, ‘oxidative phosphorylation’, and ‘actin binding’. For
the transcripts with negative correlation to lifespan, the enriched
terms included ‘RNA polymerase II transcription factor activity’,
‘transcription regulator activity’, ‘microtubule’, ‘regulation of RNA
metabolic process’, and ‘mRNA splicing’. Overall, the results
suggest that the long-lived strains tend to upregulate oxidative
phosphorylation, aerobic respiration, and ion transport, and
downregulate transcription, splicing, and various biosynthetic
processes (especially amino-acid metabolism).
We visualized protein–protein interactions among the top hits

using STRING39 and found the network is significantly enriched in
interactions. The top hits identified using the mean protein values
were grouped into several prominent clusters, including oxidative
phosphorylation and aerobic respiration (positive correlation);
organic acid and nitrogen compound biosynthetic process
(negative correlation); and protein targeting (negative correlation)
(Figure 3d). Similar clusters of the top hits were observed for
transcripts and protein fragments data (Supplementary Figure 4),
suggesting that the top hits, rather than being a random
collection of genes, represent interconnected nodes in regulatory
networks and pathways.

Mitochondrial abundance and composition of the strains
As the results suggested a relative upregulation of oxidative
phosphorylation and aerobic respiration among the long-lived
strains, we examined more closely the nature of such differences.
First, the genomic reads of these strains15 were used to calculate
average coverage of the mitochondrial DNA relative to that of the
nuclear DNA (Table 1, Supplementary Figure 5A), as a proxy for
mitochondria copy number. Although the relative coverage was
highest in YJM381 (8.0) and lowest in YPS128 (3.0), the values were
relatively constant for most of the strains (4.0–5.0) and there
was no overall correlation with longevity (Pearson correlation
P value = 0.31 with Max RLS and 0.53 with mean RLS). Moreover,
western blotting confirmed the similar expression of a mitochon-
drial marker protein Por1 in these strains (Supplementary
Figure 5B). In addition, the doubling times in glycerol media were
similar (100–120 min for most of the strains, with exception of
4180min for YS2, DBVPG1373, and Y55 strains; Supplementary
Figure 5C, Table 1), suggesting the longevity variation across these
strains could not be simply explained by total mitochondrial
content or number.
However, when we examined the top hits based on mean

protein values (Supplementary Table 2), a trend emerged.
Approximately one-third of these proteins were related to
mitochondria, with characteristic distribution patterns across the
strains depending on their lifespan (Figure 4b). For example, the
longer-lived strains generally had higher levels of proteins
belonging to pyruvate dehydrogenase complex, complex III,
complex IV, mitochondrial ATP synthase, inner membrane
ADP/ATP carrier, as well as mitochondrial ribosomal proteins. On
the other hand, long-lived strains had lower relative levels of outer
membrane translocases, mitochondrial chaperonins, and certain
metabolic enzymes. The results suggest that the mitochondrial
metabolism may vary widely across the strains according to their
longevity. The longer-lived strains seem to enhance the electron
transport chain and oxidative phosphorylation capacity, whereas

Figure 2. Phenotypic variation across the strains. (a) Principal
component analysis (PCA) of combined data. PCA was performed
by combining transcripts, proteins (peptides), and morphology data
(metabolite data were not available for strain 378604X and were
omitted). Percentage variance explained by each principal compo-
nent (PC) is shown in the parentheses. The strains are colored using
the same scheme as Figure 1a. See Supplementary Figure 2 for
separate PCA plots on each class of phenotype data and for
cumulative percentage of variance explained by the PCs. (b) Relative
levels of transcripts and proteins involved in aerobic respiration or
fermentation. The heat map shows the transcripts and proteins with
top contribution to PC 1 and involved in aerobic respiration or
fermentation (Supplementary Table 1). Hierarchical clustering was
performed using complete linkage.
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the shorter-lived strains place more emphasis on protein folding
and outer membrane transport. Although the biological implica-
tions underlying these observations need to be further explored,
the results show that distinct mitochondrial composition is
associated with different yeast strains, and such patterns agree
well with the observed lifespan variation.

Comparison of related long-lived and short-lived strains
A number of our strains (YJM978, YJM981, YJM975, DBVPG1373,
NCYC361, and YS2) are closely related to each other phylogen-
tically (Figure 1a), but differ significantly in replicative lifespan
(Figures 1b and 4a). In particular, they may be grouped into long
lived (YJM981, YJM975, and DBVPG1373) and short lived (YJM978,
NCY361, and YS2). If our findings above were valid, then we
should observe similar sets of genes and pathways differentially

expressed between these two groups. The analysis showed that
the genes involved in ‘hexose metabolic process’, ‘glucose
metabolic process’, and ‘glycolysis’ were expressed highly in the
long-lived strains, whereas those involved in ‘organic acid
biosynthetic process’, ‘amino-acid biosynthesis’, and ‘cofactor
binding’ were expressed at relatively low levels (Supplementary
Table 4). Compared with the pathways we identified above,
the genes involved in oxidative phosphorylation and aerobic
respiration did not emerge as top hits, and there were not as
many proteins related to mitochondria among these six strains.
This is likely because all of these strains prefer fermentation over
aerobic respiration (Figure 2b), and they already share similar
mitochondrial composition profiles (Figure 4b). Among the strains
designated as YJM are clinical isolates and their adaptation to
longevity appears to be different from other strains. For example,
YJM975 and YJM981 are long lived, but their mitochondrial

Figure 3. Selected phenotypes correlating with replicative lifespan. Levels of (a) asparagine, (b) glutamine, and (c) 2-octenoic acid negatively
correlate with maximum replicative lifespan (Max RLS). Regression slope P values: (a) 0.014; (b) 0.042; and (c) 0.019. (d) Protein–protein
interaction network of the top hits identified by the mean protein values. The interaction network is based on STRING database (evidence
view). Genes without interacting partners are omitted. Selected pathways are indicated by colored rings. Most of the proteins here showed
significant correlation to all four RLS measures. See Supplementary Table 2 for more details.
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patterns are similar to the short-lived strains. Perhaps, their
longevity is based on lineage-specific features that are not
shared by other long-lived isolates. We found that these outlier
strains showed a decreased lifespan when grown on glycerol,
whereas most other strains increased lifespan under these
conditions (Figure 4c). Importantly, deviation in the expression
of mitochondrial proteins from the overall pattern (Figure 4b)
agreed well with the capacity of a respiratory substrate to increase

lifespan (Figure 4c). Nevertheless, among the long-lived strains
we observed lower levels of expression of genes and
proteins involved in biosynthetic processes (most of which were
cytoplasmic, Supplementary Table 4), in agreement with our
observations based on the 22 strains. This suggests that
long lifespan can also arise without substantially altering
the mitochondrial composition, although the reduction in
biosynthesis seems to be a common feature.

Figure 4. Mitochondrial respiratory composition varies across the strains according to lifespan. (a) Mean replicative lifespan of strains. Strains are
ordered according to their mean lifespan (see also Figure 1b). (b) Levels of certain proteins correlate with lifespan. The mean values of the selected
proteins (related to mitochondrial function) are shown. For each protein, the levels were standardized by setting mean=0 and s.d.=1 across the
strains. The patterns of DBPVG1373, YJM981, YJM975, and Y12 strains showed different patterns. See Supplementary Table 2 for more detail. (c)
Effect of growth on a respiratory substrate on lifespan. Replicative lifespan of 10 strains was tested on yeast peptone glycerol (3% YPG) plates and
expressed as mean (left) and maximum (right) replicative lifespan. Except for the three long-lived outlier strains (YJM981, YJM975, and Y12), all
strains either increased or did not change lifespan when their growth substrate was switched from glucose to glycerol.
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DISCUSSION
Availability of high-quality genome sequence of S. cerevisiae has
made yeast an attractive model for dissecting complex traits
associated with various phenotypes. Comparative genomics
across multiple natural yeast isolates enabled the identification
of extensive natural genetic variation at the single nucleotide
polymorphism level and the elucidation of genotype to pheno-
type relation in several traits.40 Here we ask: can similar strategies
be applied to understand the common determinants of aging and
longevity?
Using high throughput omics data, we examined 22 yeast

natural isolates, which were found to vary over 10-fold in RLS.
These isolates occupy diverse ecological niches and face different
evolutionary pressures, so their natural lifespan variation must be
encoded in their respective genomes. However, it has been
challenging to characterize the cumulative effect of multiple
alleles on a phenotype, especially if the underlying process
involves a complex gene network. Alternatively, one may look at
variation in gene transcripts (transcriptome) and gene products
(proteome) and correlate them and the associated pathways with
the phenotypic traits, as the genotypic variation should be
reflected in the expression variation in order to create the
associated phenotypic differences.41

To identify a link between transcript variation and lifespan, we
performed phylogenetic regression and identified genes correlat-
ing with RLS, some of which were previously implicated in
longevity regulation. Our pathway analysis showed that the long-
lived strains tend to upregulate oxidative phosphorylation, aerobic
respiration, and ion transport, and downregulate transcription,
splicing, glycolysis, and various biosynthetic processes, most
notably amino-acid synthesis. In particular, the variation in
mitochondrial respiratory composition of these strains agrees well
with their differences in lifespan when grown on glucose and
glycerol. Mitochondria are at the heart of cellular metabolism and
energy production, and increased mitochondrial respiratory
capacity has been linked to longevity.12,42 It was observed in
tor1 null yeast strain that lifespan extension was accompanied by
increased mitochondrial respiration (particularly oxidative phos-
phorylation complex subunits) without increased mitochondrial
biogenesis during growth on glucose.12,42 Upregulation of
respiration increases mitochondrial membrane potential and
reactive oxygen species production, which may act as adaptive
signals to induce stress resistance and extend lifespan.43,44 It is
also possible that many of these natural isolates reside in
environments with low fermentable carbon sources, so that they
undergo diauxic shift and metabolize respiratory carbon sources.
Shifting from fermentable (glucose) to respiratory carbon sources
is also known to extend both replicative and chronological
lifespan in yeast.45

Genetic variation responsible for lifespan differences may also
affect metabolite levels and morphology. Among the examined
metabolites, glutamine and asparagine showed strong negative
correlation with RLS, which is consistent with the known inhibition
of TOR activity and extension of chronological lifespan by
removing glutamine or asparagine from yeast media32 and
extension of RLS by treating cells with methionine sulfoximine.31

In terms of cell morphology, a number of nuclear features such as
brightness, roundness, and distance to bud tip showed significant
negative correlation with RLS, whereas ‘fitness in nucleus C’
correlated positively with longevity. Interestingly, longer-lived
strains tend to possess smaller mother cell volume
(Supplementary Figure 6), indicative of a potential compromise
between mother cell size and lifespan, as has been previously
observed for long-lived cells treated with ibuprofen.25 In agree-
ment, inverse correlation between cell size and lifespan has been
observed in yeast previously.46 Thus, here too, natural changes in

a phenotype can be linked with longevity interventions and
maybe used as aging biomarkers.
It should be noted that our method is limited to identifying the

genetic and metabolic processes that show concerted changes in
relation to longevity across these 22 strains, which are more likely
to be generalizable and do not depend on single or a few strains.
On the other hand, an exceptionally long-lived or short-lived strain
can also have arisen due to certain strain-specific changes that are
not shared by other isolates, and such changes may be missed by
our method. Comparison among the six related long-lived and
short-lived strains suggests there may be more than one way to
achieve long lifespan, and it will be useful to examine strains
across different evolutionary distances to identify the common
features.
To our knowledge, this is the first report that analyzes

inter-strain natural diversity of RLS at the population level using
high throughput data. Natural isolates occupying diverse
ecological niches may face different selection pressures and have
evolved to adjust their gene expression, metabolism, longevity,
and reproduction to ensure survival and propagation.47 Although
evolution can sometimes provide different solutions to the same
challenge,48 our data suggest a consistent set of genes and
pathways are responsible for modulating the lifespan trait across a
broad diversity of wild yeast isolates.
Finally, it has been unclear whether the previous findings of

various longevity regulator genes identified in the laboratory setting
could be translated to the natural environment. A possibility is that
these lifespan-extending interventions may come at the expense of
fitness. For example, many longest-lived Caenorhabditis elegans
laboratory mutants tend to develop and move slowly and often
show reduced fecundity, so they will probably be eliminated quickly
for lack of competitive advantage in the wild. In addition, two-third
of long-lived single gene–deletion mutants in yeast demonstrated
significantly reduced fitness compared with isogenic wild-type
cells.45 Our results show that natural changes in lifespan need not
come at the expense of significant changes in fitness. Although it is
difficult to compare fitness across the strains, the longer-lived yeast
isolates are presumably well adapted to their respective ecological
niches. This notion also agrees with the finding that one-third of
single gene–deletion mutants in yeast showed no obvious changes
in fitness.45 It should also be pointed out that our analysis is
unbiased with regard to the genes and pathways involved in
lifespan control and supports a possibility that multiple correlates
cumulatively contribute to the longevity phenotypes. Specifically,
we found that the ability of yeast cells to rely more heavily on
respiration and repress their anabolic programs, even under
conditions of glucose excess, are among the key adaptations that
lead to increased lifespan. Importantly, as CR and TOR signaling are
also known to extend lifespan by activating respiration and
inhibiting biosynthetic processes, these data show that natural
plasticity of yeast lifespan is shaped by pathways that both impose
little cost on fitness and are amenable to dietary intervention. Thus,
environment may be a trigger for changes associated with
increased lifespan that are then fixed in the genomes.
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