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Abstract
Background and Objectives
Previous studies have highlighted antidiabetic drugs as repurposing candidates for Alzheimer
disease (AD), but the disease-modifying effects are still unclear.

Methods
A 2-sample mendelian randomization study design was applied to examine the association
between genetic variation in the targets of 4 antidiabetic drug classes and AD risk. Genetic
summary statistics for blood glucose were analyzed using UK Biobank data of 326,885 par-
ticipants, whereas summary statistics for AD were retrieved from previous genome-wide as-
sociation studies comprising 24,087 clinically diagnosed AD cases and 55,058 controls. Positive
control analysis on type 2 diabetes mellitus (T2DM), insulin secretion, insulin resistance, and
obesity-related traits was conducted to validate the selection of instrumental variables.

Results
In the positive control analysis, genetic variation in sulfonylurea targets was associated with
higher insulin secretion, a lower risk of T2DM, and an increment in body mass index, waist
circumference, and hip circumference, consistent with drug mechanistic actions and previous
trial evidence. In the primary analysis, genetic variation in sulfonylurea targets was associated
with a lower risk of AD (odds ratio [OR] = 0.38 per 1 mmol/L decrement in blood glucose,
95% CI 0.19–0.72, p = 0.0034). These results for sulfonylureas were largely unchanged in the
sensitivity analysis using a genetic variant, rs757110, that has been validated to modulate the
target proteins of sulfonylureas (OR = 0.35 per 1 mmol/L decrement in blood glucose, 95% CI
0.15–0.82, p = 0.016). An association between genetic variations in the glucagon-like peptide 1
(GLP-1) analogue target and a lower risk of AD was also observed (OR = 0.32 per 1 mmol/L
decrement in blood glucose, 95% CI 0.13–0.79, p = 0.014). However, this result should be
interpreted with caution because the positive control analyses for GLP-1 analogues did not
comply with a weight-loss effect as shown in previous clinical trials. Results regarding other drug
classes were inconclusive.

Discussion
Genetic variation in sulfonylurea targets was associated with a lower risk of AD, and future
studies are warranted to clarify the underlying mechanistic pathways between sulfonylureas
and AD.
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Alzheimer disease (AD) is a neurodegenerative disease,
characterized by aberrant protein aggregation and neuronal
loss in the brain that leads to cognitive decline, memory loss,
and ultimately death.1 However, currently, only a few agents
or drugs that can improve symptoms have been approved for
AD, whereas their neuroprotective effects remain uncertain.2

Developing new drugs for AD is imperative but also extremely
challenging with more than 400 candidates recently failed in
phase III trials.3 Drug repurposing or repositioning, where
approved drugs are tested for a novel indication, has been
proposed as a more rapid and cost-effective strategy to
identify potential AD treatments because approved drugs
possess well-documented information for mechanism of ac-
tions and comprehensive safety profiles.4

AD and type 2 diabetes mellitus (T2DM) are 2 of the most
prevalent diseases in the aged population. A meta-analysis of
1,746,777 participants reported a 53% higher risk of de-
veloping AD in patients with T2DM.5 Besides, AD has been
proposed as “type 3 diabetes” with insulin resistance and
impaired glucose control in the brain.6 Antidiabetic drugs,
based on their original intention of enhancing insulin signal-
ing and regulating glucose metabolism, have been highlighted
as repurposing candidates for AD.7 Several randomized clin-
ical trials (RCTs) have been conducted in patients with early
or mild-to-moderate AD to investigate the disease-modifying
effects of antidiabetic drugs, but the evidence to date was
inconclusive.8 Given the long prodromal phase of AD, clinical
trials targeting early or mild-to-moderate AD have been
considered belated, whereas primary intervention in pre-
clinical AD or even earlier may offer the best opportunity of
therapeutic success.9 However, such primary prevention trials
are challenging because they require considerably large sam-
ple sizes and long-duration intervention.

Mendelian randomization (MR) is a statistical tool using
genetic variants as instrumental variables (IVs) to make causal
inference between exposure(s) and outcome(s). Because
genetic variants are assigned randomly at conception and
before disease onset, MR is considered as a “natural” RCT,
which can minimize confounding and reverse causation.10

Particularly for the genetic variants within the genes that
encode drug target proteins, such variants may influence the
expression of genes, modulate the function of encoded pro-
teins, and thereby closely proxy drug mechanism actions. In
the spirit of natural RCTs, MR studies leveraging such
druggable variants are useful in identifying drug repurposing

opportunities and predicting side effects.11 AnMR study used
a variant on the HMGCR gene to proxy statin use and found
that genetically mimicked statin use was associated with a
higher risk of T2DM, consistent with the evidence from an
RCT of 129,170 participants.12 Apart from controlling for
confounding and reverse causality, MR also provides the
possibility to emulate primary prevention trials that comprise
large sample sizes (recent genetic discoveries are usually based
on hundreds of thousands of participants) and long in-
tervention duration (genetically instrumented exposure oc-
curs before the outcome and is lifelong). Hence, we
conducted an MR study to examine the effects of genetic
variation in antidiabetic drug targets on AD risk.

Methods
Study Design
The current study was conducted using a 2-sample MR design,
which extracted exposure and outcome data from 2 in-
dependent nonoverlapping populations. Genetic variants
within the genes that encode protein targets of antidiabetic
drugs (cis-variants) were identified in a genome-wide associa-
tion study (GWAS) summary dataset for blood glucose and
used as proxy for antidiabetic drug use. Lowering blood glucose
is an established physiologic response to antidiabetic drug
treatment, and hence, blood glucose is the biomarker of interest
in our study. To retain the validity of causal estimation, 3 MR
model assumptions are essential, which are (1) a robust asso-
ciation between IVs and target proteins (relevance), (2) in-
dependence of IVs on confounders (exchangeability), and (3)
no direct effects of IVs on AD risk other than through the drug
targets (exclusion restriction). A framework of our study design
is presented in eFigure 1, links.lww.com/WNL/C91.

Blood Glucose GWAS Data
IV-exposure associations were extracted from a GWAS of
blood glucose analyzed on participants of European ancestry
from UK Biobank (UKB).13 Individuals with a diagnosis of
diabetes in the inpatient registry (defined as E10-14 in ICD-10
and 2500-2529 in ICD-9) or with self-reported diabetes in
questionnaires were excluded from the analysis. In the associ-
ation testing, a mixed linear model–based method was used to
control for population stratification by principle components
and relatedness by a genetic relationship matrix.14 Finally,
326,885 participants were analyzed. Details about the GWAS
are provided in eAppendix 1, links.lww.com/WNL/C91.

Glossary
AD = Alzheimer disease; BMI = body mass index;DPP-4 = dipeptidyl peptidase 4;GLP-1 = glucagon-like peptide 1;GWAS =
genome-wide association study; HIP = hip circumference; IVs = instrumental variables; IVW = inverse variance–weighted
method;MR = mendelian randomization; PNDM = permanent neonatal diabetes mellitus; RCTs = randomized clinical trials;
SGLT2 = sodium-glucose cotransporter 2; SNV = single-nucleotide variation; T2DM = type 2 diabetes mellitus; TZD =
thiazolidinediones; UKB = UK Biobank; WC = waist circumference.
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AD GWAS Data
The AD summary statistics (IV-outcome associations) were
extracted from a previously conducted GWAS.15 In phase 1, the
data from Alzheimer’s disease working group of the Psychiatric
GenomicsConsortium, the InternationalGenomics of Alzheimer’s
Project, and the Alzheimer’s Disease Sequencing Project were
meta-analyzed, totaling 24,087 clinically diagnosed late-onset AD
cases and 55,058 controls. In phase 3, 47,793 AD-by-proxy cases
and 328,320 controls from UKB were additionally meta-analyzed
on top of the phase 1 stage, resulting in 71,880 AD/AD-by-proxy
cases and 383,378 controls. We used the dataset that only contains
clinically diagnosed AD cases in primary analysis and the dataset
that contains AD/AD-by-proxy cases in sensitivity analysis.

Instrument Selection
Seven major classes of antidiabetic drugs were initially identified,
including metformin, dipeptidyl peptidase 4 (DPP-4) inhibitor,
sodium-glucose cotransporter 2 (SGLT2) inhibitor, insulin/
insulin analogues, glucagon-like peptide 1 (GLP-1) analogues,
sulfonylureas, and thiazolidinediones (TZD).16 Information re-
garding the pharmacologically active protein targets and corre-
sponding encoding genes was retrieved from the DrugBank and
the ChEMBL databases separately (Table 1).17,18 Because the
protein targets of metformin differed in the 2 databases and the
molecules underlying metformin’s physiologic effects remain
largely unknown,19metforminwas excluded from further analysis.

Next, we identified the cis-variants within each encoding gene
(±2,500 base pairs of the gene location) and retained the

variants associated with blood glucose at a false discovery rate
of <0.05. None of the variants for SGLT2 inhibitors survived
the selection, hence being excluded from further analysis.
Palindromic single-nucleotide variations (SNVs [formerly
SNPs]; SNVs with the same pair of purine pyrimidine bases
on forward and reverse strands) were excluded to avoid am-
biguity in the identification of effect alleles. The 2 variants for
DPP4 inhibitors are both palindromic (no high-LD proxies
were found), so the drug was excluded from further analysis.
The variants that remained for each drug class were then
clumped with a R2 of 0.01 and a window size of 500 kB,
complemented with a sensitivity analysis clumping with R2

from 0.01 to 0.50 to gain greater precision by including a
larger number of partially independent variants.11 The
process of instrument selection is displayed in Figure 1. In
addition, we consulted the literature and identified 1 ad-
ditional variant, rs757110, for sulfonylureas, which has
been validated as a strong proxy in in vitro and population
studies.20,21

Positive Control Analysis
To validate our selection of IVs, positive control analysis was
performed with T2DM, insulin secretion, insulin resistance,
and obesity-related traits as outcomes. T2DM is the original
indication of antidiabetic drugs, whereas sulfonylureas and
GLP-1 analogues promote insulin secretion and TZD in-
creases insulin sensitivity.16 IVs for insulin/insulin analogues
were selected within INSR that encodes the insulin receptor,
so it would be expected to alter the function of the insulin

Table 1 Summary Information of Antidiabetic Drug Classes, Targets, and Encoding Genes

Drug class

Drug targets Encoding genes
Included
in analysis

Gene region (in
GRCh37 from Ensembl)DrugBank ChEMBL DrugBank ChEMBL

Metformin 59-AMP–activated
protein kinase subunit
beta-1

Mitochondrial complex
I (NADH
dehydrogenase)

PRKAB1 58 encoding genes No Not included

Electron transfer
flavoprotein-
ubiquinone
oxidoreductase,
mitochondrial

Mitochondrial glycerol-
3-phosphate
dehydrogenase

ETFDH GPD2

Dipeptidyl peptidase
4 (DPP-IV) inhibitor

Dipeptidyl peptidase IV Dipeptidyl peptidase IV DPP4 DPP4 No Chr2: 162,848,755-162,930,904

Sodium-glucose
cotransporter 2
(SGLT2) inhibitor

Sodium/glucose
cotransporter 2

Sodium/glucose
cotransporter 2

SLC5A2 SLC5A2 No Chr16: 31,494,323-31,502,181

Insulin/insulin
analogues

Insulin receptor Insulin receptor INSR INSR Yes Chr19: 7,112,266-7,294,425

Glucagon-like
peptide 1 (GLP-1)
analogues

Glucagon-like peptide
1 receptor

Glucagon-like peptide
1 receptor

GLP1R GLP1R Yes Chr6: 39,016,557-39,059,079

Sulfonylureas (SU) ATP-sensitive
potassium channel

ATP-sensitive
potassium channel

KCNJ11 KCNJ11 Yes Chr11: 17,386,719-17,410,878

ABCC8 ABCC8 Chr11: 17,414,045-17,498,441

Thiazolidinediones
(TZD)

Peroxisome
proliferator–activated
receptor gamma

Peroxisome
proliferator–activated
receptor gamma

PPARG PPARG Yes Chr3: 12,328,867-12,475,855
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receptor and reduce insulin resistance. Obesity is another
phenotype influenced by antidiabetic drugs. A meta-analysis
of clinical trials suggests that insulin analogues, sulfonylureas,
and TZD contribute to weight gain, and GLP-1 analogues
cause weight loss.22 Hence, 3 obesity-related traits, including
body mass index (BMI), waist circumference (WC), and hip
circumference (HIP), were used as outcomes.

Because the GWAS datasets for insulin secretion, insulin re-
sistance, WC, and HIP (outcome datasets) contain less SNVs
than the UKB blood glucose GWAS (exposure dataset), we
retained nonpalindromic SNVs available in both datasets and
performed clumping to obtain IVs for the positive control anal-
yses (R2 < 0.01). Genetically predicted drug effects that showed
directional consistency with clinical trial evidence/drug mecha-
nisms were considered to pass the positive control analysis.

In addition to the positive control analyses, we also explored
the association between genetic variation in antidiabetic drug
targets and cardiovascular diseases/hippocampal volume de-
spite rather inconclusive evidence given by previous clinical
trials.23-28 The details about these analyses and results are
provided in eAppendix 2, links.lww.com/WNL/C91. In-
formation for the GWAS datasets used in our study is summa-
rized in eTable 1, links.lww.com/WNL/C91.29-33 Characteristics

of the SNVs retained as IVs for each analysis are described in
eTables 2 and 3, links.lww.com/WNL/C91.

Standard Protocol Approvals, Registrations,
and Patient Consents
Our analysis of UKB data has been conducted under appli-
cation number “22224.” The summary statistics for AD, BMI,
and T2DM do not contain any personal information, and the
GWAS have obtained ethical approval from relevant ethics
review boards.

Statistical Analysis
First, the IV-exposure association from the blood glucose
GWAS dataset and the IV-outcome association from the
outcome GWAS dataset were merged. The causal association
was estimated with theWald ratio test for 1 single IV and with
the random-effects inverse variance–weighted (IVW)method
for multiple IVs.10 The IVWmethod provides unbiased causal
estimation when all IVs are valid or if overall pleiotropy is
balanced to be zero.10 The Cochran’s Q test was performed to
test heterogeneity within IVs and to detect any types of
pleiotropy, balanced or unbalanced (p for heterogeneity
<0.05).10 To deal with unbalanced pleiotropy, the MR-Egger
regression was applied. MR-Egger provides reliable causal
estimation even if all IVs are invalid and indicates the presence

Figure 1 Instrument Selection for Antidiabetic Drug Classes

Black line represents DNA strand, and raised box represents the target gene region. Wedges represent specific genetic variants (SNVs). Disappearing of
wedges indicates the exclusion of SNVs. DPP-4 inhibitors = dipeptidyl peptidase 4 inhibitors; GLP-1 analogues = glucagon-like peptide 1 analogues; SGLT2
inhibitors = sodium-glucose cotransporter 2 inhibitors; SNVs = single-nucleotide variations; TZD = thiazolidinediones; UKB = UK Biobank.
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of unbalanced pleiotropy at p for intercept <0.05.10 Strength of
the IVs was tested by F statistics and indicates weak instru-
ments when F statistics <11. All analyses were conducted using
the “TwoSampleMR” package in R software version 3.6.0.34 To
resemble the lowering effects of blood glucose by antidiabetic
drugs, all estimations were scaled to per 1 mmol/L decrement
in blood glucose. A Bonferroni-corrected significance level of p
value < 0.012 (0.05/4) was used to adjust formultiple testing of
5 drug classes. For the genetically instrumented drug class
confirmed to be associated with AD, we further investigated the
colocalization between blood glucose and AD within the target
gene region using the “coloc” package.35

Data Availability
Genetic datasets for AD/AD-by-proxy, T2DM, insulin secre-
tion, insulin resistance, BMI, WC, and HIP are publicly avail-
able through the link listed in eTable1, links.lww.com/WNL/
C91. The UKB data are available through application. Scripts
are available on personal request (email: bowen.tang@ki.se).

Results
Positive Control Analyses
As shown in Figure 2, panel A, genetic variation in the targets of
TZD, sulfonylureas, insulin analogues, and GLP-1 analogues
was associated with a decreased risk of T2DM. When looking
into insulin secretion and insulin resistance (Figure 2, panels B
and C), genetic variation in the targets of sulfonylureas and
GLP-1 analogues was associated with increased insulin secre-
tion, whereas insulin/insulin analogues and TZD were associ-
ated with decreased insulin resistance, consistent with the drug
mechanism of actions. For obesity-related traits (Figure 2,
panels D–F), the estimates for TZD and sulfonylureas sug-
gested increment in BMI, WC, and HIP, consistent with evi-
dence from the meta-analysis of clinical trials. However, the
estimates for insulin/insulin analogues and GLP-1 analogues
were varying across the 3 obesity-related traits.

Effects of Genetic Variation in Antidiabetic
Drug Targets on AD Risk
The results from our primary analysis using a GWAS dataset
that contains 24,087 clinically diagnosed late-onset AD cases
are shown in Figure 3. Generally, genetic variation in sulfo-
nylurea targets was associated with a reduced risk of AD at the
Bonferroni-corrected threshold (odds ratio [OR] = 0.38 per 1
mmol/L decrement in blood glucose, 95% CI 0.19–0.72, p =
0.0034). The association was consistent in the analysis using
the validated proxy, rs757110 (OR = 0.35, 95% CI 0.15–0.82,
p = 0.016). Meanwhile, the estimates for sulfonylureas in the
weighted medianmethod (OR = 0.38, 95%CI 0.17–0.84) and
MR-Egger regression (OR = 0.42, 95% CI 0.05–3.79) also
confirmed a reduced risk of AD, although with a wider CI as
theMR-Egger regression produces larger standard errors than
the conventional IVW method (eTable 4, links.lww.com/
WNL/C91). Besides, a suggestive association between ge-
netic variation in the GLP-1 analogue target and lower risk of

AD was observed across different MR methods (Figure 3 and
eTable 4, links.lww.com/WNL/C91, IVW: OR = 0.32, 95%
CI 0.13–0.79, p = 0.014; weightedmedian: OR = 0.34, 95%CI
0.11–1.07, p = 0.066; MR-Egger: OR = 0.35, 95% CI
0.05–2.52, p = 0.49). For all the estimates, no heterogeneity
within IVs or substantial pleiotropy was detected (Figure 3,
p for heterogeneity >0.05, p for pleiotropy >0.05).

In the sensitivity analysis using a GWAS dataset comprising
71,880 AD/AD-by-proxy cases (eFigure 2, links.lww.com/
WNL/C91), genetic variation in the targets of sulfonylureas
and GLP-1 analogues showed protective effects (sulfonyl-
ureas: OR = 0.78, 95% CI 0.58–1.05; GLP-1 analogues: OR =
0.53, 95% CI 0.37–0.77), although the effect sizes attenuated
toward the null possibly because of the dilution effects by AD-
by-proxy cases. Considering the possible uncertainty arising
from instrumenting each drug class with a relatively small
number of IVs, we conducted a sensitivity analysis retaining
more partially independent IVs by clumping the variants with
relaxing R2. The estimates for sulfonylureas and GLP-1 ana-
logues stabilized throughout the R2 ranging from 0.001 to
0.50; meanwhile, the standard error decreased with more IVs
being included. However, the estimates insulin analogue and
TZD varied across different R2 and included the null
(Figure 4).

Colocalization Analysis for Sulfonylureas and
GLP-1 Analogues
Colocalization analysis was performed for sulfonylureas and
GLP-1 analogues within the drug target encoding genes
(±2,500 base pairs of KCNJ11 and ABCC8 for sulfonylureas
and of GLP1R for GLP-1 analogues). The results are shown in
eTable 5, links.lww.com/WNL/C91. Generally, we did not
observe strong evidence suggesting colocalization between
blood glucose and AD within the 2 gene regions for sulfonyl-
ureas (probability for sharing 1 common causal variant: 2.5% in
KCNJ11 and 3.9% in ABCC8); however, when looking into the
regional association plots (eFigure 3, links.lww.com/WNL/
C91), a trend of colocalization was noted. For GLP-1 ana-
logues, we did not find any evidence of either sharing a com-
mon variant or a distinct trend of colocalization within GLP1R
(eTable 5 and eFigure 4, links.lww.com/WNL/C91). For
more details regarding the colocalization analyses and results,
please see eAppendix 3, links.lww.com/WNL/C91.

Discussion
We investigated the effects of genetic variation in antidiabetic
drug targets on AD risk using a combination of genetic
datasets for blood glucose (;300,000 participants) and AD
(24,087 AD cases and 55,058 controls). We found evidence to
support that genetic variation in sulfonylurea targets was as-
sociated with a lower risk of AD.

A handful of observational studies have investigated the re-
lationship of sulfonylureas with AD, but the results are rather
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Figure 2 Estimated Effects of Genetic Variation in Antidiabetic Drug Targets on Glucose Metabolism–Related Traits (Panel
A–C) and Obesity-Related Traits (Panel D–F)

Proxy gene is the gene that encodes the drug target protein, and rs757110 is the variant that has been validated to modulate the protein target of
sulfonylureas. All the estimateswere scaled to per 1mmol/L decrement in blood glucose. The estimated beta coefficients onBMI,WC, andHIP are expected to
be in agreement with the evidence from clinical trials, that is, taking insulin analogues, sulfonylureas, and TZD contributes to weight gain, and taking GLP-1
analogues causes weight loss. BMI = body mass index; GLP-1 analogues = glucagon-like peptide 1 analogues; HIP = hip circumference; IVs = instrumental
variables; OR = odds ratio; SNVs = single-nucleotide variations; T2DM = type 2 diabetes mellitus; TZD = thiazolidinediones; WC = waist circumference.
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inconclusive.36-39 In a prospective study following 127,209
dementia-free individuals for 7 years, a marginal protective effect
was observed in diabetic patients (sulfonylureas vs not taking any
antidiabetic drugs: HR = 0.85, 95% CI 0.71–1.01).38 Conversely,
in a case-control study of 7,086 AD cases, sulfonylureas were not
associated with the development of AD (users vs nonusers: OR=
1.01, 95% CI 0.72–1.42).37 The present MR study differs from
these observational studies in 3 key aspects. First, the observa-
tional studies were conducted in diabetic patients and hence were
unable to separate the true drug effect from that of diabetes,
i.e., confounding by indication.Meanwhile, the presentMR study
investigated the genetically predicted drug effects in a nondiabetic
general population. Second, the observational studies measured
drug use at baseline, but the existence of poor monotherapy
adherencemay cause contamination. A study on veterans showed
that around 40% of diabetic patients who initiated sulfonylureas
added or switched to metformin afterward.39 Drug adherence is
less of a concern in our MR models because the genetically
instrumented exposure is lifelong. Finally, unmeasured con-
founding could also be an issue in observational studies. Although
the observational studies have controlled for confounders avail-
able in their datasets, these are difficult to measure, or even
unknown, and may linger and induce bias. Conversely, taking
advantage of the random allocation of genetic variants at con-
ception, MR is expected to be less affected by confounding.10

Sulfonylureas lower blood glucose by blocking the KATP

channel on the membrane of pancreatic beta cells. Physio-
logically, the pancreatic KATP channel closes as a response to
blood glucose increase, subsequently producing a membrane
depolarization and stimulating insulin secretion.20 Therefore,
sulfonylurea use might relate to AD partly through its regu-
latory effects on glucose metabolism. Evidence from a pre-
vious MR study showed that increased fasting blood glucose
(OR = 1.33, 95% CI 1.04–1.68) and β-cell dysfunction (OR =
1.92, 95% CI 1.15–3.21) contributed to a higher risk of AD.40

Particularly, AD has been proposed as a brain-specific form of
diabetes, a “type 3 diabetes.”6 A study by An et al.41 found that

abnormalities in brain glucose homeostasis, characterized by
higher brain blood glucose levels, reduced glycolytic flux, and
lower neuronal glucose transporter 3 levels, were intrinsic to AD
pathogenesis. Moreover, periphery glucose regulation might af-
fect the glucose homeostasis in theCNS. The same study showed
that longitudinal increases in fasting plasma glucose levels were
associated with higher brain tissue glucose concentrations.41

The KATP channel is also abundantly expressed in the brain.
42

Although the exact role of KATP channels in the brain is largely
unknown, it has been found to modulate neurotransmitter
release and to mediate the action of memantine in the mouse
hippocampus.42-44 Besides, the brain KATP channel has been
evident to affect CNS function by clinical investigations. A
study compared neuropsychological features between adults
with permanent neonatal diabetes mellitus (PNDM) caused
by KCNJ11 variations and by INS variations (the gene en-
codes insulin; its variations influence insulin synthesis). Pa-
tients with KCNJ11 variations were more likely to have
abnormal CNS features, such as learning difficulties, reduced
IQ, and motor deficits, whereas patients with INS variations
rarely showed neurologic abnormalities.45 Furthermore,
Clark et al.46 have confirmed that such neurologic abnormities
originate from the CNS. Analogous to the genetic variations
in patients with PNDM, our IVs selected within the KCNJ11
and ABCC8 genes may simultaneously capture the modula-
tion of the KATP channel in the brain and pancreas. This
synthesis would incorporate the downstream effects, either
through neurologic alterations or blood glucose regulation, in
our MR models. Given the poor penetration of the sulfonyl-
urea across the blood-brain barrier,47 caution is warranted in
repurposing the existing sulfonylurea agents for AD, especially
until the elucidation of the underlying mechanistic pathways,
pharmacokinetics, and pharmacodynamics.

A suggestive association between genetic variation in GLP-1
analogue targets and lower risk of ADwas also observed in our
study. GLP-1 lowers blood glucose by binding to GLP-1

Figure 3 Estimated Effects of Genetic Variation in Antidiabetic Drug Targets on Alzheimer Disease and Results From the
Primary Analysis Using a GWAS Dataset Comprising 24,087 Clinically Diagnosed Late-Onset AD Cases

Proxy gene is the gene that encodes the drug target proteins, and rs757110 is the variant that have been validated to modulate the protein targets of
sulfonylureas. p < 0.01 indicates statistical significance, and 0.01 < p < 0.05 indicates suggestive significance. p for heterogeneity <0.05 indicates possible
pleiotropy, whereas p for intercept <0.05 indicates substantial bias from pleiotropy. All the ORs were scaled to per 1mmol/L decrement in blood glucose. NA
indicates that the Cochran’s Q test (heterogeneity test) or the MR-Egger regression (intercept test) is not available because of the limited number of IVs. AD =
Alzheimer disease; GLP-1 analogues = glucagon-like peptide 1 analogues; GWAS = genome-wide association study; IVs = instrumental variables; MR =
mendelian randomization; OR = odds ratio; SNVs = single-nucleotide variations; TZD = thiazolidinediones.
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receptors on pancreatic β-cells and stimulating insulin pro-
duction and secretion.48 GLP-1 crosses the blood-brain barrier,
andGLP-1 receptors are also found in the CNS.48 In vivo studies
have found that GLP-1 analogues increased hippocampal neu-
ronal density, protected against synaptic dysfunction, and re-
duced hyperphosphorylated tau.49 In an RCT following 38
patients with AD for 26 weeks, liraglutide, a GLP-1 analogue, has
been found to prevent the decline of brain glucose metabolism
comparedwith placebo but produce no effect on cognition or Aβ
load, although the study was underpowered to detect such
changes.50 Besides, 2 ongoing RCTs (phase 2 and phase 3) are
planning to recruit patients with early AD to examine the effects of
GLP-1 analogues (liraglutide and semaglutide, respectively) on
cerebral glucose metabolism, cognitive performance, and patho-
logic biomarkers (ClinicalTrials.gov Identifier: NCT01843075
and NCT04777396), which is expected to provide more con-
vincing evidence to this topic.

The present MR study has several strengths. First, the par-
ticipants were restricted to people of European ancestry,

which minimized the possible bias arising from population
stratification. Second, the IVs were selected from the cis-var-
iants within the coding genes for drug targets (±2.5 kB),
which controlled the likelihood of pleiotropy by IVs tagging
other genes. Also, no heterogeneity within the IVs was detected
in our MR analysis, further substantiating the absence of plei-
otropy that would bias our estimations. Third, we conducted a
set of positive control analyses to validate the strength of our
IVs. The results for sulfonylureas, instrumented either by the 4
clumped IVs or by the validated proxy rs757110, were in line
with the evidence from prior meta-analyses of clinical trials.
This strongly supported these IVs as appropriate proxies. Then,
a reduced risk in AD was observed, consistent in these 2 sets of
IVs, which further lends support for a putative causal re-
lationship between sulfonylureas and AD.

The study has several limitations. First, our study can only
predict the on-target effects of antidiabetic drugs because only
the well-documented protein targets were included in our
analysis. Drug effects that are not exerted through these

Figure 4 Estimated Effects of Genetic Variation in Antidiabetic Drug Targets on Alzheimer Disease and Results From the
Sensitivity Analysis Using a GWAS Dataset Comprising 24,087 Clinically Diagnosed Late-Onset AD Cases and
Clumping the cis-Variants With R2 From 0.001 to 0.50

The numbers below the x axis are the value of R2, and the numbers above the x axis are the number of IVs after clumping with the corresponding R2. AD =
Alzheimer disease; GLP-1 analogues = glucagon-like peptide 1 analogues; GWAS = genome-wide association study; IVs = instrumental variables; OR = odds ratio.
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protein targets (off-target effects) cannot be captured in our
MR models. Second, the genetically predicted drug effects
may be somewhat different from therapeutic practice. An
exposure instrumented by genetic variants is present from
birth and lasts for a lifetime. Our analyses may therefore be
interpreted as assessing long-term modulation effects of drug
target proteins. Moreover, given that genetic effects are life-
long, our estimates cannot reflect the effects of exposure to
antidiabetic drugs during a certain period of life. Third, met-
formin, SGLT2 inhibitors, and DPP4 inhibitors were ex-
cluded from the analysis because of yet unclear mechanism of
actions or lack of proper IVs. Also, our results regarding
insulin/insulin analogues, TZD, and GLP-1 analogues are
inconclusive, likely because of the uncertainty by the small
number of IVs. Future studies are warranted to reexamine
these drug classes when more or stronger IVs are available.
Besides, because we only used the genetic summary data re-
stricted to the population of European ancestry, the gener-
alizability of our results would be confined in European
ancestral populations. Finally, we did not find strong coloc-
alization evidence for blood glucose and AD within KCNJ11
and ABCC8 for sulfonylureas, which might be due to weak
variant-AD association in the region. Therefore, our findings
regarding sulfonylureas warranted further examinations when
a larger AD GWAS is available.

In conclusion, this study provides supportive evidence for
genetic variation of sulfonylurea targets, through the modu-
lation of the KATP channel, which was associated with a lower
risk of AD. Future studies should be conducted to clarify the
underlying mechanistic pathways between sulfonylureas and
AD. The study also exemplifies how the MR design may be a
promising tool for finding new indications for approved drugs.
The method allows testing interventions that are otherwise
costly, time-consuming, or, in other ways, impractical and
should be considered a screening instrument in the drug de-
velopment phase.
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PhD

Department of Medical
Epidemiology and
Biostatistics, Karolinska
Institutet, Stockholm

Analysis or interpretation
of data; drafting/revision of
themanuscript for content,
including medical writing
for content; major role in
the acquisition of data; and
study concept or design

e658 Neurology | Volume 99, Number 7 | August 16, 2022 Neurology.org/N

https://n.neurology.org/lookup/doi/10.1212/WNL.0000000000200771
http://neurology.org/n


4. Corbett A, Pickett J, Burns A, et al. Drug repositioning for Alzheimer’s disease. Nat
Rev Drug Discov. 2012;11(11):833-846. doi: 10.1038/nrd3869

5. Zhang J, Chen C, Hua S, et al. An updated meta-analysis of cohort studies: diabetes
and risk of Alzheimer’s disease.Diabetes Res Clin Pract. 2017;124:41-47. doi: 10.1016/
j.diabres.2016.10.024

6. Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer’s disease a type 3 diabetes? A
critical appraisal. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1078-1089. doi:
10.1016/j.bbadis.2016.08.018

7. Boccardi V, Murasecco I, Mecocci P. Diabetes drugs in the fight against Alzheimer’s
disease. Ageing Res Rev. 2019;54:100936. doi: 10.1016/j.arr.2019.100936
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