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The development of biochemistry and molecular biology has revealed an increasingly important role of compounds in several
biological processes. Like the aptamer-protein interaction, aptamer-compound interaction attracts increasing attention. However, it
is time-consuming to select proper aptamers against compounds using traditional methods, such as exponential enrichment.Thus,
there is an urgent need to design effective computational methods for searching effective aptamers against compounds. This study
attempted to extract important features for aptamer-compound interactions using feature selection methods, such as Maximum
Relevance Minimum Redundancy, as well as incremental feature selection. Each aptamer-compound pair was represented by
properties derived from the aptamer and compound, including frequencies of single nucleotides and dinucleotides for the aptamer,
as well as the constitutional, electrostatic, quantum-chemical, and space conformational descriptors of the compounds. As a result,
some important features were obtained. To confirm the importance of the obtained features, we further discussed the associations
between them and aptamer-compound interactions. Simultaneously, an optimal prediction model based on the nearest neighbor
algorithm was built to identify aptamer-compound interactions, which has the potential to be a useful tool for the identification of
novel aptamer-compound interactions. The program is available upon the request.

1. Introduction

Aptamers are defined as single-stranded nucleic acids or
peptides that act like antibodies [1, 2].These specific selective
molecules can easily recognize and identify certain targets
in the proper environment. In vitro, aptamers are widely
artificially selected from a large random sequence pool;
at the same time, natural aptamers always exist in the
riboswitches [3]. Compared to antibodies, these artificial

molecules have several advantages. Apart from their high
affinity and wide range of applications, it is much easier to
screen and accurately amplify aptamers than antibodies.With
the development of molecular biology techniques, it is even
possible for us to modify the aptamers after screening, which
may be much harder for antibodies. Moreover, purification
is always difficult and cumbersome in molecular technology.
However, polymerase chain reaction makes it amazingly easy
to attain quantities of target aptamers without a complex
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purification process [4]. All in all, aptamers are a potentially
valuable class of ligands that are sure to be widely used in the
fields of biology and medicine [5].

Previous studies have focused on aptamer-protein inter-
actions [6]. With the development of biochemistry and
molecular biology, compounds have been shown to play an
increasingly significant role in several biological processes;
therefore, it is necessary to focus on aptamer-compound
interactions.Themost widely usedmethod to select aptamers
is systematic evolution of ligands by exponential enrich-
ment (SELEX) [1, 2]. Similar to aptamer-protein interac-
tions, SELEX is also used to select proper aptamers against
compounds [7, 8]. However, aptamers are highly target-
specific and environment dependent. As a result, select-
ing proper aptamers from random combinatorial libraries
is monotonously repetitive and inefficient. A proper, high
affinity aptamer takes months or even years to be screened.
Currently, we can design effective computational methods
to screen proper aptamers. In this study, we analyzed the
mechanism underlying aptamer-compound interactions by
synthesizing characteristics of both the compounds and the
aptamers. To encode each investigated interaction into a
numerical vector that can be processed by computers, the
constitutional, electrostatic, quantum-chemical, and space
conformational descriptors of the compounds were taken
into consideration, as was the nucleotide composition of the
aptamers. Then, like the aptamer-protein feature selection
reported in a previous study [9], the Maximum Relevance
MinimumRedundancy (mRMR)method and the Incremen-
tal Feature Selection (IFS) method were applied to screen the
optimal features for the determination of aptamer-compound
interactions. Simultaneously, an optimal prediction model
based on the nearest neighbor algorithm (NNA) was built.
Our results may help broaden the applications of aptamers in
biological and medical fields.

2. Materials and Methods

2.1. Materials. Aptamer Base (http://aptamerbase.semantic-
science.org/) is a collaboratively created and maintained
knowledge base about aptamers, including their interac-
tions and detailed experimental conditions with citations
to primary scientific literature [10]. It contains a total of
1,994 entries of interactions (accessed in May 2014), in
which 1,335 entries involve one or more compounds. After
searching the 1,335 entries, we obtained 1,507 interactions
between aptamers and compounds. Moreover, because of the
extension of freebase itself, it is easy to obtain compound
information from another freebase “compound.” Most of the
“compound IDs” and some SMILE strings were also available
from direct query on this freebase.

To obtain a well-defined dataset, 1,507 aptamer-com-
pound interactions were further refined using the following
rules: (1) interactions containing compounds whose Pub-
chem IDs were not available were excluded; (2) interactions
containing compounds whose molecular weights are greater
than 800 were removed because it is time-consuming to
make structural optimization by AMPAC for compounds
with high molecular weights; and (3) interactions containing

compounds that cannot match the SMILE strings were
also removed. Finally, we obtained 159 aptamer-compound
interactions, involving 20 compounds and 156 aptamers.
These 159 aptamer-compound interactions were considered
to be positive interactions in this study.

To characterize features of aptamer-compound interac-
tions, the negative data were also necessary, constructed
according to the following rules: (1) randomly combine one
compound from 20 compounds and one aptamer from 156
aptamers to constitute an interaction; (2) the constructed
interactions were not positive interactions. Because the pos-
sibility of one compound and one aptamer being an actual
aptamer-compound interaction is very low, we randomly
produced 318 negative interactions, which was twice as
many as the positive interactions. The positive and negative
interactions are all provided in Supplemental Material I,
available online at http://dx.doi.org/10.1155/2016/8351204.

2.2. Representation of Aptamer-Compound Interactions. To
build an effective prediction model, encoding each sample
with its essential properties is one of the most important
steps. In this study, we encoded each aptamer by the nucleo-
tide composition and compound using descriptors, includ-
ing constitutional, topological, geometric, electrostatic, and
quantum-chemical features.

2.2.1. Aptamer Representation. The frequencies of single
nucleotides (“a,” “c,” “g,” and “u(t)”) and dinucleotides (“aa,”
“ac,” “ag,” “au(t),” “ca,” “cc,” “cg,” “cu(t),” “ga,” “gc,” “gg,”
“gu(t),” “u(t)a,” “u(t)c,” “u(t)g,” and “u(t)u(t)”) were used to
encode each aptamer.Thus, each investigated aptamer can be
represented by a 20D (20-dimensional) numerical vector.

2.2.2. Compound Representation. The initial structures of all
compounds were optimized by Sybyl 6.8 [11], and structural
optimization was performed using the AM1 semiempirical
method implemented in AMPAC 8.16 [12]. To describe the
characteristics of the compounds, a total of 499 descrip-
tors, including constitutional, topological, geometric, electro-
static, and quantum-chemical features, were calculated with
Codessa 2.7.2 [13]. After removing those descriptors with zero
variance or missing values for some compounds, 301 descrip-
tors remained. The distribution of these 301 descriptors is
listed in Table 1. As a result, each investigated compound was
represented by a 301D (301-dimensional) numerical vector.

2.2.3. Interaction Representation. Because each interaction
consisted of one aptamer and one compound, it can be
represented by a 321D (321-dimensional) numerical vector,
where 20 components represented the properties of aptamers
and the others represented the properties of compounds (see
Table 1).

2.3. mRMR. As mentioned in Section 2.2, 321 features rep-
resented each aptamer-compound interaction. Clearly not
all features equally contribute to the identification of actual
aptamer-compound interactions. Some of features make key
contributions, whereas some others are less important. To
analyze the features, a popular feature selection method,
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Table 1: Distribution of the features investigated in this study.

Feature type Number of features
Features of aptamer

Frequency of single nucleotide 4
Frequency of dinucleotide 16

Features of compound
Constitutional 24
Electrostatic 57
Geometrical 12
Quantum-chemical 171
Topological 37

Total 321

mRMR, which was first proposed by Peng et al. [14] in
2005, was employed. This method measures the investigated
features for a certain problem by providing two lists, MaxRel
features list and mRMR features list. The MaxRel features
list sorts the investigated features by their contributions into
classifications, that is, with relevance to class labels. The
mRMR features list sorts features by considering not only
their contributions to classification but also the redundancies
to features listed before them. The detailed descriptions are
as follows. Firstly, the above factors can be encoded into
numbers using the mutual information (MI), which can be
calculated by

𝐼 (𝑥, 𝑦) = ∬𝑝 (𝑥, 𝑦) log
𝑝 (𝑥, 𝑦)

𝑝 (𝑥) 𝑝 (𝑦)
𝑑𝑥 𝑑𝑦, (1)

where 𝑥 and 𝑦 represent two variables, 𝑝(𝑥, 𝑦) represents the
joint probabilistic density of 𝑥 and 𝑦, and 𝑝(𝑥) represents the
marginal probabilistic density of variable 𝑥.

For a problem involving 𝑁 features, the MI of each
feature as well as the target vector, consisting of samples
class labels, is calculated. The MaxRel features list ranks the
features with the descending order of MI values. For the
mRMR features list, because it additionally considers the
redundancies between features, it is produced using a loop
procedure. SupposeΩ is a set containing𝑁 features andΩ

𝑠
is

a set consisting of already selected features (initially,Ω
𝑠
= Φ)

and Ω
𝑡
consists of the rest features; that is, Ω

𝑡
= Ω − Ω

𝑠
.

The contribution of feature 𝑓 in Ω
𝑡
is measured using the

MI of it and target vector 𝑐, that is, 𝐷 = 𝐼(𝑓, 𝑐), while the
redundancies between it and features in Ω

𝑠
are measured by

𝑅 = (1/|Ω
𝑠
|) ∑
𝑓𝑖∈Ω𝑠

𝐼(𝑓, 𝑓
𝑖
) (if Ω

𝑠
= Φ, 𝑅 is set to zero). To

select a featurewithmaximumcontributions for classification
and minimum redundancies between it and features in Ω

𝑠
,

the feature yielding the maximum𝐷-𝑅 will be selected in the
next loop and removed from Ω

𝑡
to Ω
𝑠
. When all features are

in Ω
𝑠
, the loop stops. The mRMR features list ranks features

using the selection sequence of features.
By analyzing theMaxRel features list andmRMR features

list, we can extract important features among the investigated
features and build an optimal prediction model based on one
machine learning algorithm. Currently, the mRMR method
has been applied to study a number of biological problems

and some optimal classification models have been built [15–
24]. Here, we denoted theMaxRel features list and themRMR
features list as follows:

MaxRel features list: 𝐹MaxRel = [𝑓
𝑀

1
, 𝑓
𝑀

2
, . . . , 𝑓

𝑀

𝑛
] ,

mRMR features list: 𝐹mRMR = [𝑓
𝑚

1
, 𝑓
𝑚

2
, . . . , 𝑓

𝑚

𝑛
] .

(2)

For a detailed description of this method, please refer to
Peng et al.’s [14] or visit the website http://home.penglab.com/
software/Hanchuan Peng Software/software.html.

2.4. Basic Prediction Engine. Based on the mRMR features
list obtained by the mRMR method and a basic prediction
engine, one can construct an optimal prediction model
using key features to represent samples. Here, we tried four
prediction engines: (1) NNA [25]; (2) Random Forest (RF)
[26]; (3) Sequential Minimal Optimization (SMO) [27]; (4)
Dagging [28]. Their brief descriptions were as follows.

2.4.1. NNA. NNA is a classic classifier. Although it is simple,
it performs well in many cases [29–32]. For a query sample,
the distances between it and samples in the training set are
computed and the class of the sample with the minimum
distance is assigned to it.

2.4.2. RF. RF is an ensemble classifier proposed by Breiman
[26]. It integrates a number of decision trees, which are
constructed by randomly selecting samples from the original
training set and randomly selecting features to split each
node. Because it contains two procedures of random selec-
tions, it always yields good performance and has been applied
to deal with many biological problems [33–37].

2.4.3. SMO. SMO is a type of support vectormachines (SVM)
that is optimized by the John Platt’s SequentialMinimal Opti-
mization algorithm [27]. The optimization problem of SVM
is divided into several of the smallest possible subproblems,
and they are solved analytically.

2.4.4. Dagging. Dagging is a metaclassifier containing multi-
ple prediction models that are derived from a number of dis-
joint subsets of the original training set and a single machine
learning algorithm [28]. Its predicted result integrated the
results of the prediction models by majority voting.

In Weka [38], four classifiers (IB1, Random Forest, SMO,
andDagging) implement the above fourmethods. For conve-
nience, they were employed to make classifications and they
were all executed with their default parameters.

2.5. Accuracy Measurement. Identification of aptamer-
compound interactions is a two-class classification problem.
To measure the performance of a classifier on this type of
problem, four values were counted, true positive (TP), true
negative (TN), false positive (FP), and false negative (FN)
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[29, 39]. Furthermore, these values can be used to calculate
the following measurements:

SN = TP
TP + FN

,

SP = TN
TN + FP

,

ACC = TP + TN
TP + TN + FP + FN

,

MCC

=
TP ⋅ TN − FP ⋅ FN

√(TN + FN) ⋅ (TN + FP) ⋅ (TP + FN) ⋅ (TP + FP)
.

(3)

To correctly measure the performance of a classifier, one
measurement listed in (3) should be selected as the key
measurement. Obviously, SN and SP are not perfect mea-
surements because they only partly use TP, TN, FP, and FN.
Regarding ACC and MCC [40], we prefer to use MCC as the
key measurement because MCC is a balanced measurement
even if the number of samples in each class greatly differs.
Therefore, in this study, MCC is always used to measure the
performance of the current prediction method, whereas SN,
SP, and ACC are provided as reference.

2.6. IFS. By combining the mRMR features list and a basic
prediction engine (e.g., NNA and RF), one can build an opti-
mal prediction model, in which each sample is represented
by extracted key features and the adopted basic prediction
engine provides the best performance. This procedure is
called IFS, which can be implemented as follows:

(i) Based on the mRMR feature list 𝐹mRMR = [𝑓
𝑚

1
, 𝑓
𝑚

2
,

. . . , 𝑓
𝑚

𝑛
], 𝑁 feature sets were constructed such that

IFS
𝑖
= {𝑓
𝑚

1
, 𝑓
𝑚

2
, . . . , 𝑓

𝑚

𝑖
} (1 ≤ 𝑖 ≤ 𝑛).

(ii) For the 𝑖th feature sets IFS
𝑖
, each sample was repre-

sented by features in IFS
𝑖
and the basic prediction

engine was executed on all samples for classification
and was evaluated by tenfold cross-validation [41].

(iii) Evaluate the performance of the basic prediction
engine by calculating MCC and select features in the
feature set that induces the highest MCC as the opti-
mal features.

3. Results and Discussion

3.1. Results of mRMR. The investigated 477 interactions
were represented by 321 features. The mRMR method was
employed to analyze these features. As a result, we obtained
two lists, the MaxRel features list and the mRMR features
list, which are provided in Supplemental Material II. For the
MaxRel features list, we investigated the top 10% of features,
which were important for the determination of aptamer-
compound interactions. Table 2 gives the distribution of these
features, from which we can see that no features of the
aptamers were among the top 10% of features of the MaxRel
features list. Furthermore, because the number of considered
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Figure 1: The proportion of features listed in the top 10% of the
MaxRel features list in each feature type.

features in each feature type is different, only considering
the number of features listed in the top 10% of the MaxRel
features list for each feature type has its limitation. Thus, we
computed the proportion of the number of features in the top
10% of theMaxRel features list and total number of features in
each feature type, as illustrated in Figure 1. It can be observed
from Table 2 and Figure 1 that features of electrostatic and
quantum-chemical descriptors were more related to the
determination of aptamer-compound interactions than other
interactions.

3.2. Results of IFS. By analyzing the MaxRel features list, we
obtained only some important features that may play key
roles in the determination of aptamer-compound interac-
tions. On the other hand, an optimal prediction model based
on a certain basic prediction engine can be built according
to the mRMR features list and the IFS method. Following
the procedures described in Section 2.6, a set of MCCs can
be obtained using different numbers of features for each
of the four basic prediction engines, which are listed in
Supplemental Material III. For the readers’ interest, the SNs,
SPs and ACCs are also provided in Supplemental Material
III. Based on the MCCs obtained by IFS method and four
basic prediction engines, we plotted four curves, namely, IFS
curves, for four basic prediction engines by setting MCC as
the 𝑦-axis and the number of considered features (i.e., the
subscript 𝑖 of IFS

𝑖
) as the 𝑥-axis. Figure 2 shows these four

curves, fromwhich we can clearly observe that themaximum
MCC for NNA, RF, SMO, and Dagging was 0.670, 0.629,
0.425, and 0.483, respectively, when the first 80, 135, 42, and
54 features in the mRMR features list were used. Thus, the
NNA yielded the best performance (MCC 0.670) using the
first 80 features in the mRMR features list. For readers’ inter-
est, the SN, SP, and ACC obtained using the NNA and first
80 features in the mRMR feature lists were 0.780, 0.890, and
0.853, respectively. It can be observed that the performance
of the NNA is much better than the performances of SMO
and Dagging. The possible reason is that the current data
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Table 2: Distribution of the top 10% features in the MaxRel features list.

Feature type Number of features Feature names
Features of aptamer 0 —
Constitutional 2 Number of double bonds; number of O atoms

Electrostatic 11

DPSA-1 difference in CPSAs (PPSA1-PNSA1) [Zefirov’s PC]; HA dependent
HDCA-2 [Zefirov’s PC]; Max partial charge for H atom [Zefirov’s PC]; PNSA-3
atomic charge weighted PNSA [Zefirov’s PC]; HACA-2 [Zefirov’s PC]; HACA-1
[Zefirov’s PC]; min(#HA #HD) [Zefirov’s PC]; count of H-acceptor sites [Zefirov’s
PC]; HA dependent HDSA-1/TMSA [Zefirov’s PC]; DPSA-3 difference in CPSAs
(PPSA3-PNSA3) [Zefirov’s PC]; HA dependent HDCA-1 [Zefirov’s PC]

Geometrical 0 —

Quantum-chemical 18

Tot dipole of the molecule; tot point-charge comp. of the molecular dipole; ESP-HA
dependent HDSA-2 [quantum-chemical PC]; ESP-HA dependent HDCA-2
[quantum-chemical PC]; ESP-HACA-2 [quantum-chemical PC]; HA dependent
HDSA-2 [quantum-chemical PC]; final heat of formation; ESP-Max net atomic
charge for H atom; ESP-DPSA-1 difference in CPSAs (PPSA1-PNSA1)
[quantum-chemical PC]; HA dependent HDCA-2 [quantum-chemical PC];
HOMO - LUMO energy gap; ESP-HA dependent HDSA-1 [quantum-chemical PC];
min(#HA #HD) [quantum-chemical PC]; ESP-count of H-acceptor sites
[quantum-chemical PC]; ESP-min(#HA #HD) [quantum-chemical PC]; count of
H-acceptor sites [quantum-chemical PC]; DPSA-1 difference in CPSAs
(PPSA1-PNSA1) [quantum-chemical PC]; HA dependent HDCA-1
[quantum-chemical PC]

Topological 1 Average structural information content (order 1)

Table 3: Predicted results of some specific examples obtained by the optimal prediction model.

Compound Aptamer Predicted class True class
Arsenate 20000526-arsenic-5 Positive Positive
Isoleucine 15772067-isoleucine-1 Positive Positive
Dopamine 9245404-dopamine-4 Positive Positive
Chitin 10743940-chitin-5 Positive Positive
N-Acetylneuraminic acid 23042406-Neu5Ac-1 Positive Positive
Isoleucine 14980623-sialyllactose-1 Positive Negative
Dopamine 18983163-ochratoxin A-3 Positive Negative
Chitin 10786843-L tyrosine-3 Positive Negative
Tyrosine 20000526-arsenic-Ma-1 Positive Negative
N-Acetylneuraminic acid 21076782-L-tryptophan-1 Positive Negative

of aptamer-compound interactions is so complicated that
its distribution is not clear, inducing difficulties for making
prediction by the kernel function methods (e.g., SMO) or
boosting methods (e.g., Dagging), while the NNA is good at
dealing with this type of data.The IFS results of NNA suggest
that the first 80 features in the mRMR feature lists were the
optimal features to identify aptamer-compound interactions.
The prediction model based on the NNA and 80 optimal
features was the optimal prediction model. The following
section gives a detailed discussion of the 88 features used in
the optimal prediction model.

3.3. Prediction Results of Some Specific Examples. According
to the results mentioned in Section 3.2, the optimal predic-
tion model used the NNA as the classifier and the 80 optimal
features to represent aptamer-compound interactions. To

provide more clues for other investigators to study aptamer-
compound interactions, we listed the predicted results of 477
interactions in Supplemental Material IV. Because the SN
obtained by the optimal prediction model was 0.78, mean-
ing that 124 of 159 aptamer-compound interactions were cor-
rectly predicted, five such examples are listed in first five
rows in Table 3. For the negative interactions, those that were
predicted to be “positive” were more important than others
because they may be potential true aptamer-compound
interactions.The last five rows of Table 3 list such five negative
interactions.

3.4. Analysis of the Optimal Features. The 80 optimal features
can be categorized into six types, including features of
aptamer, constitutional, electrostatic, geometrical, quantum-
chemical, and topological features. The distributions of these
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Figure 2: Four IFS curves plotted by taking MCC as the 𝑦-axis and the number of considered features as the 𝑥-axis for four basic prediction
engines. The MCC values indicate the performance of various prediction models using different classifiers and different combination of
features to represent interactions. It can be observed that using NNA as the classifier and the first 80 features in the mRMR features list to
represent interactions can yield the best performance with the highest MCC value of 0.670.
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Figure 3: (a) The distribution of the 80 optimal features. (b) The proportion of features among the 80 optimal features in each feature type.

six feature types are illustrated in Figure 3(a). Like the analysis
of the top 10% features in the MaxRel features list, we also
calculated the proportion of the number of features among
the 80 optimal features and the total number of features in
each feature type, as illustrated in Figure 3(b).

The quantum-chemical features make up approximately
50% of 80 optimal features. Among these features, the tot
dipolemoment of the target molecule seems to be statistically
essential for aptamer-target interactions, represents specific
polarity characteristics, and, to some extent, reflects the space
conformation of the target molecule [42, 43]. This finding is
consistent with those of previous studies that show that the
space conformation of the targets plays an important role
in interactions with aptamers [44–46]. Moreover, quantum-
chemical features also contain the characteristics of the
total surface area and surface functional groups that may
participate in the reaction. These characteristics make up

the structural foundation of aptamer-compound binding
[47]. Furthermore, the selected quantum-chemical features
also describe conformational changes and atomic reactivity
during the interaction. These traits explain aptamers’ target
specificity and why an aptamer can easily detect changes in a
target’s molecule structure [48, 49].The results above suggest
that our aptamer prediction has to include consideration of
the molecular polarity and the surface electrostatic charge
distribution of the targetmolecules. Consequently, prediction
using the optimal prediction model might be widely imple-
mented in the design of aptamers.

The electrostatic features were also a part of the optimal
features. These traits reflect the distribution of the spe-
cific molecule surface charge. Molecule-molecule interac-
tion (such as aptamer-target) is largely dependent on the
interaction of respective charge [50, 51]. Such surface charge
distribution is sure to have a correlation with aptamer-target
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interaction. Indeed, the polarity of targets as well as aptamers
can induce aptamers to recognize their specific targets [52].
The distribution has also been demonstrated to be involved
in aptamer-protein interactions. A typical example is the TBA
(thrombin binding aptamer) [53]. Similarly, polaritymay also
play a crucial role in aptamer-compound interactions.

Constitutional features also play a unique role in the
interaction. Certain featuresmay combine to act as a standard
to distinguish the material categories. Apart from character-
istics describing the target compounds, aptamer frequency
(the composition of nucleotide and dual nucleotide) can also
interfere with the reaction by remodeling the spatial confor-
mation of the aptamers. A stable and target-specific spatial
conformation is the foundation of the aptamers’ function
[54–56]. Considering that the conformation of nucleic acid is
mainly based on interactions between nucleotides, the com-
position of nucleotides and dual nucleotides may influence
aptamers’ specific three-dimensional structures and their
stability. Moreover, some specific compounds may have the
ability to recognize nucleotide chains, which may contain a
characteristic nucleotide frequency. Those compounds inter-
act with aptamers based on sequence specificity [57, 58]. Our
results further confirm that the polar properties and distribu-
tion of molecular surface charge and aptamer frequency are
significant for the interaction between the aptamers and their
respective targets.

All in all, our prediction of proper aptamers against
compounds depends on the traits of polarity, surface charge
distribution of the compounds, constitutional features, and
aptamer frequency. Our prediction using the mRMR pro-
gram depends on the propensities of the compounds and the
nucleotide (dual nucleotide) frequency of aptamers. In con-
clusion, in addition to protein analysis, mRMR can also be
applied to design matching aptamers to specifically identify
objective compounds.

4. Conclusions

Our study analyzed and identified the important features
that influence thematching of aptamers to compounds.Max-
imum Relevance Minimum Redundancy and incremental
feature selection were performed on a dataset, in which com-
pounds and aptamers were represented by descriptors and
nucleotide compositions, respectively. As a result, some key
features were extracted and an optimal prediction model was
built based on the nearest neighbor algorithm. The novel
findings of our study may give new insights into the investi-
gation of aptamer-compound interactions.
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