
sensors

Article

Collaborative Working Architecture for
IoT-Based Applications†

Higinio Mora 1,* ID , María Teresa Signes-Pont 1, David Gil 1 ID and Magnus Johnsson 2,3,4 ID

1 Department of Computer Science Technology and Computation, University of Alicante,
03690 Alicante, Spain; teresa@dtic.ua.es (M.T.S.-P.); dgil@dtic.ua.es (D.G.)

2 Department of Intelligent Cybernetic Systems, NRNU MEPhI, 115409 Moscow, Russia;
magnus@magnusjohnsson.se

3 Department of Philosophy, Lund University Cognitive Science, 22362 Lund, Sweden
4 Magnus Johnsson AI Research AB, 24334 Höör, Sweden
* Correspondence: hmora@ua.es; Tel.: +34-96590-3400
† This paper is an extended version of our paper published in Mora, H.; Signes-Pont, M.T.; Gil-Méndez, D.;

Ferrández-Pastor, F.J. A Proposal for a Distributed Computational Framework in IoT Context.
In proceedings of the conference on the Ubiquitous Computing and Ambient Intelligence. Springer:
Cham, Switzerland, 2017.

Received: 14 April 2018; Accepted: 21 May 2018; Published: 23 May 2018
����������
�������

Abstract: The new sensing applications need enhanced computing capabilities to handle the
requirements of complex and huge data processing. The Internet of Things (IoT) concept brings
processing and communication features to devices. In addition, the Cloud Computing paradigm
provides resources and infrastructures for performing the computations and outsourcing the work
from the IoT devices. This scenario opens new opportunities for designing advanced IoT-based
applications, however, there is still much research to be done to properly gear all the systems for
working together. This work proposes a collaborative model and an architecture to take advantage
of the available computing resources. The resulting architecture involves a novel network design
with different levels which combines sensing and processing capabilities based on the Mobile Cloud
Computing (MCC) paradigm. An experiment is included to demonstrate that this approach can
be used in diverse real applications. The results show the flexibility of the architecture to perform
complex computational tasks of advanced applications.

Keywords: embedded systems; internet of things; mobile cloud computing; computer modelling;
sensor processing modeling

1. Introduction

The new era of Knowledge Society has brought advanced services for improving the quality of
life of citizens and making better use of resources. These services are based on modern paradigms
of Information and Communication Technologies (ICT) such as the Internet of Things (IoT) and the
Cloud Computing paradigms. In this way, new concepts have been created which apply IoT to benefit
different areas of society and industry. For instance: ambient assisted living [1], smart cities [2] or smart
logistics [3]. In these scenarios, new data management issues arise for integrating environmental
sensor data efficiently and handling data from different sources [4].

Recent applications have been developed around the aforementioned concepts where sensing
and processing capabilities of the devices play an important role. These devices are usually embedded
systems and/or mobile devices such as smart phones, wearables, laptops, tablet PCs, etc. To deploy
complex artificial intelligence applications in IoT environments provides a powerful driver for

Sensors 2018, 18, 1676; doi:10.3390/s18061676 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8591-0710
http://orcid.org/0000-0003-0791-8298
https://orcid.org/0000-0002-4409-1413
http://dx.doi.org/10.3390/s18061676
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/6/1676?type=check_update&version=2

Sensors 2018, 18, 1676 2 of 18

increased edge computing capabilities. Real-world use cases of artificial intelligence combining
with the Internet of Things [5]. This evolution promotes a digital transformation of the society by
providing the citizens and professionals with advanced applications for sensing and analyzing data
on the ground. Due to the recent successes and the anticipated breakthroughs in different fields,
it has now become one of the most promising research areas [6]. Indeed, this fact is largely accelerated
by new smartphones and communication capabilities. However, the design of advanced IoT-based
applications remains a challenge [7]. Handling simultaneous data flows, data processing and/or
complex mathematical function execution could overflow the computing capabilities of the embedded
systems and mobile devices.

One approach to overcome this drawback consists in designing a distributed system where the
sensor devices are the distributed part to acquire the data and a centralized infrastructure that performs
the hard processing. The classical client/server architecture has been designed for that purpose.
Currently, this centralized infrastructure is usually deployed in the Cloud [8]. However, this shift
introduces several new risks, and some bottlenecks and delays may result from the communications
among the devices and the centralized system. In particular, the latter drawback is strongest for
multimedia data, for example, in applications that use video and image acquisition devices. For that
reason, it is difficult to implement a centralized multimedia analysis system in the cloud [9,10].

To overcome these bottlenecks and delays, this work extends our recent proposal of a distributed
architecture [11] to perform collaborative work for IoT-based environments and sharing the application
workload among the available devices. This improved architecture takes into account the different
network layers and their computing platforms involved, from the remote Cloud servers to connected
smart sensors and “things”. The approach aims at optimizing the use of computational resources of
an IoT environment while providing a framework able to obtain data from sensors, perform complex
computational tasks and run advanced applications.

Our working hypothesis is that the conception and development of processing models based on
schemes of collaborative working and cloud computing can supply the necessary processing power
for running applications when they run on embedded devices with limited performance. The auxiliary
use of cloud computing infrastructure on demand will provide flexibility to perform the necessary
tasks as well as mechanisms to support the service quality maintenance. This must be accomplished
even with devices and sensors with low computing capability. The main contribution of the paper is the
proposal of a distributed architecture that combines sensing and processing at different levels of the
network to perform a collaborative work based on the Mobile Cloud Computing (MCC) paradigm.

This approach can be used in a diversity of real applications running in different environments
under different conditions where a set of computing systems are available. To validate the proposal,
this research includes a set of experiments with an open dataset split into several subsets to enable
parallel testing. The main goal of this splitting is to prove that the collaborative work does affect
neither the final accuracy nor the rules and knowledge obtained.

The rest of the paper is organized as follows: Section 2 describes the basic background of
distributed computing for IoT; Section 3 defines the collaborative working architecture; Section 4
describes the validating experiments; and finally, Section 5 draws the relevant conclusions and presents
future work.

2. Background of IoT Distributed Computing

Nowadays it is very common that, due to the high performance of the servers, there is
not a strong need of taking the time to design a good plan where all the resources are used.
However, it is a reality that smart devices come continuously with greater computing capabilities,
and moreover, other conditions can exist that prevents the use of external cloud servers.

Distributed computing is a field of computer science studying distributed systems. A distributed
system can be of a variety of possible configurations, and its components can be of different size and
performance such as servers, workstations, personal computers, mobile computers, smart devices and

Sensors 2018, 18, 1676 3 of 18

smart sensors. The goal of distributed computing is to make such a network work in a collaborative
way, that is, run as a single system.

In this way, the components of a distributed system are located on networked computers,
communicating and coordinating their actions by means of exchanging messages to meet
a common goal [12,13].

In addition to the existing variety of embedded systems, the mobile devices, such as smartphones,
tablets, laptops, wearables, etc., play an important role in the development of IoT solutions.
Mobile devices have evolved considerably in recent years as a result of improvements in mobile
technology, mobile networking and mobile computing. Examples of such improvements are increased
processing power of mobile devices, novel forms of user interaction and new connectivity protocols.
Hardware improvements have motivated the explosive growth of mobile applications, especially those
that can perform off-screen processing, reducing battery consumption. These processing features are
commonly adopted by mobile applications or ‘Apps’ such as music players and activity trackers that
are widespread in the smartphone user community. Nowadays, the rapid expansion of smartphone
ownership across the world reaches 80–90% of penetration rate in the most advanced markets [14].
This trend places in the hands of users a powerful tool for accessing to the Cloud services and IoT
resources to run sophisticated applications. In this way, significant IoT opportunities are starting to
emerge for citizens.

The IoT environments are highly distributed architectures and they can be considered as very
weakly-coupled computer systems. Usually, the connected devices are heterogeneous and present
a dynamic behaviour.

In the view of the recent works on this topic, there are four major research lines in distributing
application systems for IoT environments that are transversal areas in the design of many advanced
applications such as Artificial Intelligence applications, games, e-business and e-commerce, etc.
These lines are the following: (i) framework design for distributed computing, (ii) integration with
Cloud Computing resources or MCC concept, (iii) security, and (iv) distributed applications design.
There are a lot of research focused on all these topics. The next subsections describe the recent works
on these issues. Table 1 summarizes some relevant and representative contributions.

2.1. Framework Design for Distributed Computing

The framework is basically related to modelling the distributed system, the communication
protocols, access and discovery services and the design of the scheduling method of the tasks along the
whole system. This issue may include the specification of the devices involved and the requirements
of the system operation such as the Quality of Service (QoS) [15,16], the definition of task and the
application constraints [17,18]. As a representative example, a distributed framework based on IoT is
proposed in [19] for monitoring human biomedical signals in activities involving physical exertion.
The major advantages and novelties of this scheme is the flexibility in computing the health application
by using resources from available devices inside the body area network of the user.

Other approaches develop the concept of Virtual Sensor as an abstraction of real sensors,
reproducing their logical behaviour and enriching their functionalities with programmable
operators [20,21]. The use of virtual sensors has increased continuously for translating the passive
sensors to smart things and to simplify creating and configuring complex applications. This evolution
enables better sensor management capability and facilitates the distribution of data and computations
among them.

New middlewares for distributed environments aim to improve the integrated management of
heterogeneous data, resources and events as well as to provide resource discovery and interoperability
within the diverse applications and services. Recently, there have been a number of proposals for
middlewares tackling with several aspects of IoT distributed systems [22].

Finally, recent trends are pushing the processing capabilities to the edge of network where
data analytics and knowledge generation are performed by heterogeneous things [23]. This approach

Sensors 2018, 18, 1676 4 of 18

achieves a dramatic reduction in latency and ensures the security of locality information [24]. Regarding
to this issue, intensive research is carried out to adapt the job-based scheduling methods to embedded
devices and types of applications involved in the IoT environments to fully utilize the nodes and to
achieve performance improvements [15,25–28].

2.2. IoT and Cloud Computing Combination

The cloud computing is considered as resource provisioning paradigm in distributed systems.
In this way, the cloud infrastructure can centralize most part of the processing cost. The combination of
IoT and Cloud Computing generates synergy for both paradigms and makes the objects smarter [29].
Cloud-based intelligence provides value to IoT systems since datacenters can compute the complex
machine learning and big data processing methods to infer meaning from the raw data [5].
This integration called CloudIoT allows to provide powerful applications to the users in several
real-world domains [30–33].

However, a system can only handle so much data before the system slows down and latency
grows to an unacceptable point for the application. Recent approaches try to leverage the computing
power of the devices and to outsource the workload to the cloud only when necessary. This trend is
called Mobile Cloud Computing (MCC). This paradigm is a promising way to improve the performance
as well as reducing the power consumption of a “thing” by executing some parts of the application
on a remote server. This combines cloud computing, mobile computing and wireless networks to
bring rich computational resources to mobile users, network operators, as well as cloud computing
providers [34,35]. In this way, the distribution of the processing between devices of the IoT and
cloud computing resources is able to increase the capabilities of the IoT system and to achieve greater
overall performance in application execution. There are several techniques to improve the efficiency
and effectiveness of the offloading process, such as multi-criteria decision analysis [36], stochastic
analysis [37], or application-oriented [38].

The efficient dynamic allocation of tasks is a very important and difficult topic on IoT
environments. Sometimes synchronization between the server-side layer and the devices or between
devices is needed. In this regard, push notifications are the delivery of information from a software
application to a computing device without a specific request from the device. They originate from the
server-side layer and they are used to receive processing alerts in the device. An important advantage
of push notifications in MCC is that the technology does not require that device’s Apps are open in
order to receive these alerts [39]. This allows smartphones and wearables to receive and display text
message alerts even when their screens are locked and the app that receives the push notification
is closed.

2.3. Security

Presently, the security is one of the most restrictive concerns for technological development in areas
such as IoT or Cyber-Physical Systems [40]. This issue gains even more importance when the processing
load is shared with cloud resources [41] and MCC paradigm [42]. The most important aspects in
these fields are guaranteeing user privacy, data confidentiality and the provision of application
security that uses cloud resources. These requirements play an essential role as nowadays IoT is
characterized by heterogeneous technologies, which concur to the provisioning of innovative services
in various application domains [43]. Due to this complexity of the nature of distributed IoT paradigm
it is very challenging to design fully secure methods and protocols to detects and prevents security
vulnerabilities and attacks [44].

In addition, the new European General Data Protection Regulation (GDPR) [45] imposes
restrictive requirements to data processing, especially when the data come from human monitoring.
GDPR compliance is particularly challenging in IoT environments, because it can be difficult to gain
the consent needed to process the personal data. Therefore, a GDPR awareness stage is needed in the
IoT system design process to analyze its compliance taking into account the technologies involved

Sensors 2018, 18, 1676 5 of 18

and the processing made [46]. User privacy challenges arise even when generating information or
inferences about the user behaviour [47].

However, security and privacy can also be improved with IoT distributed systems. The GDPR
prohibits the transfer of data to countries that don’t have an adequate level of data protection [48].
Currently, cloud providers can deploy their datacenters infrastructure out of ‘safe’ regions. In this way,
the collaborative work among the objects helps protect the sensitive data by keeping it at the source
rather than sending that information to the cloud [49].

In addition, the distributed nodes can be used for enhancing the overall security of the network.
Therefore, there are works that propose to distribute the security checking workload over the network
and/or a cloud computing server. There exist multiple options in relation to what network nodes
should be responsible for the execution of the security processes [50].

2.4. Distributed Applications Design

The applications for IoT are essentially distributed systems by nature. In this way, IoT is becoming
an emerging Internet-based information architecture to allow data and information flows from the real
world to advanced users and industrial applications.

Application design relies heavily on thing programming close to the operating system level,
which reduces efficiency and reliability of the IoT application [51]. The design complexity is reduced
significantly, when using web services [52].

There are several relevant works to update knowledge and current challenges. For example,
the research presented by [53] introduces a cloud-based platform for the deployment of distributed
IoT applications. The main characteristics of this platform are that each object is an autonomous
social agent; the platform as a service (PaaS) model is fully exploited; reusability at different layers is
considered; the data is under control of the users. There are also commercial frameworks and platforms
designed for developing and running Internet of Things applications [54]. The importance of this
platforms makes it possible to develop standards-based endpoints and data warehousing, that will
enable secure interoperation of modularized and distributed applications. These solutions can also
support big data processing and runtime autonomic management [55].

The feature of reusability is very significant as it allows the programmers to generate templates
of things and their services. Connected things may use different types of protocols and connectivity
patterns. In this way, design patterns add an abstract layer and facilitate to make designs robust and
reusable solutions [56].

Distributed applications classically record a numerous set of events, messages and log files,
making these platforms an excellent data source for process mining tools [57]. Nevertheless,
understanding the behaviour of all these applications, very often with heterogeneous devices,
from their event logs can be a complex as well as error prone task. In this area, the rapid advances
in interoperability and information integration methods have driven massive growth in the use of
integrated information systems for IoT applications [58].

Finally, centralized approaches have been the prevailing choice for providing intelligence based
on the acquired data. But, beyond response times and network loads, some distributed applications
need a decentralized intelligence approach in order to better meet the environment and application
requirements. There are proposals to move intelligence to the edge in order to offer low-level
intelligence for IoT applications [59]. In this line, decentralized multiagent systems provides ways
of dealing with autonomy and heterogeneity [60]. In addition, this approach enables discovery and
selection of IoT devices and data resources.

Sensors 2018, 18, 1676 6 of 18

Table 1. Recent advances on IoT distributed computing.

Research Line Main Contribution Area

(i) Framework design for distributed computing
Managing the quality of experience in the multimedia IoT [16] Quality of Experience

QoS-Aware scheduling of services-oriented IoT [17] Scheduling method
Distributed computational model for shared processing [18] Distributed computing model

IoT-Based Computational Framework [19] Distributed computing model
A scalable IoT framework using virtual sensor [20] Virtual sensor framework

Middleware for Internet of Things [22] Middleware
MinT: Middleware for Cooperative Interaction of Things [23] Middleware

Integration of Edge, IoT and the Cloud [24] Edge of Things
Scheduling internet of things Apps in cloud computing [25] Scheduling method

Payload-size and deadline-aware scheduling [26] Scheduling method
Task Requirement Aware Pre-processing and Scheduling [27] Scheduling method

Flexible framework for real-time embedded systems [28] Scheduling method

(ii) Integration with Cloud Computing resources
IoT and Cloud Computing [29] General analysis

Machine learning for IoT [5] Cloud-based Intelligence
Model of Internet of Things and Cloud (IoT-Cloud) [30] Mobile cloud computing

A study on cloud-based Internet of Things: CloudIoT [31] General analysis
Integration of Cloud computing and IoT [32] Survey

Cloud Computing and Internet of Things Integration [33] General analysis
Framework for computation offloading [34] Mobile Cloud Computing

MCC for computation offloading [35] Mobile Cloud Computing
Multi-Criteria Decision Analysis Methods [36] Offloading process analysis

Stochastic Analysis of Delayed Mobile Offloading [37] Offloading process analysis
Application-oriented offloading [38] Offloading process analysis

Mobile Cloud Services [39] Mobile Cloud Services

(iii) Security
Trust computation models for service management in IoT [40] Survey

Secure integration of IoT and Cloud Computing [41] IoT-Cloud security
Security and privacy challenges in MCC [42] MCC security

Security, privacy and trust in IoT [43] Survey
Cyber security framework for IoT-based Energy Internet [44] Intelligent Security System

Fog computing security [49] Fog computing security
Distributed intrusion detection system [50] Distributed system security

GDPR and the Internet of Things [46] GDPR
Normative challenges of identification [47] GDPR

(iv) Distributed applications design
Design flow for web service applications [51] Model-based design

The web of things [52] Web service -based design
Cloud-based platform for distributed IoT applications [53] Deployment platform

Commercial frameworks for the IoT [54] Survey of design platforms
A Self-Managing Containerized IoT Platform [55] Design platform

IoT Design Patterns [56] Design patterns
Data Mining proposal of distributed applications events [57] Data Mining

Open IoT Ecosystem [58] Deployment platform
Future Internet of Things Controller [59] Decentralized Intelligence

IoT and Multiagent Systems [60] Decentralized Intelligence

2.5. Findings

After reviewing the representative proposals in this field, some findings can be identified that
justify and summarize our contributions to previous works:

• The number of connected things is increasing significantly. This increases the possibilities
of designing advanced applications that take advantage of their ubiquitous sensing and
computing possibilities.

Sensors 2018, 18, 1676 7 of 18

• The computing resources of the whole network can be used for enhancing the performance of
IoT-based applications by sharing the processing load among the available platforms, and a way
to leverage more intensively the deployed infrastructure.

• Despite the progress achieved by recent research, the proper distribution of the application
workload remains a challenge. There is a lack of formalization and commonly agreed mechanisms
to implement real collaborative applications for IoT environments.

This work fits perfectly with Framework design for distributed computing. In this area,
the aforementioned findings lead us to advance continuously in the development of new frameworks
and architectures. Basically, the contributions presented in Table 2 summarize the research line in
different topics. This is a challenging issue, and therefore, progresses are slowly made. Most of the
proposals are focused on a specific topic such as modelling [18,19], quality of experience [16], edge of
things [24], middleware [22,23], and scheduling method [17,25–28].

In this line, the research presented represents a step forward in designing collaborative schemes
of IoT applications by sharing the application’s workload between the IoT devices of the environment.
A new application formalization and scheduler module is introduced to handle the working
collaboration among heterogeneous things and other networked resources. The components of the
scheduler are detailed and a practical use case is described.

Table 2. Time estimation of fatigue analysis application.

Computing Platform Frame Computing Cost Threshold = 5

Classroom Mobile PC 1 25 s ~2 min
Classroom Tablet PC 1 50 s ~4 min

Classroom Smartphone 1 50 s ~4 min
School Workstation 2 5 min 25 min

Classroom resources 1 13 s ~1 min
Cloud Server 3 25 s + 5 s 2.5 min

1 Total time for 25 students. 2 Total time for 12 classrooms of 25 students. 3 Total time for 12 classrooms of 25 students
plus communications delay.

3. Distributed Computational Architecture

3.1. General Scheme

The primary objective of the proposed distributed architecture is to take advantage of the deployed
infrastructure of things and the cloud computing resources to reduce the computing costs and
improve the overall performance. The main idea is to share the application’s workload between
the server-side and the rest of things with computing capabilities such as smartphones, wearables,
tablets, smart sensors, and other embedded devices. This workload-sharing among the things enables
a horizontal scaling to mitigate costs, rather than resort to remote servers. Thus, in accordance with our
proposal, these kinds of devices perform more processing tasks than the server-side layer. In addition,
cloud computing is available to use only as a last resort if needed. In the case of the asynchronous
synchronization needs between cloud server computing and the different devices, our system develops
a push notification-based approach.

In this section, a model of computation suitable for IoT applications is defined according to that
architecture. The proposal focuses on distributed applications that can be represented by a graph

Sensors 2018, 18, x FOR PEER REVIEW 7 of 18

and architectures. Basically, the contributions presented in Table 2 summarize the research line in
different topics. This is a challenging issue, and therefore, progresses are slowly made. Most of the
proposals are focused on a specific topic such as modelling [18,19], quality of experience [16], edge of
things [24], middleware [22,23], and scheduling method [17,25–28].

In this line, the research presented represents a step forward in designing collaborative schemes
of IoT applications by sharing the application’s workload between the IoT devices of the
environment. A new application formalization and scheduler module is introduced to handle the
working collaboration among heterogeneous things and other networked resources. The
components of the scheduler are detailed and a practical use case is described.

Table 2. Time estimation of fatigue analysis application.

Computing Platform Frame Computing Cost Threshold = 5
Classroom Mobile PC 1 25 s ~2 min
Classroom Tablet PC 1 50 s ~4 min

Classroom Smartphone 1 50 s ~4 min
School Workstation 2 5 min 25 min
Classroom resources 1 13 s ~1 min

Cloud Server 3 25 s + 5 s 2.5 min
1 Total time for 25 students. 2 Total time for 12 classrooms of 25 students. 3 Total time for 12
classrooms of 25 students plus communications delay.

3. Distributed Computational Architecture

3.1. General Scheme

The primary objective of the proposed distributed architecture is to take advantage of the
deployed infrastructure of things and the cloud computing resources to reduce the computing costs
and improve the overall performance. The main idea is to share the application’s workload between
the server-side and the rest of things with computing capabilities such as smartphones, wearables,
tablets, smart sensors, and other embedded devices. This workload-sharing among the things
enables a horizontal scaling to mitigate costs, rather than resort to remote servers. Thus, in
accordance with our proposal, these kinds of devices perform more processing tasks than the
server-side layer. In addition, cloud computing is available to use only as a last resort if needed. In
the case of the asynchronous synchronization needs between cloud server computing and the
different devices, our system develops a push notification-based approach.

In this section, a model of computation suitable for IoT applications is defined according to that
architecture. The proposal focuses on distributed applications that can be represented by a graph 𝔸𝔸 =
{𝕌𝕌, 𝔽𝔽} where:

• 𝕌𝕌 <vertex> represents the execution units of the application. Therefore, the IoT application can
be broken down into a list of execution units: 𝕌𝕌 = {u0, u2, …, un−1}.

• 𝔽𝔽 <edge> represents the data flows exchanged between the execution units. The data flows set
the precedence between the execution units and the volume of exchanged data. F(i,j) ∈ 𝔽𝔽 defines
the volume of data exchanged between the execution unit i and j.

The execution units of an application are related to its capacity of processing data and tasks in
parallel. It is a very important feature for modern machine learning and big data approaches on IoT
applications, since the edge things can increase significantly the performance and costs of the system
without having to send the data to the server for a centralized processing. For example, Figure 1 shows
three cases of applications (𝔸𝔸i) modeled according to this principle where the fragmentation feature of
data generates more execution units and opens more processing opportunities among the things.

= {

Sensors 2018, 18, x FOR PEER REVIEW 7 of 18

and architectures. Basically, the contributions presented in Table 2 summarize the research line in
different topics. This is a challenging issue, and therefore, progresses are slowly made. Most of the
proposals are focused on a specific topic such as modelling [18,19], quality of experience [16], edge of
things [24], middleware [22,23], and scheduling method [17,25–28].

In this line, the research presented represents a step forward in designing collaborative schemes
of IoT applications by sharing the application’s workload between the IoT devices of the
environment. A new application formalization and scheduler module is introduced to handle the
working collaboration among heterogeneous things and other networked resources. The
components of the scheduler are detailed and a practical use case is described.

Table 2. Time estimation of fatigue analysis application.

Computing Platform Frame Computing Cost Threshold = 5
Classroom Mobile PC 1 25 s ~2 min
Classroom Tablet PC 1 50 s ~4 min

Classroom Smartphone 1 50 s ~4 min
School Workstation 2 5 min 25 min
Classroom resources 1 13 s ~1 min

Cloud Server 3 25 s + 5 s 2.5 min
1 Total time for 25 students. 2 Total time for 12 classrooms of 25 students. 3 Total time for 12
classrooms of 25 students plus communications delay.

3. Distributed Computational Architecture

3.1. General Scheme

The primary objective of the proposed distributed architecture is to take advantage of the
deployed infrastructure of things and the cloud computing resources to reduce the computing costs
and improve the overall performance. The main idea is to share the application’s workload between
the server-side and the rest of things with computing capabilities such as smartphones, wearables,
tablets, smart sensors, and other embedded devices. This workload-sharing among the things
enables a horizontal scaling to mitigate costs, rather than resort to remote servers. Thus, in
accordance with our proposal, these kinds of devices perform more processing tasks than the
server-side layer. In addition, cloud computing is available to use only as a last resort if needed. In
the case of the asynchronous synchronization needs between cloud server computing and the
different devices, our system develops a push notification-based approach.

In this section, a model of computation suitable for IoT applications is defined according to that
architecture. The proposal focuses on distributed applications that can be represented by a graph 𝔸𝔸 =
{𝕌𝕌, 𝔽𝔽} where:

• 𝕌𝕌 <vertex> represents the execution units of the application. Therefore, the IoT application can
be broken down into a list of execution units: 𝕌𝕌 = {u0, u2, …, un−1}.

• 𝔽𝔽 <edge> represents the data flows exchanged between the execution units. The data flows set
the precedence between the execution units and the volume of exchanged data. F(i,j) ∈ 𝔽𝔽 defines
the volume of data exchanged between the execution unit i and j.

The execution units of an application are related to its capacity of processing data and tasks in
parallel. It is a very important feature for modern machine learning and big data approaches on IoT
applications, since the edge things can increase significantly the performance and costs of the system
without having to send the data to the server for a centralized processing. For example, Figure 1 shows
three cases of applications (𝔸𝔸i) modeled according to this principle where the fragmentation feature of
data generates more execution units and opens more processing opportunities among the things.

,

Sensors 2018, 18, x FOR PEER REVIEW 7 of 18

and architectures. Basically, the contributions presented in Table 2 summarize the research line in
different topics. This is a challenging issue, and therefore, progresses are slowly made. Most of the
proposals are focused on a specific topic such as modelling [18,19], quality of experience [16], edge of
things [24], middleware [22,23], and scheduling method [17,25–28].

In this line, the research presented represents a step forward in designing collaborative schemes
of IoT applications by sharing the application’s workload between the IoT devices of the
environment. A new application formalization and scheduler module is introduced to handle the
working collaboration among heterogeneous things and other networked resources. The
components of the scheduler are detailed and a practical use case is described.

Table 2. Time estimation of fatigue analysis application.

Computing Platform Frame Computing Cost Threshold = 5
Classroom Mobile PC 1 25 s ~2 min
Classroom Tablet PC 1 50 s ~4 min

Classroom Smartphone 1 50 s ~4 min
School Workstation 2 5 min 25 min
Classroom resources 1 13 s ~1 min

Cloud Server 3 25 s + 5 s 2.5 min
1 Total time for 25 students. 2 Total time for 12 classrooms of 25 students. 3 Total time for 12
classrooms of 25 students plus communications delay.

3. Distributed Computational Architecture

3.1. General Scheme

The primary objective of the proposed distributed architecture is to take advantage of the
deployed infrastructure of things and the cloud computing resources to reduce the computing costs
and improve the overall performance. The main idea is to share the application’s workload between
the server-side and the rest of things with computing capabilities such as smartphones, wearables,
tablets, smart sensors, and other embedded devices. This workload-sharing among the things
enables a horizontal scaling to mitigate costs, rather than resort to remote servers. Thus, in
accordance with our proposal, these kinds of devices perform more processing tasks than the
server-side layer. In addition, cloud computing is available to use only as a last resort if needed. In
the case of the asynchronous synchronization needs between cloud server computing and the
different devices, our system develops a push notification-based approach.

In this section, a model of computation suitable for IoT applications is defined according to that
architecture. The proposal focuses on distributed applications that can be represented by a graph 𝔸𝔸 =
{𝕌𝕌, 𝔽𝔽} where:

• 𝕌𝕌 <vertex> represents the execution units of the application. Therefore, the IoT application can
be broken down into a list of execution units: 𝕌𝕌 = {u0, u2, …, un−1}.

• 𝔽𝔽 <edge> represents the data flows exchanged between the execution units. The data flows set
the precedence between the execution units and the volume of exchanged data. F(i,j) ∈ 𝔽𝔽 defines
the volume of data exchanged between the execution unit i and j.

The execution units of an application are related to its capacity of processing data and tasks in
parallel. It is a very important feature for modern machine learning and big data approaches on IoT
applications, since the edge things can increase significantly the performance and costs of the system
without having to send the data to the server for a centralized processing. For example, Figure 1 shows
three cases of applications (𝔸𝔸i) modeled according to this principle where the fragmentation feature of
data generates more execution units and opens more processing opportunities among the things.

} where:

•

Sensors 2018, 18, x FOR PEER REVIEW 7 of 18

and architectures. Basically, the contributions presented in Table 2 summarize the research line in
different topics. This is a challenging issue, and therefore, progresses are slowly made. Most of the
proposals are focused on a specific topic such as modelling [18,19], quality of experience [16], edge of
things [24], middleware [22,23], and scheduling method [17,25–28].

In this line, the research presented represents a step forward in designing collaborative schemes
of IoT applications by sharing the application’s workload between the IoT devices of the
environment. A new application formalization and scheduler module is introduced to handle the
working collaboration among heterogeneous things and other networked resources. The
components of the scheduler are detailed and a practical use case is described.

Table 2. Time estimation of fatigue analysis application.

Computing Platform Frame Computing Cost Threshold = 5
Classroom Mobile PC 1 25 s ~2 min
Classroom Tablet PC 1 50 s ~4 min

Classroom Smartphone 1 50 s ~4 min
School Workstation 2 5 min 25 min
Classroom resources 1 13 s ~1 min

Cloud Server 3 25 s + 5 s 2.5 min
1 Total time for 25 students. 2 Total time for 12 classrooms of 25 students. 3 Total time for 12
classrooms of 25 students plus communications delay.

3. Distributed Computational Architecture

3.1. General Scheme

The primary objective of the proposed distributed architecture is to take advantage of the
deployed infrastructure of things and the cloud computing resources to reduce the computing costs
and improve the overall performance. The main idea is to share the application’s workload between
the server-side and the rest of things with computing capabilities such as smartphones, wearables,
tablets, smart sensors, and other embedded devices. This workload-sharing among the things
enables a horizontal scaling to mitigate costs, rather than resort to remote servers. Thus, in
accordance with our proposal, these kinds of devices perform more processing tasks than the
server-side layer. In addition, cloud computing is available to use only as a last resort if needed. In
the case of the asynchronous synchronization needs between cloud server computing and the
different devices, our system develops a push notification-based approach.

In this section, a model of computation suitable for IoT applications is defined according to that
architecture. The proposal focuses on distributed applications that can be represented by a graph 𝔸𝔸 =
{𝕌𝕌, 𝔽𝔽} where:

• 𝕌𝕌 <vertex> represents the execution units of the application. Therefore, the IoT application can
be broken down into a list of execution units: 𝕌𝕌 = {u0, u2, …, un−1}.

• 𝔽𝔽 <edge> represents the data flows exchanged between the execution units. The data flows set
the precedence between the execution units and the volume of exchanged data. F(i,j) ∈ 𝔽𝔽 defines
the volume of data exchanged between the execution unit i and j.

The execution units of an application are related to its capacity of processing data and tasks in
parallel. It is a very important feature for modern machine learning and big data approaches on IoT
applications, since the edge things can increase significantly the performance and costs of the system
without having to send the data to the server for a centralized processing. For example, Figure 1 shows
three cases of applications (𝔸𝔸i) modeled according to this principle where the fragmentation feature of
data generates more execution units and opens more processing opportunities among the things.

<vertex> represents the execution units of the application. Therefore, the IoT application can be
broken down into a list of execution units:

Sensors 2018, 18, x FOR PEER REVIEW 7 of 18

and architectures. Basically, the contributions presented in Table 2 summarize the research line in
different topics. This is a challenging issue, and therefore, progresses are slowly made. Most of the
proposals are focused on a specific topic such as modelling [18,19], quality of experience [16], edge of
things [24], middleware [22,23], and scheduling method [17,25–28].

In this line, the research presented represents a step forward in designing collaborative schemes
of IoT applications by sharing the application’s workload between the IoT devices of the
environment. A new application formalization and scheduler module is introduced to handle the
working collaboration among heterogeneous things and other networked resources. The
components of the scheduler are detailed and a practical use case is described.

Table 2. Time estimation of fatigue analysis application.

Computing Platform Frame Computing Cost Threshold = 5
Classroom Mobile PC 1 25 s ~2 min
Classroom Tablet PC 1 50 s ~4 min

Classroom Smartphone 1 50 s ~4 min
School Workstation 2 5 min 25 min
Classroom resources 1 13 s ~1 min

Cloud Server 3 25 s + 5 s 2.5 min
1 Total time for 25 students. 2 Total time for 12 classrooms of 25 students. 3 Total time for 12
classrooms of 25 students plus communications delay.

3. Distributed Computational Architecture

3.1. General Scheme

The primary objective of the proposed distributed architecture is to take advantage of the
deployed infrastructure of things and the cloud computing resources to reduce the computing costs
and improve the overall performance. The main idea is to share the application’s workload between
the server-side and the rest of things with computing capabilities such as smartphones, wearables,
tablets, smart sensors, and other embedded devices. This workload-sharing among the things
enables a horizontal scaling to mitigate costs, rather than resort to remote servers. Thus, in
accordance with our proposal, these kinds of devices perform more processing tasks than the
server-side layer. In addition, cloud computing is available to use only as a last resort if needed. In
the case of the asynchronous synchronization needs between cloud server computing and the
different devices, our system develops a push notification-based approach.

In this section, a model of computation suitable for IoT applications is defined according to that
architecture. The proposal focuses on distributed applications that can be represented by a graph 𝔸𝔸 =
{𝕌𝕌, 𝔽𝔽} where:

• 𝕌𝕌 <vertex> represents the execution units of the application. Therefore, the IoT application can
be broken down into a list of execution units: 𝕌𝕌 = {u0, u2, …, un−1}.

• 𝔽𝔽 <edge> represents the data flows exchanged between the execution units. The data flows set
the precedence between the execution units and the volume of exchanged data. F(i,j) ∈ 𝔽𝔽 defines
the volume of data exchanged between the execution unit i and j.

The execution units of an application are related to its capacity of processing data and tasks in
parallel. It is a very important feature for modern machine learning and big data approaches on IoT
applications, since the edge things can increase significantly the performance and costs of the system
without having to send the data to the server for a centralized processing. For example, Figure 1 shows
three cases of applications (𝔸𝔸i) modeled according to this principle where the fragmentation feature of
data generates more execution units and opens more processing opportunities among the things.

= {u0, u2, . . . , un−1}.
•

Sensors 2018, 18, x FOR PEER REVIEW 7 of 18

and architectures. Basically, the contributions presented in Table 2 summarize the research line in
different topics. This is a challenging issue, and therefore, progresses are slowly made. Most of the
proposals are focused on a specific topic such as modelling [18,19], quality of experience [16], edge of
things [24], middleware [22,23], and scheduling method [17,25–28].

In this line, the research presented represents a step forward in designing collaborative schemes
of IoT applications by sharing the application’s workload between the IoT devices of the
environment. A new application formalization and scheduler module is introduced to handle the
working collaboration among heterogeneous things and other networked resources. The
components of the scheduler are detailed and a practical use case is described.

Table 2. Time estimation of fatigue analysis application.

Computing Platform Frame Computing Cost Threshold = 5
Classroom Mobile PC 1 25 s ~2 min
Classroom Tablet PC 1 50 s ~4 min

Classroom Smartphone 1 50 s ~4 min
School Workstation 2 5 min 25 min
Classroom resources 1 13 s ~1 min

Cloud Server 3 25 s + 5 s 2.5 min
1 Total time for 25 students. 2 Total time for 12 classrooms of 25 students. 3 Total time for 12
classrooms of 25 students plus communications delay.

3. Distributed Computational Architecture

3.1. General Scheme

The primary objective of the proposed distributed architecture is to take advantage of the
deployed infrastructure of things and the cloud computing resources to reduce the computing costs
and improve the overall performance. The main idea is to share the application’s workload between
the server-side and the rest of things with computing capabilities such as smartphones, wearables,
tablets, smart sensors, and other embedded devices. This workload-sharing among the things
enables a horizontal scaling to mitigate costs, rather than resort to remote servers. Thus, in
accordance with our proposal, these kinds of devices perform more processing tasks than the
server-side layer. In addition, cloud computing is available to use only as a last resort if needed. In
the case of the asynchronous synchronization needs between cloud server computing and the
different devices, our system develops a push notification-based approach.

In this section, a model of computation suitable for IoT applications is defined according to that
architecture. The proposal focuses on distributed applications that can be represented by a graph 𝔸𝔸 =
{𝕌𝕌, 𝔽𝔽} where:

• 𝕌𝕌 <vertex> represents the execution units of the application. Therefore, the IoT application can
be broken down into a list of execution units: 𝕌𝕌 = {u0, u2, …, un−1}.

• 𝔽𝔽 <edge> represents the data flows exchanged between the execution units. The data flows set
the precedence between the execution units and the volume of exchanged data. F(i,j) ∈ 𝔽𝔽 defines
the volume of data exchanged between the execution unit i and j.

The execution units of an application are related to its capacity of processing data and tasks in
parallel. It is a very important feature for modern machine learning and big data approaches on IoT
applications, since the edge things can increase significantly the performance and costs of the system
without having to send the data to the server for a centralized processing. For example, Figure 1 shows
three cases of applications (𝔸𝔸i) modeled according to this principle where the fragmentation feature of
data generates more execution units and opens more processing opportunities among the things.

<edge> represents the data flows exchanged between the execution units. The data flows set
the precedence between the execution units and the volume of exchanged data. F(i,j) ∈

Sensors 2018, 18, x FOR PEER REVIEW 7 of 18

and architectures. Basically, the contributions presented in Table 2 summarize the research line in
different topics. This is a challenging issue, and therefore, progresses are slowly made. Most of the
proposals are focused on a specific topic such as modelling [18,19], quality of experience [16], edge of
things [24], middleware [22,23], and scheduling method [17,25–28].

In this line, the research presented represents a step forward in designing collaborative schemes
of IoT applications by sharing the application’s workload between the IoT devices of the
environment. A new application formalization and scheduler module is introduced to handle the
working collaboration among heterogeneous things and other networked resources. The
components of the scheduler are detailed and a practical use case is described.

Table 2. Time estimation of fatigue analysis application.

Computing Platform Frame Computing Cost Threshold = 5
Classroom Mobile PC 1 25 s ~2 min
Classroom Tablet PC 1 50 s ~4 min

Classroom Smartphone 1 50 s ~4 min
School Workstation 2 5 min 25 min
Classroom resources 1 13 s ~1 min

Cloud Server 3 25 s + 5 s 2.5 min
1 Total time for 25 students. 2 Total time for 12 classrooms of 25 students. 3 Total time for 12
classrooms of 25 students plus communications delay.

3. Distributed Computational Architecture

3.1. General Scheme

The primary objective of the proposed distributed architecture is to take advantage of the
deployed infrastructure of things and the cloud computing resources to reduce the computing costs
and improve the overall performance. The main idea is to share the application’s workload between
the server-side and the rest of things with computing capabilities such as smartphones, wearables,
tablets, smart sensors, and other embedded devices. This workload-sharing among the things
enables a horizontal scaling to mitigate costs, rather than resort to remote servers. Thus, in
accordance with our proposal, these kinds of devices perform more processing tasks than the
server-side layer. In addition, cloud computing is available to use only as a last resort if needed. In
the case of the asynchronous synchronization needs between cloud server computing and the
different devices, our system develops a push notification-based approach.

In this section, a model of computation suitable for IoT applications is defined according to that
architecture. The proposal focuses on distributed applications that can be represented by a graph 𝔸𝔸 =
{𝕌𝕌, 𝔽𝔽} where:

• 𝕌𝕌 <vertex> represents the execution units of the application. Therefore, the IoT application can
be broken down into a list of execution units: 𝕌𝕌 = {u0, u2, …, un−1}.

• 𝔽𝔽 <edge> represents the data flows exchanged between the execution units. The data flows set
the precedence between the execution units and the volume of exchanged data. F(i,j) ∈ 𝔽𝔽 defines
the volume of data exchanged between the execution unit i and j.

The execution units of an application are related to its capacity of processing data and tasks in
parallel. It is a very important feature for modern machine learning and big data approaches on IoT
applications, since the edge things can increase significantly the performance and costs of the system
without having to send the data to the server for a centralized processing. For example, Figure 1 shows
three cases of applications (𝔸𝔸i) modeled according to this principle where the fragmentation feature of
data generates more execution units and opens more processing opportunities among the things.

defines
the volume of data exchanged between the execution unit i and j.

Sensors 2018, 18, 1676 8 of 18

The execution units of an application are related to its capacity of processing data and tasks in
parallel. It is a very important feature for modern machine learning and big data approaches on IoT
applications, since the edge things can increase significantly the performance and costs of the system
without having to send the data to the server for a centralized processing. For example, Figure 1 shows
three cases of applications (

Sensors 2018, 18, x FOR PEER REVIEW 7 of 18

and architectures. Basically, the contributions presented in Table 2 summarize the research line in
different topics. This is a challenging issue, and therefore, progresses are slowly made. Most of the
proposals are focused on a specific topic such as modelling [18,19], quality of experience [16], edge of
things [24], middleware [22,23], and scheduling method [17,25–28].

In this line, the research presented represents a step forward in designing collaborative schemes
of IoT applications by sharing the application’s workload between the IoT devices of the
environment. A new application formalization and scheduler module is introduced to handle the
working collaboration among heterogeneous things and other networked resources. The
components of the scheduler are detailed and a practical use case is described.

Table 2. Time estimation of fatigue analysis application.

Computing Platform Frame Computing Cost Threshold = 5
Classroom Mobile PC 1 25 s ~2 min
Classroom Tablet PC 1 50 s ~4 min

Classroom Smartphone 1 50 s ~4 min
School Workstation 2 5 min 25 min
Classroom resources 1 13 s ~1 min

Cloud Server 3 25 s + 5 s 2.5 min
1 Total time for 25 students. 2 Total time for 12 classrooms of 25 students. 3 Total time for 12
classrooms of 25 students plus communications delay.

3. Distributed Computational Architecture

3.1. General Scheme

The primary objective of the proposed distributed architecture is to take advantage of the
deployed infrastructure of things and the cloud computing resources to reduce the computing costs
and improve the overall performance. The main idea is to share the application’s workload between
the server-side and the rest of things with computing capabilities such as smartphones, wearables,
tablets, smart sensors, and other embedded devices. This workload-sharing among the things
enables a horizontal scaling to mitigate costs, rather than resort to remote servers. Thus, in
accordance with our proposal, these kinds of devices perform more processing tasks than the
server-side layer. In addition, cloud computing is available to use only as a last resort if needed. In
the case of the asynchronous synchronization needs between cloud server computing and the
different devices, our system develops a push notification-based approach.

In this section, a model of computation suitable for IoT applications is defined according to that
architecture. The proposal focuses on distributed applications that can be represented by a graph 𝔸𝔸 =
{𝕌𝕌, 𝔽𝔽} where:

• 𝕌𝕌 <vertex> represents the execution units of the application. Therefore, the IoT application can
be broken down into a list of execution units: 𝕌𝕌 = {u0, u2, …, un−1}.

• 𝔽𝔽 <edge> represents the data flows exchanged between the execution units. The data flows set
the precedence between the execution units and the volume of exchanged data. F(i,j) ∈ 𝔽𝔽 defines
the volume of data exchanged between the execution unit i and j.

The execution units of an application are related to its capacity of processing data and tasks in
parallel. It is a very important feature for modern machine learning and big data approaches on IoT
applications, since the edge things can increase significantly the performance and costs of the system
without having to send the data to the server for a centralized processing. For example, Figure 1 shows
three cases of applications (𝔸𝔸i) modeled according to this principle where the fragmentation feature of
data generates more execution units and opens more processing opportunities among the things.

i) modeled according to this principle where the fragmentation feature of
data generates more execution units and opens more processing opportunities among the things.

Figure 1. Diagram of different flow possibilities in our proposed distributed system.

In accordance with this model, the devices

Sensors 2018, 18, x FOR PEER REVIEW 8 of 18

Figure 1. Diagram of different flow possibilities in our proposed distributed system.

In accordance with this model, the devices ⅅ involved in the IoT applications are defined as
follows:

• Let S be the set of sensor devices. These devices do not have computing capabilities themselves.
Their work consists in sensing and communicating the data to other devices or the cloud.

• Let P be the set of available computing platforms. This set includes the things that have
processing capabilities. The devices of the P set can also acquire the data and process it.

• Let C be the set of cloud computing resources. In this set the remote servers where the
processing load is outsourced are located.
That is: ⅅ = {S} ⋃ {P} ⋃ {C}

The elements of those sets are interconnected creating the IoT communication network. The
architecture model distributes execution units {𝕌𝕌} across the available devices ⅅ according to their
particular capabilities and the application constraints. Figure 2 illustrates this idea.

Figure 2. IoT communication network. (a) General scheme; (b) Example case.

The IoT environments have a dynamic behaviour since new things can appear and disappear.
Therefore, a discovery service of things is needed to conduct the registration of a new device and
unregistration when it is not available. This service builds the set ⅅ and, therefore, it plays a
significant role in design of IoT applications as they can allow clients and applications to access
available resources and data provided by things. This discovery service can be centralized [61]
and/or decentralized [62]. There are several proposals in the literature focused on this service [63,64].
In this work, it is supposed that a proper discovery service is running to maintain the set ⅅ updated.

···u10 u11 u12 u1n-1𝔸𝔸1 ≡

···
u20 u21

u22 u2n-2

···u23 u2n-1

𝔸𝔸2 ≡

···

u30 u31

u32 u3n-4

𝔸𝔸3 ≡ ···u33 u3n-3

···u34 u3n-2

···u35 u3n-1

···

···

···

cloud

C platforms

P platforms

S platforms S1 S2

P1
P2 P3

C1

cloud

(a) (b)

involved in the IoT applications are defined
as follows:

• Let S be the set of sensor devices. These devices do not have computing capabilities themselves.
Their work consists in sensing and communicating the data to other devices or the cloud.

• Let P be the set of available computing platforms. This set includes the things that have processing
capabilities. The devices of the P set can also acquire the data and process it.

• Let C be the set of cloud computing resources. In this set the remote servers where the processing
load is outsourced are located.

That is:

Sensors 2018, 18, x FOR PEER REVIEW 8 of 18

Figure 1. Diagram of different flow possibilities in our proposed distributed system.

In accordance with this model, the devices ⅅ involved in the IoT applications are defined as
follows:

• Let S be the set of sensor devices. These devices do not have computing capabilities themselves.
Their work consists in sensing and communicating the data to other devices or the cloud.

• Let P be the set of available computing platforms. This set includes the things that have
processing capabilities. The devices of the P set can also acquire the data and process it.

• Let C be the set of cloud computing resources. In this set the remote servers where the
processing load is outsourced are located.
That is: ⅅ = {S} ⋃ {P} ⋃ {C}

The elements of those sets are interconnected creating the IoT communication network. The
architecture model distributes execution units {𝕌𝕌} across the available devices ⅅ according to their
particular capabilities and the application constraints. Figure 2 illustrates this idea.

Figure 2. IoT communication network. (a) General scheme; (b) Example case.

The IoT environments have a dynamic behaviour since new things can appear and disappear.
Therefore, a discovery service of things is needed to conduct the registration of a new device and
unregistration when it is not available. This service builds the set ⅅ and, therefore, it plays a
significant role in design of IoT applications as they can allow clients and applications to access
available resources and data provided by things. This discovery service can be centralized [61]
and/or decentralized [62]. There are several proposals in the literature focused on this service [63,64].
In this work, it is supposed that a proper discovery service is running to maintain the set ⅅ updated.

···u10 u11 u12 u1n-1𝔸𝔸1 ≡

···
u20 u21

u22 u2n-2

···u23 u2n-1

𝔸𝔸2 ≡

···

u30 u31

u32 u3n-4

𝔸𝔸3 ≡ ···u33 u3n-3

···u34 u3n-2

···u35 u3n-1

···

···

···

cloud

C platforms

P platforms

S platforms S1 S2

P1
P2 P3

C1

cloud

(a) (b)

= {S}
⋃

{P}
⋃

{C}

The elements of those sets are interconnected creating the IoT communication network.
The architecture model distributes execution units {

Sensors 2018, 18, x FOR PEER REVIEW 7 of 18

and architectures. Basically, the contributions presented in Table 2 summarize the research line in
different topics. This is a challenging issue, and therefore, progresses are slowly made. Most of the
proposals are focused on a specific topic such as modelling [18,19], quality of experience [16], edge of
things [24], middleware [22,23], and scheduling method [17,25–28].

In this line, the research presented represents a step forward in designing collaborative schemes
of IoT applications by sharing the application’s workload between the IoT devices of the
environment. A new application formalization and scheduler module is introduced to handle the
working collaboration among heterogeneous things and other networked resources. The
components of the scheduler are detailed and a practical use case is described.

Table 2. Time estimation of fatigue analysis application.

Computing Platform Frame Computing Cost Threshold = 5
Classroom Mobile PC 1 25 s ~2 min
Classroom Tablet PC 1 50 s ~4 min

Classroom Smartphone 1 50 s ~4 min
School Workstation 2 5 min 25 min
Classroom resources 1 13 s ~1 min

Cloud Server 3 25 s + 5 s 2.5 min
1 Total time for 25 students. 2 Total time for 12 classrooms of 25 students. 3 Total time for 12
classrooms of 25 students plus communications delay.

3. Distributed Computational Architecture

3.1. General Scheme

The primary objective of the proposed distributed architecture is to take advantage of the
deployed infrastructure of things and the cloud computing resources to reduce the computing costs
and improve the overall performance. The main idea is to share the application’s workload between
the server-side and the rest of things with computing capabilities such as smartphones, wearables,
tablets, smart sensors, and other embedded devices. This workload-sharing among the things
enables a horizontal scaling to mitigate costs, rather than resort to remote servers. Thus, in
accordance with our proposal, these kinds of devices perform more processing tasks than the
server-side layer. In addition, cloud computing is available to use only as a last resort if needed. In
the case of the asynchronous synchronization needs between cloud server computing and the
different devices, our system develops a push notification-based approach.

In this section, a model of computation suitable for IoT applications is defined according to that
architecture. The proposal focuses on distributed applications that can be represented by a graph 𝔸𝔸 =
{𝕌𝕌, 𝔽𝔽} where:

• 𝕌𝕌 <vertex> represents the execution units of the application. Therefore, the IoT application can
be broken down into a list of execution units: 𝕌𝕌 = {u0, u2, …, un−1}.

• 𝔽𝔽 <edge> represents the data flows exchanged between the execution units. The data flows set
the precedence between the execution units and the volume of exchanged data. F(i,j) ∈ 𝔽𝔽 defines
the volume of data exchanged between the execution unit i and j.

The execution units of an application are related to its capacity of processing data and tasks in
parallel. It is a very important feature for modern machine learning and big data approaches on IoT
applications, since the edge things can increase significantly the performance and costs of the system
without having to send the data to the server for a centralized processing. For example, Figure 1 shows
three cases of applications (𝔸𝔸i) modeled according to this principle where the fragmentation feature of
data generates more execution units and opens more processing opportunities among the things.

} across the available devices

Sensors 2018, 18, x FOR PEER REVIEW 8 of 18

Figure 1. Diagram of different flow possibilities in our proposed distributed system.

In accordance with this model, the devices ⅅ involved in the IoT applications are defined as
follows:

• Let S be the set of sensor devices. These devices do not have computing capabilities themselves.
Their work consists in sensing and communicating the data to other devices or the cloud.

• Let P be the set of available computing platforms. This set includes the things that have
processing capabilities. The devices of the P set can also acquire the data and process it.

• Let C be the set of cloud computing resources. In this set the remote servers where the
processing load is outsourced are located.
That is: ⅅ = {S} ⋃ {P} ⋃ {C}

The elements of those sets are interconnected creating the IoT communication network. The
architecture model distributes execution units {𝕌𝕌} across the available devices ⅅ according to their
particular capabilities and the application constraints. Figure 2 illustrates this idea.

Figure 2. IoT communication network. (a) General scheme; (b) Example case.

The IoT environments have a dynamic behaviour since new things can appear and disappear.
Therefore, a discovery service of things is needed to conduct the registration of a new device and
unregistration when it is not available. This service builds the set ⅅ and, therefore, it plays a
significant role in design of IoT applications as they can allow clients and applications to access
available resources and data provided by things. This discovery service can be centralized [61]
and/or decentralized [62]. There are several proposals in the literature focused on this service [63,64].
In this work, it is supposed that a proper discovery service is running to maintain the set ⅅ updated.

···u10 u11 u12 u1n-1𝔸𝔸1 ≡

···
u20 u21

u22 u2n-2

···u23 u2n-1

𝔸𝔸2 ≡

···

u30 u31

u32 u3n-4

𝔸𝔸3 ≡ ···u33 u3n-3

···u34 u3n-2

···u35 u3n-1

···

···

···

cloud

C platforms

P platforms

S platforms S1 S2

P1
P2 P3

C1

cloud

(a) (b)

according to their
particular capabilities and the application constraints. Figure 2 illustrates this idea.

Figure 2. IoT communication network. (a) General scheme; (b) Example case.

Sensors 2018, 18, 1676 9 of 18

The IoT environments have a dynamic behaviour since new things can appear and disappear.
Therefore, a discovery service of things is needed to conduct the registration of a new device and
unregistration when it is not available. This service builds the set

Sensors 2018, 18, x FOR PEER REVIEW 8 of 18

Figure 1. Diagram of different flow possibilities in our proposed distributed system.

In accordance with this model, the devices ⅅ involved in the IoT applications are defined as
follows:

• Let S be the set of sensor devices. These devices do not have computing capabilities themselves.
Their work consists in sensing and communicating the data to other devices or the cloud.

• Let P be the set of available computing platforms. This set includes the things that have
processing capabilities. The devices of the P set can also acquire the data and process it.

• Let C be the set of cloud computing resources. In this set the remote servers where the
processing load is outsourced are located.
That is: ⅅ = {S} ⋃ {P} ⋃ {C}

The elements of those sets are interconnected creating the IoT communication network. The
architecture model distributes execution units {𝕌𝕌} across the available devices ⅅ according to their
particular capabilities and the application constraints. Figure 2 illustrates this idea.

Figure 2. IoT communication network. (a) General scheme; (b) Example case.

The IoT environments have a dynamic behaviour since new things can appear and disappear.
Therefore, a discovery service of things is needed to conduct the registration of a new device and
unregistration when it is not available. This service builds the set ⅅ and, therefore, it plays a
significant role in design of IoT applications as they can allow clients and applications to access
available resources and data provided by things. This discovery service can be centralized [61]
and/or decentralized [62]. There are several proposals in the literature focused on this service [63,64].
In this work, it is supposed that a proper discovery service is running to maintain the set ⅅ updated.

···u10 u11 u12 u1n-1𝔸𝔸1 ≡

···
u20 u21

u22 u2n-2

···u23 u2n-1

𝔸𝔸2 ≡

···

u30 u31

u32 u3n-4

𝔸𝔸3 ≡ ···u33 u3n-3

···u34 u3n-2

···u35 u3n-1

···

···

···

cloud

C platforms

P platforms

S platforms S1 S2

P1
P2 P3

C1

cloud

(a) (b)

and, therefore, it plays a significant
role in design of IoT applications as they can allow clients and applications to access available resources
and data provided by things. This discovery service can be centralized [61] and/or decentralized [62].
There are several proposals in the literature focused on this service [63,64]. In this work, it is supposed
that a proper discovery service is running to maintain the set

Sensors 2018, 18, x FOR PEER REVIEW 8 of 18

Figure 1. Diagram of different flow possibilities in our proposed distributed system.

In accordance with this model, the devices ⅅ involved in the IoT applications are defined as
follows:

• Let S be the set of sensor devices. These devices do not have computing capabilities themselves.
Their work consists in sensing and communicating the data to other devices or the cloud.

• Let P be the set of available computing platforms. This set includes the things that have
processing capabilities. The devices of the P set can also acquire the data and process it.

• Let C be the set of cloud computing resources. In this set the remote servers where the
processing load is outsourced are located.
That is: ⅅ = {S} ⋃ {P} ⋃ {C}

The elements of those sets are interconnected creating the IoT communication network. The
architecture model distributes execution units {𝕌𝕌} across the available devices ⅅ according to their
particular capabilities and the application constraints. Figure 2 illustrates this idea.

Figure 2. IoT communication network. (a) General scheme; (b) Example case.

The IoT environments have a dynamic behaviour since new things can appear and disappear.
Therefore, a discovery service of things is needed to conduct the registration of a new device and
unregistration when it is not available. This service builds the set ⅅ and, therefore, it plays a
significant role in design of IoT applications as they can allow clients and applications to access
available resources and data provided by things. This discovery service can be centralized [61]
and/or decentralized [62]. There are several proposals in the literature focused on this service [63,64].
In this work, it is supposed that a proper discovery service is running to maintain the set ⅅ updated.

···u10 u11 u12 u1n-1𝔸𝔸1 ≡

···
u20 u21

u22 u2n-2

···u23 u2n-1

𝔸𝔸2 ≡

···

u30 u31

u32 u3n-4

𝔸𝔸3 ≡ ···u33 u3n-3

···u34 u3n-2

···u35 u3n-1

···

···

···

cloud

C platforms

P platforms

S platforms S1 S2

P1
P2 P3

C1

cloud

(a) (b)

updated.
To distribute resources in an efficient way and meet the application requirements, the resource

utilization must be properly characterized. For this reason, a vector

Sensors 2018, 18, x FOR PEER REVIEW 9 of 18

To distribute resources in an efficient way and meet the application requirements, the resource
utilization must be properly characterized. For this reason, a vector 𝕍𝕍 is proposed defined as a vector
domain of relevant features modelling the behaviour of the computing load on each device. For
applications such as the ones this work focuses on, 𝕍𝕍 could be defined as a domain of vectors with
two components in the range [0, 1], with the following semantics:

𝕍𝕍 = Response_time × Transfer_rate. (1)

The “Response_time” of a computer is defined proportionally to the execution time required by
a selected benchmark execution unit in the computer (0 and 1 are mapped to situations where the
processor is practically idle and unacceptably busy, respectively). The benchmark task does not
communicate through the network, so it does not take into account network latencies, but only local
resources, mostly being the processor.

The “Transfer_rate” is defined as the portion of available bandwidth used to process an
execution unit. This portion includes the input and the output data of the execution unit. The
method for quantifying “Transfer_rate” will take into account the characteristics of the
interconnecting network. The current transfer rate can be known for each device by monitoring the
network. Other methods can be to use historical data in accordance with the operation conditions in
each case and situation, or to use averaged data retrieved on regular checks. In many cases, the set of
devices P and S are connected to a Wireless Local Area Network (WLAN), and therefore, the latency
is reduced and the transfer rate of the network is very often higher than connections through
Internet with the cloud servers.

Other components can be defined in order to identify different performance behaviour. For
example, ‘Power_consumption’ of the things, ‘Usage_pricing’ of the resources, ‘Security_risk’ of
sharing the data, etc.

Every device of the IoT environment, di ∈ ⅅ, has a performance level, which can be
characterized by a function “Perf” defined by the following expression:

Perf: ⅅ ⟶ 𝕍𝕍. (2)

The evaluation of the function Perf can be known prior to the execution of the application or can
be dynamic over time. For example, a smartphone device will show high values for Response_time if
it is busy with user activity. In this case, the performance function must be updated periodically to
make the right decisions. Other devices could have stable performance levels due to their dedicated
use or their capacity for absorbing new tasks. The static data can be stored in a Look-Up Table (LUT)
for fast evaluation of the function.

Once the computational load is characterized with normalized and relative values, each device
of the IoT environment shows its ability to run execution units (u) in 𝕌𝕌 for the application in a
homogeneous and comparable way.

The next section describes how to perform the scheduling of the execution units among the
available computing things and remote servers.

3.2. IoT Scheduler

The proposed architecture needs an IoT scheduler to distribute the application workload across
the available devices of the environment. The aim of this module is to execute the process in a
collaborative way taking into account the limitations of the devices and their performance rates.

Usually, the scheduler module of an operating system is a time-consuming process, especially
when a complex workload is presented and is needed to make the best choices. In this case, the
proposed module is designed to make feasible decisions in the least possible amount of time, even if
they are not optimal. The components of this module are shown in Figure 3.

is proposed defined as
a vector domain of relevant features modelling the behaviour of the computing load on each device.
For applications such as the ones this work focuses on,

Sensors 2018, 18, x FOR PEER REVIEW 9 of 18

To distribute resources in an efficient way and meet the application requirements, the resource
utilization must be properly characterized. For this reason, a vector 𝕍𝕍 is proposed defined as a vector
domain of relevant features modelling the behaviour of the computing load on each device. For
applications such as the ones this work focuses on, 𝕍𝕍 could be defined as a domain of vectors with
two components in the range [0, 1], with the following semantics:

𝕍𝕍 = Response_time × Transfer_rate. (1)

The “Response_time” of a computer is defined proportionally to the execution time required by
a selected benchmark execution unit in the computer (0 and 1 are mapped to situations where the
processor is practically idle and unacceptably busy, respectively). The benchmark task does not
communicate through the network, so it does not take into account network latencies, but only local
resources, mostly being the processor.

The “Transfer_rate” is defined as the portion of available bandwidth used to process an
execution unit. This portion includes the input and the output data of the execution unit. The
method for quantifying “Transfer_rate” will take into account the characteristics of the
interconnecting network. The current transfer rate can be known for each device by monitoring the
network. Other methods can be to use historical data in accordance with the operation conditions in
each case and situation, or to use averaged data retrieved on regular checks. In many cases, the set of
devices P and S are connected to a Wireless Local Area Network (WLAN), and therefore, the latency
is reduced and the transfer rate of the network is very often higher than connections through
Internet with the cloud servers.

Other components can be defined in order to identify different performance behaviour. For
example, ‘Power_consumption’ of the things, ‘Usage_pricing’ of the resources, ‘Security_risk’ of
sharing the data, etc.

Every device of the IoT environment, di ∈ ⅅ, has a performance level, which can be
characterized by a function “Perf” defined by the following expression:

Perf: ⅅ ⟶ 𝕍𝕍. (2)

The evaluation of the function Perf can be known prior to the execution of the application or can
be dynamic over time. For example, a smartphone device will show high values for Response_time if
it is busy with user activity. In this case, the performance function must be updated periodically to
make the right decisions. Other devices could have stable performance levels due to their dedicated
use or their capacity for absorbing new tasks. The static data can be stored in a Look-Up Table (LUT)
for fast evaluation of the function.

Once the computational load is characterized with normalized and relative values, each device
of the IoT environment shows its ability to run execution units (u) in 𝕌𝕌 for the application in a
homogeneous and comparable way.

The next section describes how to perform the scheduling of the execution units among the
available computing things and remote servers.

3.2. IoT Scheduler

The proposed architecture needs an IoT scheduler to distribute the application workload across
the available devices of the environment. The aim of this module is to execute the process in a
collaborative way taking into account the limitations of the devices and their performance rates.

Usually, the scheduler module of an operating system is a time-consuming process, especially
when a complex workload is presented and is needed to make the best choices. In this case, the
proposed module is designed to make feasible decisions in the least possible amount of time, even if
they are not optimal. The components of this module are shown in Figure 3.

could be defined as a domain of vectors with
two components in the range [0, 1], with the following semantics:

Sensors 2018, 18, x FOR PEER REVIEW 9 of 18

To distribute resources in an efficient way and meet the application requirements, the resource
utilization must be properly characterized. For this reason, a vector 𝕍𝕍 is proposed defined as a vector
domain of relevant features modelling the behaviour of the computing load on each device. For
applications such as the ones this work focuses on, 𝕍𝕍 could be defined as a domain of vectors with
two components in the range [0, 1], with the following semantics:

𝕍𝕍 = Response_time × Transfer_rate. (1)

The “Response_time” of a computer is defined proportionally to the execution time required by
a selected benchmark execution unit in the computer (0 and 1 are mapped to situations where the
processor is practically idle and unacceptably busy, respectively). The benchmark task does not
communicate through the network, so it does not take into account network latencies, but only local
resources, mostly being the processor.

The “Transfer_rate” is defined as the portion of available bandwidth used to process an
execution unit. This portion includes the input and the output data of the execution unit. The
method for quantifying “Transfer_rate” will take into account the characteristics of the
interconnecting network. The current transfer rate can be known for each device by monitoring the
network. Other methods can be to use historical data in accordance with the operation conditions in
each case and situation, or to use averaged data retrieved on regular checks. In many cases, the set of
devices P and S are connected to a Wireless Local Area Network (WLAN), and therefore, the latency
is reduced and the transfer rate of the network is very often higher than connections through
Internet with the cloud servers.

Other components can be defined in order to identify different performance behaviour. For
example, ‘Power_consumption’ of the things, ‘Usage_pricing’ of the resources, ‘Security_risk’ of
sharing the data, etc.

Every device of the IoT environment, di ∈ ⅅ, has a performance level, which can be
characterized by a function “Perf” defined by the following expression:

Perf: ⅅ ⟶ 𝕍𝕍. (2)

The evaluation of the function Perf can be known prior to the execution of the application or can
be dynamic over time. For example, a smartphone device will show high values for Response_time if
it is busy with user activity. In this case, the performance function must be updated periodically to
make the right decisions. Other devices could have stable performance levels due to their dedicated
use or their capacity for absorbing new tasks. The static data can be stored in a Look-Up Table (LUT)
for fast evaluation of the function.

Once the computational load is characterized with normalized and relative values, each device
of the IoT environment shows its ability to run execution units (u) in 𝕌𝕌 for the application in a
homogeneous and comparable way.

The next section describes how to perform the scheduling of the execution units among the
available computing things and remote servers.

3.2. IoT Scheduler

The proposed architecture needs an IoT scheduler to distribute the application workload across
the available devices of the environment. The aim of this module is to execute the process in a
collaborative way taking into account the limitations of the devices and their performance rates.

Usually, the scheduler module of an operating system is a time-consuming process, especially
when a complex workload is presented and is needed to make the best choices. In this case, the
proposed module is designed to make feasible decisions in the least possible amount of time, even if
they are not optimal. The components of this module are shown in Figure 3.

= Response_time × Transfer_rate. (1)

The “Response_time” of a computer is defined proportionally to the execution time required
by a selected benchmark execution unit in the computer (0 and 1 are mapped to situations where
the processor is practically idle and unacceptably busy, respectively). The benchmark task does not
communicate through the network, so it does not take into account network latencies, but only local
resources, mostly being the processor.

The “Transfer_rate” is defined as the portion of available bandwidth used to process an execution
unit. This portion includes the input and the output data of the execution unit. The method for
quantifying “Transfer_rate” will take into account the characteristics of the interconnecting network.
The current transfer rate can be known for each device by monitoring the network. Other methods can
be to use historical data in accordance with the operation conditions in each case and situation, or to use
averaged data retrieved on regular checks. In many cases, the set of devices P and S are connected to
a Wireless Local Area Network (WLAN), and therefore, the latency is reduced and the transfer rate of
the network is very often higher than connections through Internet with the cloud servers.

Other components can be defined in order to identify different performance behaviour.
For example, ‘Power_consumption’ of the things, ‘Usage_pricing’ of the resources, ‘Security_risk’ of
sharing the data, etc.

Every device of the IoT environment, di ∈

Sensors 2018, 18, x FOR PEER REVIEW 8 of 18

Figure 1. Diagram of different flow possibilities in our proposed distributed system.

In accordance with this model, the devices ⅅ involved in the IoT applications are defined as
follows:

• Let S be the set of sensor devices. These devices do not have computing capabilities themselves.
Their work consists in sensing and communicating the data to other devices or the cloud.

• Let P be the set of available computing platforms. This set includes the things that have
processing capabilities. The devices of the P set can also acquire the data and process it.

• Let C be the set of cloud computing resources. In this set the remote servers where the
processing load is outsourced are located.
That is: ⅅ = {S} ⋃ {P} ⋃ {C}

The elements of those sets are interconnected creating the IoT communication network. The
architecture model distributes execution units {𝕌𝕌} across the available devices ⅅ according to their
particular capabilities and the application constraints. Figure 2 illustrates this idea.

Figure 2. IoT communication network. (a) General scheme; (b) Example case.

The IoT environments have a dynamic behaviour since new things can appear and disappear.
Therefore, a discovery service of things is needed to conduct the registration of a new device and
unregistration when it is not available. This service builds the set ⅅ and, therefore, it plays a
significant role in design of IoT applications as they can allow clients and applications to access
available resources and data provided by things. This discovery service can be centralized [61]
and/or decentralized [62]. There are several proposals in the literature focused on this service [63,64].
In this work, it is supposed that a proper discovery service is running to maintain the set ⅅ updated.

···u10 u11 u12 u1n-1𝔸𝔸1 ≡

···
u20 u21

u22 u2n-2

···u23 u2n-1

𝔸𝔸2 ≡

···

u30 u31

u32 u3n-4

𝔸𝔸3 ≡ ···u33 u3n-3

···u34 u3n-2

···u35 u3n-1

···

···

···

cloud

C platforms

P platforms

S platforms S1 S2

P1
P2 P3

C1

cloud

(a) (b)

, has a performance level, which can be characterized
by a function “Perf ” defined by the following expression:

Sensors 2018, 18, x FOR PEER REVIEW 9 of 18

To distribute resources in an efficient way and meet the application requirements, the resource
utilization must be properly characterized. For this reason, a vector 𝕍𝕍 is proposed defined as a vector
domain of relevant features modelling the behaviour of the computing load on each device. For
applications such as the ones this work focuses on, 𝕍𝕍 could be defined as a domain of vectors with
two components in the range [0, 1], with the following semantics:

𝕍𝕍 = Response_time × Transfer_rate. (1)

The “Response_time” of a computer is defined proportionally to the execution time required by
a selected benchmark execution unit in the computer (0 and 1 are mapped to situations where the
processor is practically idle and unacceptably busy, respectively). The benchmark task does not
communicate through the network, so it does not take into account network latencies, but only local
resources, mostly being the processor.

The “Transfer_rate” is defined as the portion of available bandwidth used to process an
execution unit. This portion includes the input and the output data of the execution unit. The
method for quantifying “Transfer_rate” will take into account the characteristics of the
interconnecting network. The current transfer rate can be known for each device by monitoring the
network. Other methods can be to use historical data in accordance with the operation conditions in
each case and situation, or to use averaged data retrieved on regular checks. In many cases, the set of
devices P and S are connected to a Wireless Local Area Network (WLAN), and therefore, the latency
is reduced and the transfer rate of the network is very often higher than connections through
Internet with the cloud servers.

Other components can be defined in order to identify different performance behaviour. For
example, ‘Power_consumption’ of the things, ‘Usage_pricing’ of the resources, ‘Security_risk’ of
sharing the data, etc.

Every device of the IoT environment, di ∈ ⅅ, has a performance level, which can be
characterized by a function “Perf” defined by the following expression:

Perf: ⅅ ⟶ 𝕍𝕍. (2)

The evaluation of the function Perf can be known prior to the execution of the application or can
be dynamic over time. For example, a smartphone device will show high values for Response_time if
it is busy with user activity. In this case, the performance function must be updated periodically to
make the right decisions. Other devices could have stable performance levels due to their dedicated
use or their capacity for absorbing new tasks. The static data can be stored in a Look-Up Table (LUT)
for fast evaluation of the function.

Once the computational load is characterized with normalized and relative values, each device
of the IoT environment shows its ability to run execution units (u) in 𝕌𝕌 for the application in a
homogeneous and comparable way.

The next section describes how to perform the scheduling of the execution units among the
available computing things and remote servers.

3.2. IoT Scheduler

The proposed architecture needs an IoT scheduler to distribute the application workload across
the available devices of the environment. The aim of this module is to execute the process in a
collaborative way taking into account the limitations of the devices and their performance rates.

Usually, the scheduler module of an operating system is a time-consuming process, especially
when a complex workload is presented and is needed to make the best choices. In this case, the
proposed module is designed to make feasible decisions in the least possible amount of time, even if
they are not optimal. The components of this module are shown in Figure 3.

. (2)

The evaluation of the function Perf can be known prior to the execution of the application or can
be dynamic over time. For example, a smartphone device will show high values for Response_time if
it is busy with user activity. In this case, the performance function must be updated periodically to
make the right decisions. Other devices could have stable performance levels due to their dedicated
use or their capacity for absorbing new tasks. The static data can be stored in a Look-Up Table (LUT)
for fast evaluation of the function.

Once the computational load is characterized with normalized and relative values, each device
of the IoT environment shows its ability to run execution units (u) in

Sensors 2018, 18, x FOR PEER REVIEW 7 of 18

and architectures. Basically, the contributions presented in Table 2 summarize the research line in
different topics. This is a challenging issue, and therefore, progresses are slowly made. Most of the
proposals are focused on a specific topic such as modelling [18,19], quality of experience [16], edge of
things [24], middleware [22,23], and scheduling method [17,25–28].

In this line, the research presented represents a step forward in designing collaborative schemes
of IoT applications by sharing the application’s workload between the IoT devices of the
environment. A new application formalization and scheduler module is introduced to handle the
working collaboration among heterogeneous things and other networked resources. The
components of the scheduler are detailed and a practical use case is described.

Table 2. Time estimation of fatigue analysis application.

Computing Platform Frame Computing Cost Threshold = 5
Classroom Mobile PC 1 25 s ~2 min
Classroom Tablet PC 1 50 s ~4 min

Classroom Smartphone 1 50 s ~4 min
School Workstation 2 5 min 25 min
Classroom resources 1 13 s ~1 min

Cloud Server 3 25 s + 5 s 2.5 min
1 Total time for 25 students. 2 Total time for 12 classrooms of 25 students. 3 Total time for 12
classrooms of 25 students plus communications delay.

3. Distributed Computational Architecture

3.1. General Scheme

The primary objective of the proposed distributed architecture is to take advantage of the
deployed infrastructure of things and the cloud computing resources to reduce the computing costs
and improve the overall performance. The main idea is to share the application’s workload between
the server-side and the rest of things with computing capabilities such as smartphones, wearables,
tablets, smart sensors, and other embedded devices. This workload-sharing among the things
enables a horizontal scaling to mitigate costs, rather than resort to remote servers. Thus, in
accordance with our proposal, these kinds of devices perform more processing tasks than the
server-side layer. In addition, cloud computing is available to use only as a last resort if needed. In
the case of the asynchronous synchronization needs between cloud server computing and the
different devices, our system develops a push notification-based approach.

In this section, a model of computation suitable for IoT applications is defined according to that
architecture. The proposal focuses on distributed applications that can be represented by a graph 𝔸𝔸 =
{𝕌𝕌, 𝔽𝔽} where:

• 𝕌𝕌 <vertex> represents the execution units of the application. Therefore, the IoT application can
be broken down into a list of execution units: 𝕌𝕌 = {u0, u2, …, un−1}.

• 𝔽𝔽 <edge> represents the data flows exchanged between the execution units. The data flows set
the precedence between the execution units and the volume of exchanged data. F(i,j) ∈ 𝔽𝔽 defines
the volume of data exchanged between the execution unit i and j.

The execution units of an application are related to its capacity of processing data and tasks in
parallel. It is a very important feature for modern machine learning and big data approaches on IoT
applications, since the edge things can increase significantly the performance and costs of the system
without having to send the data to the server for a centralized processing. For example, Figure 1 shows
three cases of applications (𝔸𝔸i) modeled according to this principle where the fragmentation feature of
data generates more execution units and opens more processing opportunities among the things.

for the application in
a homogeneous and comparable way.

The next section describes how to perform the scheduling of the execution units among the
available computing things and remote servers.

Sensors 2018, 18, 1676 10 of 18

3.2. IoT Scheduler

The proposed architecture needs an IoT scheduler to distribute the application workload across the
available devices of the environment. The aim of this module is to execute the process in a collaborative
way taking into account the limitations of the devices and their performance rates.

Usually, the scheduler module of an operating system is a time-consuming process, especially
when a complex workload is presented and is needed to make the best choices. In this case,
the proposed module is designed to make feasible decisions in the least possible amount of time,
even if they are not optimal. The components of this module are shown in Figure 3.

Figure 3. IoT scheduler design.

When a new execution unit (ui) arrives, it must be evaluated where it should be executed
according to the described model. The execution units can be created on the device itself. In any case,
the scheduler process is the same. As shown in the previous figure, the IoT scheduler consists of four
main components:

(1) The ‘Candidate_devices’ component obtains a list of the available devices that can process the
execution unit (ui). This list comes from the discovered devices in the system

Sensors 2018, 18, x FOR PEER REVIEW 8 of 18

Figure 1. Diagram of different flow possibilities in our proposed distributed system.

In accordance with this model, the devices ⅅ involved in the IoT applications are defined as
follows:

• Let S be the set of sensor devices. These devices do not have computing capabilities themselves.
Their work consists in sensing and communicating the data to other devices or the cloud.

• Let P be the set of available computing platforms. This set includes the things that have
processing capabilities. The devices of the P set can also acquire the data and process it.

• Let C be the set of cloud computing resources. In this set the remote servers where the
processing load is outsourced are located.
That is: ⅅ = {S} ⋃ {P} ⋃ {C}

The elements of those sets are interconnected creating the IoT communication network. The
architecture model distributes execution units {𝕌𝕌} across the available devices ⅅ according to their
particular capabilities and the application constraints. Figure 2 illustrates this idea.

Figure 2. IoT communication network. (a) General scheme; (b) Example case.

The IoT environments have a dynamic behaviour since new things can appear and disappear.
Therefore, a discovery service of things is needed to conduct the registration of a new device and
unregistration when it is not available. This service builds the set ⅅ and, therefore, it plays a
significant role in design of IoT applications as they can allow clients and applications to access
available resources and data provided by things. This discovery service can be centralized [61]
and/or decentralized [62]. There are several proposals in the literature focused on this service [63,64].
In this work, it is supposed that a proper discovery service is running to maintain the set ⅅ updated.

···u10 u11 u12 u1n-1𝔸𝔸1 ≡

···
u20 u21

u22 u2n-2

···u23 u2n-1

𝔸𝔸2 ≡

···

u30 u31

u32 u3n-4

𝔸𝔸3 ≡ ···u33 u3n-3

···u34 u3n-2

···u35 u3n-1

···

···

···

cloud

C platforms

P platforms

S platforms S1 S2

P1
P2 P3

C1

cloud

(a) (b)

. According to the
execution unit features, this function selects the feasible devices than can process it.
Here, a first device filter is introduced, setting up the best chances for processing. The high
heterogeneity of IoT resources needs an information model to represent it containing
unambiguous and machine-interpretable descriptions of the available resources. In this way,
the computing platforms discovered should be described in terms of metadata such as resource
type, computing power, memory, location, etc. as well as information to reach its exposed services.
If there is a new type of device, then it needs to be registered in the system by cataloguing its
features by type of execution unit. Then, when a new execution unit arrives (ui), the system
knows the set of devices that it is able to compute. Based on this information, this function selects
the set of candidate devices.
When only one device is available for this execution unit, it is selected for processing it. If more
than one is listed, it is necessary to decide which to select. The lists of candidate devices are
established by default for each type of execution unit according to their capabilities and features.

(2) The ‘Performance_function’ component calculates the Perf function for that list of devices.
This function determines the best option. For devices with static rates the function can read

Sensors 2018, 18, 1676 11 of 18

the data from Perf-LUT. This is a fast operation. Next, if the static data is not available,
then it is necessary to estimate or evaluate it for each device by means of an evaluation function.
These evaluations can be processed in parallel. Finally, once the performance data is ready,
the system chooses the best option. If there are no available devices, the task must to be processed
on the device itself or an error flag must be raised.

(3) The ‘Performance_evaluation’ component evaluates or estimates the performance of the selected
devices on_the_fly. The delay at this stage depends on the method used. For example, in order
to evaluate network performance, a number of multiplatform tools are available. One simple
solution is the Iperf (http://iperf.fr) tool. It allows target nodes to be set by running an Iperf
process on each platform. As a result, the response time and the transfer rate can be obtained for
each available platform. The delay of this calculation can be constrained and then a suboptimal
decision is preferable in order to meet the deadline. At this point, other strategies and policies
could be addressed, mainly by adapting the successful results from previous and future research.
As a result of our previous research on distributed and mobile systems, in [28] a proposal is
introduced that combines imprecise computing strategies with cloud computing, which can be
used to design a real-time component.

(4) The ‘Perf-LUT’ component stores the static performance data of the devices. It consists of
a memory located near the Perf function calculation module with precalculated results for each
device and each instance of the <d> vector. The size of this module depends on the knowledge
stored about the devices performance.
When the list of available devices is fixed and the network performance is stable, for example
in a controlled environment, the job of the scheduler module is considerably simplified since it
can work as a priority list stored in memory. That is, the devices are ordered by features and
performance, and then they are selected according to their availability.

4. Case Study

In this section, we present a simple case study where the proposed distributed method comes
into play to handle an application where sensing and complex computations take place. The aim
is to validate our proposal and show the benefits of the architecture in providing flexibility for
sharing the processing of the application. The experiments emphasize the advantages of the proposed
distributed architecture model, which is more innovative and useful in an IoT environment compared
to a traditional centralized model.

The application used as example consists of a method for analyzing attention degree of students
in classroom. This information is monitored by the instructor while he/she is giving lessons to the
students. In this way, the teacher can know who and when the students are tired or have lost the
attention, in a collective and individual way. Please, note that this is only an illustrative example of the
advantages of moving the processing load to the edge and promoting the collaborative work among
the things around. The added value of this approach mainly falls into emphasize the advantages of
the distributed method, being able to test anywhere by professionals, with mobile, tablet or other
IoT device.

This problem is largely studied in the field of driving security since the degree of attention of the
driver is a key feature to prevent car crashes [65–67]. The driver fatigue detectors are including as
premium features of high quality cars. These detectors are usually based on analysis of driver facial
features such as eyes and yawning. Due to this reason, the typically installed sensor is a digital camera.

Translating this problem to the student attention issue, Figure 4 shows a simple scheme of
the application.

http://iperf.fr

Sensors 2018, 18, 1676 12 of 18

Figure 4. Application scheme: (a) Application context inside the classroom; (b) Application steps.

Regarding privacy compliance of this application there are two issues that must be met: firstly,
consent has to be given since user data (face) is monitored and processed; secondly, the student faces
must be processed in an anonymous way. That is, the system can infer when the attention degree
of a student is low and raise a flag indicating his/her position in the classroom as shown Figure 4.
(red dot), but it cannot identify who is this student, nor relate this with any academic data.

For this application, the list of execution units

Sensors 2018, 18, x FOR PEER REVIEW 7 of 18

and architectures. Basically, the contributions presented in Table 2 summarize the research line in
different topics. This is a challenging issue, and therefore, progresses are slowly made. Most of the
proposals are focused on a specific topic such as modelling [18,19], quality of experience [16], edge of
things [24], middleware [22,23], and scheduling method [17,25–28].

In this line, the research presented represents a step forward in designing collaborative schemes
of IoT applications by sharing the application’s workload between the IoT devices of the
environment. A new application formalization and scheduler module is introduced to handle the
working collaboration among heterogeneous things and other networked resources. The
components of the scheduler are detailed and a practical use case is described.

Table 2. Time estimation of fatigue analysis application.

Computing Platform Frame Computing Cost Threshold = 5
Classroom Mobile PC 1 25 s ~2 min
Classroom Tablet PC 1 50 s ~4 min

Classroom Smartphone 1 50 s ~4 min
School Workstation 2 5 min 25 min
Classroom resources 1 13 s ~1 min

Cloud Server 3 25 s + 5 s 2.5 min
1 Total time for 25 students. 2 Total time for 12 classrooms of 25 students. 3 Total time for 12
classrooms of 25 students plus communications delay.

3. Distributed Computational Architecture

3.1. General Scheme

The primary objective of the proposed distributed architecture is to take advantage of the
deployed infrastructure of things and the cloud computing resources to reduce the computing costs
and improve the overall performance. The main idea is to share the application’s workload between
the server-side and the rest of things with computing capabilities such as smartphones, wearables,
tablets, smart sensors, and other embedded devices. This workload-sharing among the things
enables a horizontal scaling to mitigate costs, rather than resort to remote servers. Thus, in
accordance with our proposal, these kinds of devices perform more processing tasks than the
server-side layer. In addition, cloud computing is available to use only as a last resort if needed. In
the case of the asynchronous synchronization needs between cloud server computing and the
different devices, our system develops a push notification-based approach.

In this section, a model of computation suitable for IoT applications is defined according to that
architecture. The proposal focuses on distributed applications that can be represented by a graph 𝔸𝔸 =
{𝕌𝕌, 𝔽𝔽} where:

• 𝕌𝕌 <vertex> represents the execution units of the application. Therefore, the IoT application can
be broken down into a list of execution units: 𝕌𝕌 = {u0, u2, …, un−1}.

• 𝔽𝔽 <edge> represents the data flows exchanged between the execution units. The data flows set
the precedence between the execution units and the volume of exchanged data. F(i,j) ∈ 𝔽𝔽 defines
the volume of data exchanged between the execution unit i and j.

The execution units of an application are related to its capacity of processing data and tasks in
parallel. It is a very important feature for modern machine learning and big data approaches on IoT
applications, since the edge things can increase significantly the performance and costs of the system
without having to send the data to the server for a centralized processing. For example, Figure 1 shows
three cases of applications (𝔸𝔸i) modeled according to this principle where the fragmentation feature of
data generates more execution units and opens more processing opportunities among the things.

has two dimensions: It consists of the list of
application steps depicted by Figure 4b, and for each student in the classroom. Typically, a school
classroom can have around 25 students.

On the other hand, the data flows

Sensors 2018, 18, x FOR PEER REVIEW 7 of 18

and architectures. Basically, the contributions presented in Table 2 summarize the research line in
different topics. This is a challenging issue, and therefore, progresses are slowly made. Most of the
proposals are focused on a specific topic such as modelling [18,19], quality of experience [16], edge of
things [24], middleware [22,23], and scheduling method [17,25–28].

In this line, the research presented represents a step forward in designing collaborative schemes
of IoT applications by sharing the application’s workload between the IoT devices of the
environment. A new application formalization and scheduler module is introduced to handle the
working collaboration among heterogeneous things and other networked resources. The
components of the scheduler are detailed and a practical use case is described.

Table 2. Time estimation of fatigue analysis application.

Computing Platform Frame Computing Cost Threshold = 5
Classroom Mobile PC 1 25 s ~2 min
Classroom Tablet PC 1 50 s ~4 min

Classroom Smartphone 1 50 s ~4 min
School Workstation 2 5 min 25 min
Classroom resources 1 13 s ~1 min

Cloud Server 3 25 s + 5 s 2.5 min
1 Total time for 25 students. 2 Total time for 12 classrooms of 25 students. 3 Total time for 12
classrooms of 25 students plus communications delay.

3. Distributed Computational Architecture

3.1. General Scheme

The primary objective of the proposed distributed architecture is to take advantage of the
deployed infrastructure of things and the cloud computing resources to reduce the computing costs
and improve the overall performance. The main idea is to share the application’s workload between
the server-side and the rest of things with computing capabilities such as smartphones, wearables,
tablets, smart sensors, and other embedded devices. This workload-sharing among the things
enables a horizontal scaling to mitigate costs, rather than resort to remote servers. Thus, in
accordance with our proposal, these kinds of devices perform more processing tasks than the
server-side layer. In addition, cloud computing is available to use only as a last resort if needed. In
the case of the asynchronous synchronization needs between cloud server computing and the
different devices, our system develops a push notification-based approach.

In this section, a model of computation suitable for IoT applications is defined according to that
architecture. The proposal focuses on distributed applications that can be represented by a graph 𝔸𝔸 =
{𝕌𝕌, 𝔽𝔽} where:

• 𝕌𝕌 <vertex> represents the execution units of the application. Therefore, the IoT application can
be broken down into a list of execution units: 𝕌𝕌 = {u0, u2, …, un−1}.

• 𝔽𝔽 <edge> represents the data flows exchanged between the execution units. The data flows set
the precedence between the execution units and the volume of exchanged data. F(i,j) ∈ 𝔽𝔽 defines
the volume of data exchanged between the execution unit i and j.

The execution units of an application are related to its capacity of processing data and tasks in
parallel. It is a very important feature for modern machine learning and big data approaches on IoT
applications, since the edge things can increase significantly the performance and costs of the system
without having to send the data to the server for a centralized processing. For example, Figure 1 shows
three cases of applications (𝔸𝔸i) modeled according to this principle where the fragmentation feature of
data generates more execution units and opens more processing opportunities among the things.

exchanged between the execution units are frames,
frames windows (when the face is located), and data templates. In addition, this application allows
a high parallel processing since the eyes and mouth can be processed in parallel, and each student can
also be analyzed in parallel. This high parallelism facilitates the collaboration work among different
computing platforms.

The available computing platforms for this application can be deployed at several layers,
for example, each classroom is equipped with a mobile PC, and, eventually, the teacher can have
a tablet PC and a smartphone that might be involved in the calculations. In addition, the school
could have a specific workstation to assist the processing of all classrooms at time, and, in the case of
overhead, computing services are hired temporarily from an outside cloud server. A high-resolution
camera is employed to provide frames where detecting and searching for several face features of all
students at once. The next figure (Figure 5) depicts a scheme of the whole system. This architecture is
concretized to the general scheme of the IoT communication network shown in Figure 2a. The value
added of the proposed architecture is the collaborative work that takes place under this approach.
So that, it does not matter what are the specific distribution of nodes, which can be networked sensors,
computing platforms, or cloud servers.

The scheme depicted in Figure 5 shows a possible distribution of the devices where each classroom
has a particular set of available devices. For example, Classroom1 has three local computing platforms
and Classroomm has only two.

Sensors 2018, 18, 1676 13 of 18

Figure 5. IoT application environment.

Formally, the IoT environment consists of the following devices:

• Sensors set {S} = {si: High resolution camera of classroom i}
• Computing platforms {P} = {pij: computing platform i of classroom j, p: school workstation}
• Cloud server {C} = {c0}

The devices of {S} and {P} are in the IoT communications network connected to the school WLAN.
The cloud server is accessed through Internet.

Based on the experimentation data of previous works [65], the processing time for the face search
in the whole image for a single user is around 0.5 s in a standard workstation. It is supposed the same
time for mouth analysis in a frame. Table 2 shows a comparative of the estimated calculation time of
a frame for each type of computing platform according to standard hardware configuration of each
type of device. It is supposed a classroom with 25 students, and a little school with 12 classrooms.
In addition, as shown by Figure 4b, fatigue detection of a student needs a positive search in several
consecutive frames. For example, for ‘threshold’ = 5 the costs should be five times longer.

Communication time between platforms within the WLAN are not taken into account in this
comparative. For Cloud computing processing an extra delay should be included to transmit the
frames (or frame windows). Another drawback arises concerning the security issue when using Cloud
resources. In order to meet the new GDPR requirement regarding user data processing, the cloud
infrastructure has to be deployed in safe regions that provide an adequate level of data protection [48].
In this way, to keep the processing load of frames inside the WLAN prevents security risks in processing
this student behaviour.

The estimative delay times shown by Table 2 give a more precise picture of the situation.
The centralized workstation cannot be adopted in many cases due to the long period to detect fatigue
in a student. The school could deploy more resource hardware to speed up the calculations. Instead,
the proposed IoT architecture can be used to make the most of the existing classroom resources.
The combined use of the three computing platforms of the classroom in a collaborative way can
drastically reduce the application time. This collaborative work obtains a performance for fatigue
analysis application in around 1 min by using only local resources, that is, the classroom mobile PC,
Table PC and smartphone by processing all students in parallel. In addition, the whole school can
be processed in about the same time by putting all available devices to work together. The school

Sensors 2018, 18, 1676 14 of 18

workstation can be used to assist classrooms, centralize all data and infer statistical information about
the interests of each lesson.

The execution units involved in this application will be responsible for computing a portion of the
dataset, for example, the portion of the frame where each student is placed. Figure 6 shows a scheme
of this collaborative work.

Figure 6. Collaborative work example.

The scheduler of the IoT architecture can be computed on the classroom mobile PC. Based on the
previous features, a possible implementation of the scheduler components for properly handling this
IoT application is the following:

• Candidate devices: The instructor can have tablet and/or smartphone able to take part of this
application. Thus, this module obtains the list of platforms present on the classroom (classroom
mobile PC, table PC, smartphone), the school workstation and the cloud server.

• Performance evaluation module: The performance of the involved devices in this case study
is known, and additional devices can not join this application ecosystem in each classroom.
Therefore, this function simply obtains the available capacity of every device according to their
current workload.

• Perf-LUT: The smartphone and tablet of the instructors are evaluated offline to update this module.
At high level, an example of the content of this module is shown in Table 2. More deeply, this LUT
stores the computing time of each stage (execution unit) of the method for analyzing the attention
degrees of students. The parallelism feature of this application allows the handling of the portion
of frame of each student as an execution unit.

• Performance function (Perf): The behaviour of this function can be set to allow the processing as
close as possible to where the data are obtained. Therefore, the devices are sorted by proximity
and the result retrieved from the performance evaluation module. In general terms, the classroom
mobile PC should be selected in the first place, next the tablet PC, and next the smartphone.
When these devices are busy, the workload can be outsourced to the centralized workstation and
cloud server.

This example shows the possibilities of the proposed architecture to deploy and compute
applications in a collaborative way. As shown, the architecture leverages the computing capabilities of
available IoT devices to speed up the computations and achieve better performance than in a centralized
way. In addition, this alternative could not be available due to network congestions, or privacy issues.

For an accurate deployment, a calibration step is needed of the available objects that could take
part in the processing, as well as a further application analysis for building the graph of executions
units and data flows. This information helps to configure the Performance Evaluation Module of the

Sensors 2018, 18, 1676 15 of 18

scheduler. In addition, the application requirements and the working environment constraints play
an important role in designing the collaborative network and proper profiling the scheduler.

The implementation of the execution units would also have to take into account limited-resource
target devices such as wearables, sensing devices and other mobile computers. In these cases,
some key features would be considered such as the enhanced communication capabilities and battery
consumption (if applicable).

5. Conclusions

In this paper, a wide review of the state of the art of distributed computing for IoT systems is
described. It is a common issue that computing requirements for monitoring and advanced analysing
of the data acquired by IoT environments usually exceed the capabilities of the sensors and even the
mobile computers. In this work, a distributed architecture that combines sensing and processing at
different levels of the network to share the computing load among the available devices has been
proposed to address this challenge. The IoT environments composed of wearables and other biosensors
may benefit from this architecture by allowing the processing of advanced applications with real-time
constraints in a collaborative way.

Besides summarizing the relevant and representative contributions, as well as the background of
IoT distributed computing, the research presented in this paper represents a further step for designing
collaborative schemes of IoT applications. The main advantage of the proposed system is that it
enables real-time monitoring and analysis of all the acquired data by networked devices. In addition,
it provides flexibility in executing the application by using resources from cloud computing services,
but also from other available computers that are recommendable for their cost reduction or better
availability. The key novelties are the application formalization and its decomposition in execution
units, and the new scheduler module. This is the core component of the architecture to distribute the
execution units and dispatch them according to the computing capabilities of each device.

A simplified case study is included to demonstrate that our approach is possible to implement in
any area. In this case, we have used an educational environment as IoT is drastically changing the
education around the world. We would like to emphasize that the aim of this case study is just to
present our general model and particularized to the IoT.

Further work must be invested in building a proper predictive model of the available resources.
System resilience is another interesting issue that should be further developed. The proposed
framework could support a fallback policy, to be activated when central control is not available
or accessible. This point could be expanded by adding a service discovery mechanism, allowing
computers to autonomously take suboptimal decisions based on local information coming from
neighbouring devices. Currently, a larger amount of data is being gathered, including open data,
in order to construct a more challenging experimental scenario.

Author Contributions: All authors were involved in the foundation items. All authors wrote the paper and read
and approved the final manuscript.

Acknowledgments: This work has been also partially funded by the Spanish Ministry of Economy and
Competitiveness (MINECO/FEDER) under the granted Project SEQUOIA-UA (Management requirements and
methodology for Big Data analytics) TIN2015-63502-C3-3-R, by the University of Alicante, within the program
of support for research, under project GRE14-10, and by the Conselleria de Educación, Investigación, Cultura y
Deporte, Comunidad Valenciana, Spain, within the program of support for research, under project GV/2016/087.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Calvaresi, D.; Cesarini, D.; Sernani, P.; Marinoni, M.; Dragoni, A.F.; Sturm, A. Exploring the ambient assisted
living domain: A systematic review. J. Ambient Intell. Hum. Comput. 2017, 8, 239. [CrossRef]

2. Mora, H.; Gilart-Iglesias, V.; Pérez-del Hoyo, R.; Andújar-Montoya, M.D. A Comprehensive System for
Monitoring Urban Accessibility in Smart Cities. Sensors 2017, 17, 1834. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s12652-016-0374-3
http://dx.doi.org/10.3390/s17081834
http://www.ncbi.nlm.nih.gov/pubmed/28792476

Sensors 2018, 18, 1676 16 of 18

3. Sun, K.; Ryoo, I. A Smart Sensor Data Transmission Technique for Logistics and Intelligent Transportation
Systems. Informatics 2018, 5, 15. [CrossRef]

4. Mora, H.; Gilart-Iglesias, V.; Pérez-delHoyo, R.; Andújar-Montoya, M.D.; Gabucio, H.C. Interactive cloud
system for the analysis of accessibility in smart cities. Int. J. Des. Nat. Ecodyn. 2016, 11, 447–458. [CrossRef]

5. Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for
Internet of Things data analysis: A survey. Dig. Commun. Netw. 2017. [CrossRef]

6. Klumpp, M. Innovation Potentials and Pathways Merging AI, CPS, and IoT. Appl. Syst. Innov. 2018, 1, 5.
[CrossRef]

7. Shi, F.; Li, Q.; Zhu, T.; Ning, H. A Survey of Data Semantization in Internet of Things. Sensors 2018, 18, 313.
[CrossRef] [PubMed]

8. Ruan, J.; Chan, F.; Zhu, F.; Wang, X.; Yang, J. A Visualization Review of Cloud Computing Algorithms in the
Last Decade. Sustainability 2016, 8, 1008. [CrossRef]

9. Shukla, A.; Simmhan, Y. Model-driven scheduling for distributed stream processing systems. J. Parallel
Distrib. Comput. 2018, 117, 98–114. [CrossRef]

10. Chien, S.-Y.; Chan, W.-K.; Tseng, Y.-H.; Lee, C.-H.; Somayazulu, V.S.; Chen, Y.-K. Distributed computing in
IoT: System-on-a-chip for smart cameras as an example. In Proceedings of the Asia and South Pacific Design
Automation Conference (ASP-DAC), Chiba, Japan, 9–22 January 2015.

11. Mora, H.; Signes-Pont, M.T.; Gil-Méndez, D.; Ferrández-Pastor, F.J. A Proposal for a Distributed
Computational Framework in IoT Context. In Proceedings of the International Conference on Ubiquitous
Computing and Ambient Intelligence, UCAmI 2017, Philadelphia, PA, USA, 10–15 July 2015; pp. 194–200.
[CrossRef]

12. Cao, Y.; Long, C.; Jiang, T.; Mao, S. Share communication and computation resources on mobile devices:
A social awareness perspective. IEEE Wirel. Commun. 2016, 23, 52–59. [CrossRef]

13. Kim, S.; Kim, D.-Y.; Park, J.-H. Traffic management in the mobile edge cloud to improve the quality of
experience of mobile video. Comput. Commun. 2018, 118, 40–49. [CrossRef]

14. Zenith’s Mobile Advertising Forecast Report, Smartphone Penetration to Reach 66% in 2018. Available online:
https://www.zenithmedia.com/smartphone-penetration-reach-66-2018/ (accessed on 12 April 2018).

15. Li, L.; Li, S.; Zhao, S. QoS-Aware Scheduling of Services-Oriented Internet of Things. IEEE Trans. Ind. Inform.
2014, 10, 1497–1505. [CrossRef]

16. Floris, A.; Atzori, L. Managing the Quality of Experience in the Multimedia Internet of Things:
A Layered-Based Approach. Sensors 2016, 16, 2057. [CrossRef] [PubMed]

17. Colom, J.F.; Mora, H.; Gil, D.; Signes-Pont, M.T. Collaborative building of behavioural models based on
internet of things. Comput. Electr. Eng. 2016, 58, 385–396. [CrossRef]

18. Mora, H.; Colom, J.F.; Gil, D.; Jimeno-Morenilla, A. Distributed computational model for shared processing
on Cyber-Physical System environments. Comput. Commun. 2017, 111, 68–83. [CrossRef]

19. Mora, H.; Gil, D.; Terol, R.M.; Azorín, J.; Szymanski, J. An IoT-Based Computational Framework for
Healthcare Monitoring in Mobile Environments. Sensors 2017, 17, 2302. [CrossRef] [PubMed]

20. Kim-Hung, L.; Datta, S.K.; Bonnet, C.; Hamon, F.; Boudonne, A. A scalable IoT framework to design logical
data flow using virtual sensor. In Proceedings of the Wireless and Mobile Computing, Networking and
Communications (WiMob), Rome, Italy, 9–11 October 2017.

21. Martínez-Rodríguez, M.C.; Prada-Delgado, M.A.; Brox, P.; Baturone, I. VLSI Design of Trusted Virtual
Sensors. Sensors 2018, 18, 347. [CrossRef] [PubMed]

22. Razzaque, M.A.; Milojevic-Jevric, M.; Palade, A.; Clarke, S. Middleware for Internet of Things: A Survey.
IEEE Internet Things J. 2016, 3, 2327–4662. [CrossRef]

23. Jeon, S.; Jung, I. MinT: Middleware for Cooperative Interaction of Things. Sensors 2017, 17, 1452. [CrossRef]
[PubMed]

24. El-Sayed, H.; Sankar, S.; Prasad, M.; Puthal, D.; Gupta, A.; Mohanty, M.; Lin, C.-L. Edge of Things: The Big
Picture on the Integration of Edge, IoT and the Cloud in a Distributed Computing Environment. IEEE Access
2017, 6, 1706–1717. [CrossRef]

25. Narman, H.S.; Hossain, M.S.; Atiquzzaman, M.; Shen, H. Scheduling internet of things applications in cloud
computing. Ann. Telecommun. 2017, 72, 79. [CrossRef]

26. Haferkamp, M.; Sliwa, B.; Ide, C.; Wietfeld, C. Payload-Size and Deadline-Aware scheduling for time-critical
Cyber Physical Systems. In Proceedings of the Wireless Days, Porto, Portugal, 29–31 March 2017. [CrossRef]

http://dx.doi.org/10.3390/informatics5010015
http://dx.doi.org/10.2495/DNE-V11-N3-447-458
http://dx.doi.org/10.1016/j.dcan.2017.10.002
http://dx.doi.org/10.3390/asi1010005
http://dx.doi.org/10.3390/s18010313
http://www.ncbi.nlm.nih.gov/pubmed/29361772
http://dx.doi.org/10.3390/su8101008
http://dx.doi.org/10.1016/j.jpdc.2018.02.003
http://dx.doi.org/10.1007/978-3-319-67585-5_20
http://dx.doi.org/10.1109/MWC.2016.7553026
http://dx.doi.org/10.1016/j.comcom.2017.09.001
https://www.zenithmedia.com/smartphone-penetration-reach-66-2018/
http://dx.doi.org/10.1109/TII.2014.2306782
http://dx.doi.org/10.3390/s16122057
http://www.ncbi.nlm.nih.gov/pubmed/27918437
http://dx.doi.org/10.1016/j.compeleceng.2016.08.019
http://dx.doi.org/10.1016/j.comcom.2017.07.009
http://dx.doi.org/10.3390/s17102302
http://www.ncbi.nlm.nih.gov/pubmed/28994743
http://dx.doi.org/10.3390/s18020347
http://www.ncbi.nlm.nih.gov/pubmed/29370141
http://dx.doi.org/10.1109/JIOT.2015.2498900
http://dx.doi.org/10.3390/s17061452
http://www.ncbi.nlm.nih.gov/pubmed/28632182
http://dx.doi.org/10.1109/ACCESS.2017.2780087
http://dx.doi.org/10.1007/s12243-016-0527-6
http://dx.doi.org/10.1109/WD.2017.7918106

Sensors 2018, 18, 1676 17 of 18

27. Bharti, S.; Pattanaik, K.K. Task Requirement Aware Pre-processing and Scheduling for IoT Sensory
Environments. Ad Hoc Netw. 2016. [CrossRef]

28. Mora, H.; Gil Mendez, D.; Colom López, J.F.; Signes Pont, M.T. Flexible framework for real-time embedded
systems based on mobile cloud computing paradigm. Mob. Inf. Syst. 2015. [CrossRef]

29. Cavalcante, E.; Pereira, J.; Alves, M.P.; Maia, P.; Moura, R.; Batista, T.; Delicato, F.C.; Pires, P.F. On the interplay
of Internet of Things and Cloud Computing: A systematic mapping study. Comput. Commun. 2016, 89–90,
17–33. [CrossRef]

30. Dinh, T.; Kim, Y.; Lee, H. A Location-Based Interactive Model of Internet of Things and Cloud (IoT-Cloud)
for Mobile Cloud Computing Applications. Sensors 2017, 17, 489. [CrossRef] [PubMed]

31. Babu, S.M.; Lakshmi, A.J.; Rao, B.T. A study on cloud based Internet of Things: CloudIoT. In Proceedings
of the Global Conference on Communication Technologies (GCCT), Kanya Kumari District, India,
23–24 April 2015; pp. 60–65. [CrossRef]

32. Botta, A.; Donato, W.; Persico, V.; Pescapé, A. Integration of Cloud computing and Internet of Things:
A survey. Future Gener. Comput. Syst. 2016, 56, 684–700. [CrossRef]

33. Malik, A.; Om, H. Cloud Computing and Internet of Things Integration: Architecture, Applications, Issues,
and Challenges. Sustain. Cloud Energy Serv. 2018. [CrossRef]

34. Chen, X.; Chen, S.; Zeng, X.; Zheng, X.; Zhang, Y.; Rong, C. Framework for context-aware computation
offloading in mobile cloud computing, Journal of Cloud Computing Advances. Syst. Appl. 2017, 6, 1.
[CrossRef]

35. Akherfi, K.; Gerndt, M.; Harroud, H. Mobile cloud computing for computation offloading: Issues and
challenges. Appl. Comput. Inform. 2018, 14, 1–16. [CrossRef]

36. Bangui, H.; Ge, M.; Buhnova, B.; Rakrak, S.; Raghay, S.; Pitner, T. Multi-Criteria Decision Analysis Methods
in the Mobile Cloud Offloading Paradigm. J. Sens. Actuator Netw. 2017, 6, 25. [CrossRef]

37. Wu, H.; Wolter, K. Stochastic Analysis of Delayed Mobile Offloading in Heterogeneous Networks. IEEE Trans.
Mob. Comput. 2018, 17, 461–471. [CrossRef]

38. Tseng, F.; Cho, H.; Chang, K.; Li, J.; Shih, T.K. Application-oriented offloading in heterogeneous networks for
mobile cloud computing. Enterp. Inf. Syst. 2017, 1–16. [CrossRef]

39. Gheith, A.; Rajamony, R.; Bohrer, P.; Agarwal, K.; Kistler, M.; Eagle, B.L.W.; Hambridge, C.A.; Carter, J.B.;
Kaplinger, T. IBM Bluemix Mobile Cloud Services. IBM J. Res. Dev. 2016, 60, 1–12. [CrossRef]

40. Guo, J.; Chen, I.-R.; Tsai Jeffrey, J.P. A survey of trust computation models for service management in internet
of things systems. Comput. Commun. 2017, 97, 1–14. [CrossRef]

41. Stergiou, C.; Psannis, K.E.; Kim, B.-G.; Gupta, B. Secure integration of IoT and Cloud Computing.
Future Gener. Comput. Syst. 2018, 78, 964–975. [CrossRef]

42. Mollah, M.B.; Azad, M.A.K.; Vasilakos, A. Security and privacy challenges in mobile cloud computing:
Survey and way ahead. J. Netw. Comput. Appl. 2017, 84, 38–54. [CrossRef]

43. Sicari, S.; Rizzardi, A.; Grieco, L.A.; Coen-Porisini, A. Security, privacy and trust in Internet of Things:
The road ahead. Comput. Netw. 2015, 76, 146–164. [CrossRef]

44. Sani, A.S.; Yuan, D.; Jin, J.; Gao, L.; Yu, S.; Dong, Z. Cyber security framework for Internet of Things-based
Energy Internet. Future Gener. Comput. Syst. 2018. [CrossRef]

45. EU GDPR Portal: Site Overview. Available online: https://www.eugdpr.org/ (accessed on 8 May 2018).
46. Wachter, S. GDPR and the Internet of Things: Guidelines to Protect Users’ Identity and Privacy. SSRN 2018.

[CrossRef]
47. Wachter, S. Normative challenges of identification in the Internet of Things: Privacy, profiling, discrimination,

and the GDPR. Comput. Law Secur. Rev. 2018. [CrossRef]
48. Sanz, R.M.C. Your Guide to the GDPR, IEEE Spectrum. Available online: https://spectrum.ieee.org/

telecom/internet/your-guide-to-the-gdpr (accessed on 8 May 2018).
49. Khan, S.; Parkinson, S.; Qin, Y. Fog computing security: A review of current applications and security

solutions. J. Cloud Comput. 2017, 6, 19. [CrossRef]
50. Colom, J.F.; Gil, D.; Mora, H.; Volckaert, B.; Jimeno, A. Scheduling framework for distributed intrusion

detection systems over heterogeneous network architectures. J. Netw. Comput. Appl. 2018, 108, 76–86.
[CrossRef]

51. Lekidis, A.; Stachtiari, E.; Katsaros, P.; Bozga, M.; Georgiadis, C.K. Model-based design of IoT systems with
the BIP component framework. J. Softw. Pract. Exp. 2018. [CrossRef]

http://dx.doi.org/10.1016/j.adhoc.2016.07.005
http://dx.doi.org/10.1155/2015/652462
http://dx.doi.org/10.1016/j.comcom.2016.03.012
http://dx.doi.org/10.3390/s17030489
http://www.ncbi.nlm.nih.gov/pubmed/28257067
http://dx.doi.org/10.1109/GCCT.2015.7342624
http://dx.doi.org/10.1016/j.future.2015.09.021
http://dx.doi.org/10.1007/978-3-319-62238-5_1
http://dx.doi.org/10.1186/s13677-016-0071-y
http://dx.doi.org/10.1016/j.aci.2016.11.002
http://dx.doi.org/10.3390/jsan6040025
http://dx.doi.org/10.1109/TMC.2017.2711014
http://dx.doi.org/10.1080/17517575.2017.1287432
http://dx.doi.org/10.1147/JRD.2016.2515422
http://dx.doi.org/10.1016/j.comcom.2016.10.012
http://dx.doi.org/10.1016/j.future.2016.11.031
http://dx.doi.org/10.1016/j.jnca.2017.02.001
http://dx.doi.org/10.1016/j.comnet.2014.11.008
http://dx.doi.org/10.1016/j.future.2018.01.029
https://www.eugdpr.org/
http://dx.doi.org/10.2139/ssrn.3130392
http://dx.doi.org/10.1016/j.clsr.2018.02.002
https://spectrum.ieee.org/telecom/internet/your-guide-to-the-gdpr
https://spectrum.ieee.org/telecom/internet/your-guide-to-the-gdpr
http://dx.doi.org/10.1186/s13677-017-0090-3
http://dx.doi.org/10.1016/j.jnca.2018.02.004
http://dx.doi.org/10.1002/spe.2568

Sensors 2018, 18, 1676 18 of 18

52. Zeng, D.; Guo, S.; Cheng, Z. The web of things: A survey. J. Commun. 2011, 6, 424–438. [CrossRef]
53. Girau, R.; Martis, S.; Atzori, L. Lysis: A platform for IoT distributed applications over socially connected

objects. IEEE Internet Things J. 2017, 4, 40–51. [CrossRef]
54. Derhamy, H.; Eliasson, J.; Delsing, J.; Priller, P. A survey of commercial frameworks for the internet of

things. In Proceedings of the IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA),
Luxembourg, 8–11 September 2015; pp. 1–8.

55. Khazaei, H.; Bannazadeh, H.; Leon-Garcia, A. SAVI-IoT: A Self-Managing Containerized IoT Platform.
In Proceedings of the 5th International Conference on Future Internet of Things and Cloud (FiCloud), Prague,
Czech Republic, 21–23 August 2017.

56. Qanbari, S.; Pezeshki, S.; Raisi, R.; Mahdizadeh, S.; Rahimzadeh, R.; Behinaein, N.; Mahmoudi, F. IoT Design
Patterns: Computational Constructs to Design, Build and Engineer Edge Applications. In Proceedings of the
IEEE First International Conference on Internet-of-Things Design and Implementation, Berlin, Germany,
4–8 April 2016.

57. Muthusamy, V.; Slominski, A.; Ishakian, V.; Khalaf, R.; Reason, J.; Rozsnyai, S. Lessons learned using
a process mining approach to analyze events from distributed applications. In Proceedings of the 10th
ACM International Conference on Distributed and Event-based Systems, Irvine, CA, USA, 20–24 June 2016;
pp. 199–204.

58. Robert, J.; Kubler, S.; Kolbe, N.; Cerioni, A.; Gastaud, E.; Främling, K. Open IoT Ecosystem for Enhanced
Interoperability in Smart Cities—Example of Métropole De Lyon. Sensors 2017, 17, 2849. [CrossRef] [PubMed]

59. Rahman, H.; Rahmani, R. Enabling distributed intelligence assisted Future Internet of Things Controller
(FITC). Appl. Comput. Inform. 2018, 14, 73–87. [CrossRef]

60. Singh, M.P.; Chopra, A.K. The Internet of Things and Multiagent Systems: Decentralized Intelligence in
Distributed Computing. In Proceedings of the IEEE 37th International Conference on Distributed Computing
Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017.

61. Fortino, G.; Lackovic, M.; Russo, W.; Trunfio, P. A discovery service for smart objects over an agent-based
middleware. In Proceedings of the International Conference on Internet and Distributed Computing Systems,
Hangzhou, China, 28–30 October 2013; pp. 281–293.

62. Gomes, P.; Cavalcante, E.; Rodrigues, T.; Batista, T.; Delicato, F.C.; Pires, P.F. A Federated Discovery Service
for the Internet of Things. In Proceedings of the Workshop on Middleware for Context-Aware Applications
in the IoT, Vancouver, BC, Canada, 7–11 December 2015; pp. 25–30.

63. Datta, S.K.; Da Costa, R.P.F.; Bonnet, C. Resource discovery in Internet of Things: Current trends and future
standardization aspects. In Proceedings of the IEEE 2nd World Forum on Internet of Things (WF-IoT),
Milan, Italy, 14–16 December 2015.

64. Ccori, P.C.; De Biase, L.C.C.; Knorich Zuffo, M.; da Silva, F.S.C. Device discovery strategies for the IoT.
In Proceedings of the IEEE International Symposium on Consumer Electronics (ISCE), Sao Paulo, Brazil,
28–30 September 2016.

65. D’Orazio, T.; Leo, M.; Guaragnella, C.; Distante, A. A visual approach for driver inattention detection.
Pattern Recognit. 2007, 40, 2341–2355. [CrossRef]

66. Sun, W.; Zhang, X.; Peeta, S.; He, X.; Li, Y. A Real-Time Fatigue Driving Recognition Method Incorporating
Contextual Features and Two Fusion Levels. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3408–3420. [CrossRef]

67. Hemadri, V.B.; Kulkarni, U.P. Detection of Drowsiness Using Fusion of Yawning and Eyelid Movements.
In Advances in Computing, Communication, and Control; Communications in Computer and Information
Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 361.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4304/jcm.6.6.424-438
http://dx.doi.org/10.1109/JIOT.2016.2616022
http://dx.doi.org/10.3390/s17122849
http://www.ncbi.nlm.nih.gov/pubmed/29292719
http://dx.doi.org/10.1016/j.aci.2017.05.001
http://dx.doi.org/10.1016/j.patcog.2007.01.018
http://dx.doi.org/10.1109/TITS.2017.2690914
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background of IoT Distributed Computing
	Framework Design for Distributed Computing
	IoT and Cloud Computing Combination
	Security
	Distributed Applications Design
	Findings

	Distributed Computational Architecture
	General Scheme
	IoT Scheduler

	Case Study
	Conclusions
	References

