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ABSTRACT 42 

Background: Multisystemic inflammatory syndrome in children (MIS-C) is a life-threatening disease 43 

that occurs 2-5 weeks after SARS-CoV-2 exposure and is characterized by severe multisystemic 44 

inflammation. Early recognition of MIS-C is key to prognosis, therefore establishing clinical and 45 

laboratory biomarkers that predict complications is urgently needed.  46 

Objective:  To characterize the immune response and clinical features of patients with acute MIS-C 47 

and determine biomarkers of disease in a cohort of 42 Latin American patients.  48 

Methods: Immune characterization was performed using flow cytometry from peripheral 49 

mononuclear cells and SARS-CoV-2-specific humoral and cellular response was performed using 50 

flow cytometry, ELISPOT, ELISA and neutralizing antibody assays.  51 

Results: MIS-C is characterized by robust T cell activation and cytokine storm. We uncovered that 52 

while CXCL9, IL-10, CXCL8, CXCL10, IL-6 and IL-18 are significantly elevated in patients with shock, 53 

while CCL5 was increased in milder disease. Monocyte dysregulation was specifically associated to 54 

Kawasaki-like MIS-C. Interestingly, MIS-C patients show an NK cell degranulation defect that is 55 

persistent after 6 months of disease presentation, suggesting it could underlie disease susceptibility. 56 

Most MIS-C had gastrointestinal involvement and higher levels of neopterin were identified in their 57 

stools, potentially representing a biomarker of intestinal inflammation in MIS-C. SARS-CoV2-specific 58 

cellular response and neutralizing antibodies were identifiable in convalescent MIS-C patients 59 

suggesting sustained immunity.   60 

Conclusion: Clinical characterization and comprehensive immunophenotyping of Chilean MIS-C 61 

cohort provide valuable insights in understanding immune dysregulation in MIS-C and identify 62 

relevant biomarkers of disease that could be used to predict severity and organ involvement.  63 
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CLINICAL IMPLICATIONS STATEMENT 65 

MIS-C is distinguished by cytokine storm and decreased NK cell degranulation that is persistent after 66 

6 months. Distinct biomarkers were identified for severe and mild forms of disease.  67 

CAPSULE SUMMARY 68 

We identify CXCL9, IL-10, CXCL8, CXCL10, IL-6 and IL-18 as biomarkers of severe MIS-C . Persistently 69 

decreased NK cell degranulation suggests the possibility of an underlying defect.  70 

Keywords: COVID-19, Inflammation, Multisystemic inflammatory syndrome in children, biomarkers, 71 

NK cell deficiency 72 

Abbreviations 73 

MIS-C: Multisystemic inflammatory syndrome in children  74 

COVID-19: Coronavirus disease  75 

KD: Kawasaki disease  76 

MAS: Macrophage activation syndrome 77 

ICU: Intensive Care Unit  78 

proBNP: pro natriuretic peptide test 79 

IFN-γ: Interferon gamma 80 

TNF-α: tumor necrosis factor alpha 81 

IL-6: Interleukin 6 82 

IL-18: Interleukin 18 83 

IL-18BP: Interleukin 18 binding protein 84 

IL-10: Interleukin 10 85 

CXCL9: Chemokine (C-X-C motif) ligand 9 86 

CXCL10: Chemokine (C-X-C motif) ligand 10 87 

CXCL8: Chemokine (C-X-C motif) ligand 8 88 
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CCL5: Chemokine (C-C motif) ligand 5 89 

CCL2: Chemokine (C-C motif) ligand 2 90 

NK: Natural Killer  91 

PBMC: peripheral mononuclear cells  92 

PMA: phorbol 12-myristate 13-acetate  93 

CBA: Cytometric Bead Array  94 

ELISA: Enzyme linked-assay  95 

ACE-2: Angiotensin-converting enzyme-2 96 

GFP: Green Fluorescence Protein 97 

IC50: Half-maximal inhibitory concentration  98 

IMV: invasive mechanical ventilation  99 

HIV: Human of immunodeficiency virus 100 

RAAS: renin-angiotensin-aldosterone system  101 
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INTRODUCTION 106 

Multisystemic inflammatory syndrome in children (MIS-C) is a rare but life-threating condition that 107 

occurs in children or adolescents 2-5 weeks after SARS-CoV-2 exposure (1, 2). MIS-C is defined by 108 

systemic hyperinflammation with multiple organ involvement including gastrointestinal, cardiac, 109 

dermatologic, respiratory, renal and neurological symptoms which may lead to multiorgan failure 110 

(3). Different, yet overlapping clusters of phenotypic presentations have been defined for MIS-C; 111 

some patients present with cutaneous involvement resembling Kawasaki disease (KD), while others 112 

present with gastrointestinal symptoms and shock (4). Early recognition of MIS-C is key for 113 

appropriate treatment and successful outcome (5). However, diagnosis is often challenging due to 114 

clinical overlap with non-SARS-CoV-2 KD, sepsis and other infectious conditions (6). Additionally, 115 

endemic circulation of SARS-CoV-2, cessation of lockdowns and vaccination has made it harder to 116 

identify COVID contacts and interpret serology. In this context, identifying biomarkers for MIS-C is 117 

key to facilitate differential diagnosis. 118 

Severity of disease is defined by the degree of myocardial involvement and shock, occurring in 80% 119 

and 50% of patients respectively (7, 8). Overall, 60% of MIS-C patients require Intensive Care Unit 120 

(ICU) admission and vasoactive support (9, 10). Laboratory parameters including decreased platelets 121 

and lymphocytes, and increased C-reactive protein, D-dimer, troponin, proBNP, ferritin and IL-6 122 

levels can predict severity, however they are still non-specific (11-13). 123 

Multi-dimensional immune studies of MIS-C, comparing it to KD and severe COVID-19 in adults, 124 

reveal that while they are all characterized by hyperinflammation, MIS-C is a unique entity with 125 

higher IL-6, CXCL9 and CXCL10 levels (14, 15). Studies characterizing the immune response in MIS-126 

C have shown reduced numbers of CD4+ and CD8+ T cells, Natural Killer (NK) cells and γδT cells 127 

overall in MIS-C patients. Earlier work has correlated immune profiles and clinical manifestations 128 

of pediatric and adult COVID-19, but biomarkers for of MIS-C and it´s different clinical 129 
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manifestations have not been clearly defined (14-19). Similarly, KD-like MIS-C patients are clinically 130 

well defined, however, immune mechanisms underlying this specific form of MIS-C are still poorly 131 

understood (20, 21). 132 

 Characterizing the immune response in the wide disease spectrum of MIS-C is paramount for 133 

further understanding of disease and most importantly, to allow early identification of patients that 134 

will require more complex or targeted interventions. 135 

Comprehensive immune studies in African and Hispanic children are lacking and may contribute to 136 

understand genetic and environmental components that may explain a higher incidence observed 137 

in these populations (7, 8, 22-24). We characterized the immune response and clinical features of 138 

patients with acute MIS-C and determined biomarkers of disease in a cohort of 42 Latin American 139 

patients in three clinical centers in Chile. 140 

METHODS 141 

Ethical statements 142 

This study was approved by Ethical Committee of Facultad de Medicina Clínica Alemana Universidad 143 

del Desarrollo. All participants or legal guardians gave written informed consent in accordance with 144 

the Declaration of Helsinki (25).  145 

Subjects 146 

A total of 67 patients admitted with suspected diagnosis of MIS-C (June 2020-June 2021) were 147 

recruited in the city of Santiago de Chile from three clinical centers: Roberto del Rio pediatric 148 

Hospital, Dr. Exequiel González Cortés pediatric hospital and Clínica Alemana de Santiago. Clinical 149 

information was uploaded into REDcap (Research Electronic Data Capture) (26-28). After 150 

recruitment, patients were re-screened according to WHO definition for MIS-C (29). SARS-CoV-2 151 

exposure was corroborated by clinical history of exposure, nasopharyngeal PCR and specific SARS-152 

CoV-2 spike protein-IgG antibodies. If an alternative diagnosis was established during follow-up, 153 
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such patients were excluded from analysis (n=42) (Sup. Table1). A sub-group of these patients were 154 

diagnosed with alternative febrile conditions and we identified them as febrile controls. In addition, 155 

21 young adults hospitalized with COVID-19 pneumonia were recruited to compare with MIS-C. 156 

Blood and fecal samples were obtained from most patients within 7 days of admission and follow-157 

up blood samples were obtained 6 months after disease onset. 158 

Immune cell phenotyping by flow cytometry 159 

To evaluate functionality of different immune cells, flow cytometry was performed from fresh blood 160 

or frozen peripheral mononuclear cells (PBMCs) previously isolated with Histopaque (Sigma). Three 161 

flow cytometry panels were performed: 1) NK and T cells functionality, 2) Memory and activation T 162 

cells, 3) Monocytes (Sup. methods, Sup. Figures 1-4). For T cell and NK cell functional 163 

characterization, cells were stimulated with 1ug/ml of phorbol 12-myristate 13-acetate (PMA) and 164 

1ug/ml of Ionomycin with Brefeldin and Golgi stop (BD). After 5 hours, dead cells were stained using 165 

LIVE/DEAD Fixable Near-IR, permeabilized with BD Cytofix/Cytoperm kit (BD) and stained for 166 

intracellular markers. When analyzing flow cytometry data, investigators were blinded for both, 167 

clinical features and clinical laboratory data.  168 

Measurement of serum cytokine and chemokine levels  169 

Serum was isolated by centrifugation, stored at -80°C and thawed for cytokine assessment using 170 

BDTM Cytometric Bead Array (CBA) human Th1/Th2 cytokine kit, human inflammatory cytokine kit 171 

and human chemokine kit according to manufacturer instructions. Samples were acquired on 172 

Cytoflex LX flow cytometer and analyzed using FlowJo software V9.1. To evaluate CXCL9, IL-18 and 173 

IL18-BP, commercially available ELISA were used according to manufacturer instructions (#DY392, 174 

#DY318-05, #DY119 R&D Systems). Free IL-18 levels were calculated considering the law of mass 175 

action as described (30, 31).  176 

Determination of Neopterin and ACE-2 in stool samples 177 
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Stool samples were stored at -80°C and later thawed, vortexed with 0.9% saline and centrifuged. 178 

The supernatant was used to assess fecal concentrations of neopterin and ACE-2 according to 179 

manufacturer instructions (#RE59321, IBL; #DY933-05, R&D Systems). Wet stool weight was used 180 

for normalization.   181 

SARS-CoV-2-specific cellular immune response 182 

Patient PBMC obtained six months after MIS-C or acute COVID-19 presentation were thawed and 183 

stimulated with 50 ng/ml of SARS-CoV-2 Spike protein for 24 hours. PMA/ionomycin and diluent of 184 

Spike protein were added as positive and negative controls, respectively. For ELISPOT, human IFN-γ 185 

single-color Elispot (CTL, Immunospot®) were used according to manufacturer instructions. To 186 

determine cellular immune response in different lymphocyte subsets, we used flow cytometry (Sup. 187 

methods, Sup. Figure 4). 188 

Measurement of IgG and neutralizing antibodies 189 

Enzyme linked-assay (ELISA) was performed as previously described (32). Microtiter plates were 190 

coated with 1ug/mL of SARS-CoV-2 Spike protein overnight 4°C. Each sample was analyzed in 191 

duplicate and the cutoff was set as the mean value of negative controls (healthy donor pre-192 

pandemic serum specimens) plus 3 standard deviations.  193 

Neutralizing antibodies were measured using VSV-GFP-Spike SARS-CoV-2 (33). Serially diluted serum 194 

previously incubated with pseudovirus VSV-GFP-Spike SARS-CoV-2 was transferred into Vero cells 195 

monolayer at a final multiplicity of infection of 0.5 and incubated at 37°C 5% CO2 for 18-20 h. The 196 

infection was measured in each well by determining GFP fluorescence intensity using Cytation3 197 

plate reader. Half-maximal inhibitory concentration (IC50) was calculated using nonlinear regression 198 

analysis. 199 

Statistical analysis 200 
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Statistical analyses were performed using GraphPad Prism V9.1.0.  Correlation matrix was created 201 

using nonparametric Spearman test, with confidence interval of 95%. Each correlation was done 202 

independently between two variables, with no multiple comparison correction because of the small 203 

sample size. Immune parameters were compared among MIS-C, COVID-19, febrile controls and 204 

healthy donors using non-parametric Mann-Whitney tests. To compare immune parameters 205 

between patients, volcano plots were created per each relevant clinical manifestation representing 206 

all parameters simultaneously, The Volcano Plots, represent Mann Whitney tests performed 207 

separately for each parameter; we did not apply multiple comparison correction because of the 208 

small sample size. 209 

RESULTS 210 

Forty-two MIS-C patients were included for analysis. All patients were Latin American (Venezuela, 211 

Perú and Chile) residing in Chile, 55% were male and mean age was 7 years old. Seventy-nine 212 

percent of patients required ICU admission (1-10 days of stay), 33% invasive mechanical ventilation 213 

(IMV) and 40% inotropic support. Most patients had fever and gastrointestinal involvement (Table 214 

1, Sup. Table 2). Sixty percent had shock while 62% showed had cardiac involvement (Figure 1A). 215 

Sixty-seven percent had Kawasaki-like symptoms (Figure 1B), and 68% of these patients also 216 

presented with shock. Patients were treated with intravenous immunoglobulin (IVIG) (76%), oral 217 

(76%) and i.v. corticosteroids (81%), tocilizumab (7%) and infliximab (2%) (Figure 1C) according to 218 

local treatment guidelines (34). After 12 months follow-up, most patients survived with no sequalae; 219 

only one patient died during acute illness with macrophage activation (MAS) and cardiac failure, one 220 

patient shows a persistent coronary aneurism and one patient was diagnosed with Crohn´s disease 221 

immediately after MIS-C.  222 

 223 
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MIS-C patients are characterized by T cell activation, elevated inflammatory cytokines and a 224 

functional NK cell defect  225 

We sought to understand immunopathogenesis and identify biomarkers for MIS-C using 226 

multiparametric flow-cytometry and serum cytokines and chemokines in the acute phase of disease 227 

and compared with severe COVID-19 patients and febrile controls (Figure 2). 228 

While acute COVID-19 and MIS-C both have reduced proportions of CD4+ and CD8+ memory T cells, 229 

MIS-C showed a higher proportion of activated T cells (CD4+CD69+ and CD8+CD69+) (Figure 2A-C). 230 

Characterization of monocytes in our cohort revealed a heterogenous distribution of monocyte 231 

subsets in MIS-C while COVID-19 patients showed significantly higher proportions of classical 232 

monocytes, in line with previous findings (16, 35) (Figure 2D). Although monocyte distribution was 233 

heterogenous, we identified a lower expression of HLA-DR in non-classical monocytes of MIS-C 234 

patients (Figure 2E) possibly contributing to impaired immune homeostasis in this acute condition 235 

(36). While cytokine dysregulation has been identified in MIS-C (14), we found that MIS-C is 236 

distinguished from COVID-19 by significantly higher levels of IL-6, IFN-γ, IL-10, CCL2, CXCL8, CXCL9 237 

and CXCL10. Even though total IL-18 was higher in MIS-C, free IL-18 was significantly lower than in 238 

COVID-19 (Figure 2F). TNF-α, IL-5, IL-4 and IL-2 were undetectable in all patients (data not shown). 239 

Altogether these data suggest MIS-C is distinguished from COVID-19 by substantial activation of T 240 

cells and non-classical and intermediate monocytes, together with a pro-inflammatory cytokine and 241 

chemokine storm. 242 

Differentiating children with MIS-C from other inflammatory conditions is challenging, given the 243 

wide range of differential diagnosis in pediatric patients and the often-unclear history of COVID 244 

exposure. Furthermore, with vaccination, positive serology becomes difficult to interpret. To 245 

address this point, we compared MIS-C with other febrile conditions. We identified that, while both 246 

patient groups were characterized by strong T cell activation, MIS-C was distinguished by higher 247 
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expression of IFN-γ in CD4+ T cells and higher levels of IL-10, CXCL8, CCL2 and distinctively even 248 

higher levels of CXCL9, CXCL10, suggesting an IFN-γ signature as a biomarker of MIS-C as previously 249 

suggested (Figure 2F) (37, 38).   250 

Interestingly, MIS-C patients showed decreased NK cell numbers and NK cell degranulation 251 

measured by CD107a expression after PMA/ionomycin stimulation (Figure 2G). This reduction was 252 

independent of NK cell numbers. While degranulation improved after 6 months, convalescent MIS-253 

C patients still exhibit lower CD107a expression than healthy controls, suggesting these children 254 

may have an underlying functional NK cell defect. 255 

 256 

Cytokine storm correlates with lower platelets and disease severity in MIS-C 257 

As we and others have observed, MIS-C is characterized by increased proinflammatory cytokines 258 

including IL-6, IL-18, IFN-γ and IL-17A (14, 15). However, comprehensive understanding of the 259 

correlation between immune perturbations, cytokines and clinical or laboratory parameters has not 260 

been clearly elucidated (15). To determine biomarkers for severity, we studied the correlation of 261 

chemokine and cytokine profiles with clinical manifestations, clinical laboratory parameters and 262 

multiparametric immune cell characterization, establishing one on one comparisons using non-263 

parametric Spearman correlation. Furthermore, these results were contrasted with COVID-19 and 264 

febrile controls to determine whether the identified associations were unique to MIS-C.  265 

As expected, we identified T lymphocyte activation markers (CD4+CD69+, CD8+CD69+, CD4+HLA-DR+, 266 

CD8+HLA-DR+), correlated with increased lymphocyte-cytokine expression (CD4+IFN-γ+, CD8+IFN-γ+, 267 

CD4+TNF-α+, CD8+TNF-α+) (Figure 3A). Interestingly, we observed a correlation between higher levels 268 

of CCL5, a lower cytokine milieu and higher platelet numbers and WBC which was not identified in 269 

febrile controls or COVID-19 suggesting this is a unique feature of MIS-C (Figure 3A, Sup. Fig 5,6).  270 

Patients with shock showed significantly higher levels of CXCL9, IL-10, CXCL8, CXCL10, IL-6 and IL-271 
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18, and lower levels of free IL-18 (Figure 3A-B), Sup. Fig 7E). Overall, this data suggests MIS-C is 272 

characterized by T cell activation and cytokine storm that determines severity. 273 

 274 

Biomarkers of different clinical features and organ involvement in MIS-C 275 

To identify biomarkers of different MIS-C phenotypes, we studied the correlation between immune 276 

parameters and specific clinical manifestations including specific organ involvement or KD-like 277 

symptoms. A previous study comparing MIS-C with pediatric COVID revealed lower platelet numbers 278 

in MIS-C patients (39). We observed MIS-C patients with shock had significantly lower platelet 279 

numbers than patients without shock, despite they were mostly within the normal range (normal 280 

range:140,000-400,000) (Sup. table 3). This is in line with previous observations showing an 281 

association between reduced platelets and disease severity in MIS-C as well as in COVID-19 (13, 40).  282 

While higher IL-6, IL-10, CXCL9, and CXCL10 correlated with pericardial effusion (Figure 4A), no 283 

significant associations were identified for heart failure, defined as ejection fraction below 55%. 284 

Neurologic and renal involvement were associated with higher IL-1β and higher perforin levels in 285 

NK cells, respectively. We did not identify biomarkers for respiratory involvement, probably due to 286 

the low frequency of respiratory symptoms in our cohort (Figure 4B). Biomarkers of neurologic, and 287 

renal involvement found in MIS-C differ from COVID-19 and febrile controls, suggesting these 288 

correlations are exclusive for MIS-C (Sup. Fig 5,6).  289 

We identified that KD-like MIS-C is characterized by higher HLA-DR+ expression in non-classical 290 

monocytes, higher CD69+ and IFN-γ+ expression in CD8+ T cells and higher CXCL8, a chemokine with 291 

a potent chemotactic activity for monocytes and neutrophils (Figure 4C, Sup. Fig 7F).  292 

 293 

Gastrointestinal (GI) involvement was present in 90% of our cohort, however we did not find 294 

correlation between any immune parameter and GI involvement. ACE-2 serves as a receptor for 295 
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SARS-CoV-2 entry and although a higher expression of ACE-2 in children's GI tract has been 296 

proposed, the mechanisms underlying GI involvement in MIS-C are poorly understood. Neopterin is 297 

released by macrophages upon IFN stimulation and is involved in redox reactions (41). Increased 298 

neopterin levels in patient´s serum and feces are associated with severity in COVID-19 (42, 43). Our 299 

results show that, MIS-C patients have significantly higher neopterin levels and a trend to higher 300 

ACE-2 levels in their stools than COVID-19 patients. We identified that higher levels of neopterin 301 

correlated with lower levels of ACE-2 in MIS-C patients, which could be associated with a 302 

downregulation of ACE-2 after SARS-CoV-2 exposure (45). In addition, we found that higher 303 

neopterin levels in stools, were associated with mixed cardiac shock suggesting a link between 304 

intestinal inflammation and cardiac dysfunction (Figure 4D).   305 

 306 

Convalescent MIS-C patients show lower IFN-γ+ memory T cells and higher titer of neutralizing 307 

antibodies than convalescent COVID-19 patients.   308 

Cellular immunity is crucial to provide long-term protection, thus it is important to determine if 309 

convalescent MIS-C patients develop sustained cellular immune responses to SARS-CoV-2. To 310 

determine T cell-specific responses, we performed ELISPOT and flow cytometry in PBMC stimulated 311 

with SARS-CoV-2 protein and compared with convalescent COVID-19 pneumonia patients after 6 312 

months of disease presentation. Because memory T cell subsets change with age, we included 313 

unvaccinated age-matched controls who were recruited at the beginning of the pandemic (most 314 

probably naïve to SARS-Co V2). While we identified SARS-CoV-2 specific memory T cells in both MIS-315 

C and COVID-19 convalescent patients (Figure 5A), MIS-C patients showed consistently lower levels 316 

of IFN-γ by flow cytometry and Elispot (Figure 5B-C). We used UMAP to compare convalescent MIS-317 

C and COVID-19 patients, age matched individuals were used as controls. This analysis determined 318 

that most UMAP differences between convalescent MIS-C and COVID-19 patients were attributable 319 
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to age (Figure 5C). Interestingly, we identified a cluster of interferon gamma secreting CD3+CD4-CD8-320 

CD45RA-CCR7+ T cells that were exclusive to MIS-C convalescent patients (Sup. Fig. 8). Nevertheless, 321 

neutralizing antibody levels were higher in convalescent MIS-C than COVID-19 patients (Figure 5E-322 

G). All together, these results suggest convalescent MIS-C patients could have lower SARS-CoV-2-323 

specific IFN-γ+ memory T cell responses, despite strong T cell activation in the acute setting, however 324 

they still have neutralizing antibodies 6 months after presentation. 325 

 326 

DISCUSSION 327 

Immune characterization of MIS-C patients and correlation with distinct clinical features and 328 

outcome is crucial to further understand this recently identified disease. In this study, 329 

immunophenotyping and clinical characterization of 42 Latin American MIS-C patients revealed 330 

biomarkers that differentiate MIS-C from acute COVID-19 and other febrile conditions in pediatrics. 331 

We also identified biomarkers for severity and for specific clinical features illuminating underlying 332 

immune mechanisms of disease.     333 

Immune signatures of MIS-C overlap with severe adult COVID-19 (15, 16). In accordance with 334 

previous studies, we observed that MIS-C is characterized by a marked elevation of a milieu of 335 

inflammatory cytokines and chemokines (14, 15, 17), identifying CXCL9, IL-10, CXCL8, CXCL10, IL-6 336 

and IL-18 as biomarkers of disease severity. As proposed by Rivas et al, spike protein has a structural 337 

similarity with staphylococcal enterotoxin B and has been postulated to act as a superantigen, 338 

interacting with MHC class II and TCR molecules to trigger a cytokine storm and subsequent 339 

inflammation, proposing this as a driver of cytokine storm in MIS-C (46, 47). While CCL5 elevation is 340 

not specific to MIS-C, and it is also elevated in COVID-19 and other febrile conditions, we identified 341 

that higher levels of CCL5 in the context of MIS-C were associated to a lower cytokine milieu, higher 342 

platelet levels and WBC. This is in line with previous observations associating higher CCL5 levels with 343 
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milder acute COVID-19 (48). CCL5 induces recruitment of basophils, neutrophils, T cells, NK cells and 344 

dendritic cells, promotes sustained CD8+ T cell responses, potentially contributing to enhance viral 345 

clearance in the acute setting (49-51). Furthermore, CCL5 has been suggested to participate in the 346 

increase of platelet counts in other diseases including idiopathic thrombocytopenic purpura and 347 

aplastic anemia, however, the mechanism for this finding is yet to be elucidated (52, 53). In this 348 

context, our results suggest that CCL5 could have a homeostatic role in MIS-C. 349 

Inflammatory biomarkers to distinguish MIS-C from other diseases with similar pathophysiology 350 

such as KD or MAS are crucial. Higher levels of CXCL9 are found in MIS-C as compared to KD or MAS 351 

(54). While increased CD14+ monocytes counts have been previously proposed as biomarkers of 352 

severe KD, we identified activated non-classical monocytes (CD14-CD16+HLA-DR+) distinguish 353 

Kawasaki-like MIS-C (55). Monocyte-derived cytokines can activate endothelial cells, recruit 354 

lymphocytes and monocytes contributing to endothelitis (56) and classical monocyte differentiation 355 

has been described in KD immunopathogenesis (57). Further exploration of monocytes in the 356 

context of MIS-C could contribute to understand KD immunopathogenesis. Unfortunately, we did 357 

not measure HLA-DR expression in monocytes of convalescent MIS-C patients to evaluate whether 358 

this dysregulation is persistent.  Similar to previous reports, we did not identify an association 359 

between KD-like MIS-C and disease severity or cardiac involvement (58).  360 

Fecal neopterin is elevated in patients with active intestinal inflammation including Crohn’s disease 361 

and acute viral infection (44). We found higher neopterin levels in fecal samples of MIS-C patients, 362 

most frequently in those with gastrointestinal involvement, suggesting an inflammatory nature for 363 

this clinical manifestation. A trend to higher ACE-2 levels was identified in fecal samples of MIS-C 364 

patients. ACE-2 converts angiotensin I to angiotensin II and is key for homeostasis in renin-365 

angiotensin-aldosterone system (RAAS) (59). In this context, down-regulation of ACE-2 could 366 

imbalance RAAS, resulting in enhanced inflammation (45, 60). Our results showing a negative 367 
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correlation between ACE-2 and neopterin levels are in line with this observation and suggest the 368 

possibility of RAAS dysregulation contributing to gut inflammation in MIS-C. 369 

Interestingly, we observed consistently lower NK cell degranulation in MIS-C patients in agreement 370 

with a previous study showing a dysregulation of cytotoxic cells characterized by exhausted CD8+ 371 

lymphocytes and CD56dimCD57+ NK cells (61). Persistently lower NK cell degranulation in 372 

convalescent MIS-C patients suggests the possibility of an underlying NK cell defect as a predisposing 373 

factor for MIS-C, similar to what has been described for other diseases including hemophagocytic 374 

lymphohistiocytosis or KD (61-64). Although we did not test viral clearance in this study, we 375 

hypothesize that the identified defect in NK cell degranulation could lead to ineffective viral 376 

clearance promoting sustained T cell stimulation triggering post-infectious inflammation as 377 

previously suggested (65, 66). To our knowledge, this is the first report identifying a persistent NK 378 

cell defect in MIS-C and further research is required to clarify the role of NK cells on 379 

immunopathogenesis of this disease. 380 

We observed that MIS-C patients mounted protective immune responses to SARS-CoV-2 showing 381 

specific memory T cells and neutralizing antibodies against SARS-CoV-2. Once a positive cellular 382 

immune response is identified, it is unclear if different IFN-γ levels measured in vitro correlate with 383 

different levels of clinical protection and although MIS-C patients had lower levels of specific IFN-γ 384 

production, to date none of the patients in our cohort has suffered a second episode of clinically 385 

evident COVID infection or MIS-C.  386 

Surprisingly, we identified a cluster of double negative T cells in convalescent MIS-C patients, similar 387 

to the expansion of double negative T cells after HIV infection (67). Patients with autoimmunity such 388 

as systemic lupus erythematosus or autoimmune lymphoproliferative syndrome are also 389 

characterized by high circulant levels of pro-inflammatory double negative T cells (68, 69). The role 390 
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of these cells in triggering an inflammatory environment in convalescent MIS-C and further 391 

characterization of this cluster requires further exploration. 392 

Immune characterization of our MIS-C cohort provides valuable insights in understanding immune 393 

dysregulation in MIS-C and allowed the identification of biomarkers for disease severity and specific 394 

clinical features. 395 
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Table 1. Clinical characteristics of Chilean MIS-C cohort with 42 patients. 609 

 610 

* No PCR available in one patient, his mother had positive PCR. Abbreviations as follows: IVIG, 611 

intravenous immunoglobulin; MAS, macrophage activation syndrome 612 

  613 

 COUNT PERCENTAGE (%) 

Clinical manifestations 

Fever 41 98 

Shock 25 60 

Cardiac Involvement 26 62 

- Coronary dilation 5 12 

- Pericardial effusion 17 40 

- Myocarditis 15 36 

- Ventricular dysfunction (EF<55%) 11 21 

Cutaneous involvement 22 52 

MAS 1 2 

GI involvement 38 90 

KD-like 28 67 

Renal (AKI) 11 26 

Neurologic 16 38 

Respiratory 8 19 

Death 1 2 

Support 

ICU 33 79 

IMV 14 33 

ECMO 1 2 

Inotropes 17 40 

Treatment 

IVIG 32 76 

Solumedrol  34 81 

Oral Prednisone 32 76 

Tocilizumab 3 7 

Infliximab 1 2 

Heparin 32 76 

Aspirin 31 74 

SARS-CoV-2*    

Positive PCR 9 21 

Indeterminate PCR 3 7 

Positive IgG or IgM (Serology) 38 90 

Positive PCR or serology 42 100 

6 months follow-up   

No sequalae 40 95 

Persistent coronary aneurism 1 2 

Chron’s disease 1 2 
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FIGURE LEGENDS  614 

Figure 1. Patient characteristics and clinical follow-up. A) Percentage of patients that presented 615 

shock and specific types of shock. B) Percentage of patients with Kawasaki-like symptoms. C) 616 

Treatment of patients and follow-up.  617 

Figure 2. T cell activation, NK cell defect and elevated inflammatory cytokines in MIS-C patients.  618 

(A) Memory T cells evaluated in blood using flow cytometry in: MIS-C n=28, COVID-19=21, HD=6 and 619 

FC=14. (B) T cell activation evaluated in blood using flow cytometry using HLA-DR+ T marker for MIS-620 

C n=28, COVID-19 n=21, HD n =6 and FC n=14 and CD69+ T cells: MIS-C n=28, COVID-19 n=21, HD 621 

n=6 and FC n=14. (C) T-cell cytokine expression evaluated using flow cytometry in MIS-C n=19, 622 

COVID-19 n=21, HD=6 and FC n=12. (D) Monocyte subsets evaluated in blood using flow cytometry 623 

in MIS-C n=13, COVID-19 n=20, HD n=6 and FC n=7 (E) Activated monocytes evaluated in blood using 624 

flow cytometry in same individuals as in (D). (F) Cytokines levels in serum measured by ELISA in MIS-625 

C n=19, COVID-19 n=21, HD=6 and FC=12 (G) NK cells cytotoxicity and cytokines evaluated in blood 626 

using flow cytometry in MIS-C=19, COVID-19=21, HD=6 and FC=12. HD: healthy donors, MIS-C: 627 

acutely ill MIS-C patients, COVID-19: acute adult COVID-19 patients, FC: febrile controls, MIS-C-628 

Conv: Convalescent MIS-C samples after 6 months of disease onset. Mann-Whitney comparisons, 629 

*p<0.05. 630 

Figure 3. Cytokine storm correlates with lower platelets and disease severity in MIS-C.  631 

A) Heat map of all parameters evaluated in MIS-C patients using Spearman correlation. Number of 632 

MIS-C samples tested for each parameter is shown in Figure 2. B) Volcano plot showing differences 633 

of parameters evaluated with MIS-C patients with and without shock, each dot represents one 634 

parameter. Number of MIS-C samples tested for each parameter is shown in Figure 2. Significant p-635 

values are shown above the blue line with red dots. Comparison of each parameter was done with  636 
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Mann-Whitney test, significant p-value was considered:  p<0.05. Abbreviations: HD: healthy donors, 637 

MIS-C: acutely ill MIS-C patients, COVID-19: acute adult COVID-19 patients 638 

Figure 4.  639 

Biomarkers of organ involvement and KD features in MIS-C. Volcano plots showing correlation of 640 

parameters evaluated with clinical manifestations of MIS-C patients, each dot represents one 641 

parameter. Number of MIS-C samples tested for each parameter is shown in Figure 2. Significant 642 

correlations are shown above the blue line with red dots. Volcano plots of differences between 643 

parameters of patients with or without A) heart involvement: pericardial effusion and heart failure.  644 

B) Neurological, renal and respiratory involvement C) Volcano plot comparing differences between 645 

parameters of MIS-C patients with or without Kawasaki-like symptoms. Violin plots comparing T-646 

cells, monocytes and CXCL8 in HD, and MIS-C patients with or without KD-like symptoms.  (volcano 647 

plots and violin graphs comparing with HD D) Volcano plot comparing differences between 648 

parameters of MIS-C patients with or without GI involvement. Violin plots comparing ACE-2 and 649 

neopterin levels from feces samples using ELISA in MIS-C n=30 and COVID-19 n=10 patients. Volcano 650 

plot comparing differences between parameters of MIS-C patients with distributive shock and 651 

mixed/cardiac shock. . Abbreviations: HD: healthy donors, MIS-C: acutely ill MIS-C patients, COVID-652 

19: acute adult COVID-19 patients, KD-like: Kawasaki-like, GI: Gastrointestinal, All comparisons were 653 

performed using Mann-Whitney test, significance p<0.05.  654 

 655 

Figure 5. Cellular immune response in PBMCs from convalescent COVID-19 and MIS-C patients. (A) 656 

CD4+ and CD8+ memory T cells subsets of healthy donors (HD), convalescent COVID-19 and MIS-C 657 

patients upon stimulation with SARS-CoV-2 Spike protein normalized by unstimulated PBMCs. (B) 658 

IFN-γ+ CD4+ and CD8+ memory T cells subsets of convalescent COVID-19 and MIS-C patients upon 659 

stimulation with SARS-CoV-2 Spike protein, normalized by unstimulated PBMCs. Dotted line 660 
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represents value of 1. (C) Violin plot of IFN-γ-secreting cells using ELISPOT. (D) UMAPs with 4 adult 661 

healthy donors, 3 healthy children controls sampled at the beginning of pandemic (unvaccinated no 662 

COVID contact documented) 13 convalescent MIS-C and 12 convalescent COVID-19 concatenated 663 

samples (E) Neutralizing antibodies titration of convalescent COVID-19 n=20 patients (F) 664 

Neutralizing antibodies titration of convalescent MIS-C n=18 patients. G) Neutralizing antibodies 665 

1/IC50 comparison between convalescent MIS-C and COVID patients. Abbreviation as follows: MIS-666 

C-Conv: Convalescent MIS-C, sampled after 6 months of disease onset. COVID-19-Conv: 667 

Convalescent COVID-19 sampled after 6 months of disease onset Mann-Whitney comparisons, 668 

*p<0.05 669 
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