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ABSTRACT

RNA interference through expression of short
hairpin (sh)RNAs provides an efficient approach
for gene function analysis in mouse genetics.
Techniques allowing to control time and degree of
gene silencing in vivo, however, are still lacking.
Here we provide a generally applicable system for
the temporal control of ubiquitous shRNA expres-
sion in mice. Depending on the dose of the inductor
doxycycline, the knockdown efficiency reaches up
to 90%. To demonstrate the feasibility of our tool,
a mouse model of reversible insulin resistance was
generated by expression of an insulin receptor
(Insr)-specific shRNA. Upon induction, mice develop
severe hyperglycemia within seven days. The onset
and progression of the disease correlates with the
concentration of doxycycline, and the phenotype
returns to baseline shortly after withdrawal of
the inductor. On a broad basis, this approach will
enable new insights into gene function and mole-
cular disease mechanisms.

INTRODUCTION

The application of Cre/loxP recombination has refined
the tools for manipulating the mouse genome, allowing to
determine site and timing of gene alteration in the living
animal (1,2). An inherent feature of these recombinase-
based approaches, however, is a non-reversible gene
switch that does not allow modulating gene expression
in a given cell. In addition, the derivation of conditional
mouse mutants is costly and time consuming due to
extensive vector construction, ES cell manipulation and
breeding. The finding that stably expressed short hairpin

(sh) RNAs can mediate potent gene knockdown in
transgenic animals opened the opportunity to reduce
time and effort for the generation of genetically modified
mouse models significantly (3–5). Conditional, RNAi-
mediated gene knockdown in mice has been introduced
by using Cre/loxP for tissue-specific control of shRNA
expression (6–8). In contrast, temporal control of shRNA
expression in transgenic animals has not been demon-
strated so far.
Type 2 Diabetes mellitus is a growing problem to public

health, affecting more than 5% of western populations.
Progressive, late onset insulin resistance and inadequate
compensation through insulin secretion from pancreatic
b-cells leading to fasting hyperglycemia characterizes
the course of the disease. Efforts of the pharmaceutical
industry focus on the development of small molecules that
increase the sensitivity of insulin receptor signaling (9).
Here, animal models of insulin resistance are essential
tools for understanding the molecular basis of the disease.
Furthermore, drug target validation and evaluation of test
compounds in appropriate disease model mice support
the drug discovery process. The use of current genetic
mouse models of type 2 diabetes is not optimal for this
purpose as they do not allow modulating the onset and
the degree of systemic insulin resistance, and the genetic
modifications are not reversible (10,11). The first aspect is
particularly important for developing therapeutic inter-
ventions during the early phase of the disease, whereas the
latter would allow dissecting acute effects of insulin
resistance from late diabetic symptoms such as neuro-
pathy and arteriosclerosis. As the current technologies for
gene manipulation do not facilitate these aspects, we
established a new approach for temporal modulation of
gene expression in vivo.
In cultured cell lines, inducible expression of antisense

or shRNAs has been achieved by using engineered, RNA
polymerase III-dependent promoters containing operator
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sequences (tetO) of the E. coli tetracycline resistance
operon (12–15). Binding of the tetracycline resistance
operon repressor (tetR) to tetO blocks transcription,
whereas de-repression is achievable by adding the inductor
doxycycline (dox), causing release of TetR. Here we show
that a codon optimized tet repressor, but not the wt
coding region as employed in previous attempts, facilitates
tight control of RNAi in different cell types and
throughout development of transgenic mice. We found
efficient, doxycycline-inducible silencing of both, a
luciferase reporter and the insulin receptor gene, reaching
80–90% repression in most tissues. By introducing single-
vector-constructs into the ES cell genome via recombinase
mediated cassette exchange (RMCE) and applying tetra-
ploid blastocyst complementation we demonstrate the
rapid generation of a reversible mouse model of type 2
Diabetes mellitus within 3 months.

MATERIALS AND METHODS

Rosa targeting and exchange vectors

Rosa26 Rluc vector: The Renilla luciferase gene (Promega)
was inserted into the rosa26 targeting vector (5) 30 of the
splice acceptor site. ShRNA cassettes were inserted 30 of
the Renilla luciferase gene.
ShRNA cassettes: The U6- and the H1-promoter

fragments were amplified from human genomic DNA
using a 30 primer containing the tet-operator sequences
(bold: TATA-box, underlined: tet-operator):
H1-tet: gaaatgtctttggatttgggaatcttataagtccctatcagtgatag

agattccc
U6-tet: gaaagtatttcgatttcttggctttatatatctccctatcagtgatag

agaaag
Both fragments were cloned 50 of the Fluc-specific

shRNA (16), followed by five thymidines as termination
signal. Inducible shRNA expression cassettes were
flanked by two loxP-sites (lox) to allow cre-mediated
deletion.
Reporter configuration (Figure 1B): The firefly luciferase

gene (Promega) was inserted into the rosa26-targeting
vector (17) followed by the CAGGS-tetR cassette and a
PGK-hygromycin resistance gene.
Reporter configuration carrying itetR: Similar config-

uration as the reporter configuration described above,
except that the tetR coding region is replaced by the codon
optimized tet-repressor gene (itetR (18)).
ShRNA test vectors: The following shRNA sequences

against the Insr mRNA (NM_010568) together with five
thymidines for transcript termination were cloned 30 of
pH1tetO:

IR1: agtccgcatcgagaagaatattcaagagatattcttctcgatgcggact
IR2: atcgagaagaataatgagctttcaagagaagctcattattcttctcgat
IR3: actacattgtactgaacaattcaagagattgttcagtacaatgtagt
IR4: agggcaagaccaactgtcctttcaagagaaggacagttggtcttgccct
IR5: agaccagacccgaagatttcttcaagagagaaatcttcgggtctggtct
IR6: agcctggctgccaccaatacttcaagagagtattggtggcagccaggct

The resulting vectors are called pIR1-pIR6�pIR5-tet
exchange vector (Figure 3A). The vector contains the F3
site and the FRT site in a similar configuration as

described before (5). pIR5-tet was generated by insertion
of the H1-tet-IR5 fragment from pIR5 into MCS of
pINV-2 containing the following elements in 50 to 30

direction: synthetic polyA signal, F3-site, neomycin-
resistance gene lacking the start ATG, hgH polyadenyla-
tion signal, MCS, CAGGS promoter (19), the codon
optimized tet-repressor gene, synthetic polyA signal,
FRT-site.

pFluc-tet exchange vector (Figure 2A): Similar config-
uration as the pIR5-tet exchange vector, except a Fluc-
specific shRNA (16) instead of IR5.

Cell culture

ES cell culture was carried out as described before (20).
Transfection of Art4.12 ES cells carrying the FRT/F3
configuration at rosa26 was performed as described (5).

Doxycycline treatment of ES cells. Cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) containing
10% fetal calf serum (FCS), 4500mg/l glucose, 1� non-
essential amino acids and 1 mg/ml doxycycline (Sigma
D-9891) for 48 h. Medium containing doxycycline was
prepared and changed every day.

Transient transfection of muscle cells. C2C12 myoblasts
were grown at 378C/5% CO2 in DMEM containing 10%
FCS, 4500mg/l glucose and 1� non-essential amino acids
(GIBCO BRL). Transfection studies were carried out
with 1.35� 105 cells plated on a 6-well plate. Cells were
transfected with 2.5 mg DNA (1.25 mg GFP-vector þ

1.25 mg of either shRNA expression vector pIR1 to 6).
DNA was mixed with 10 ml Lipofectamin (Invitrogen,
#18324-111) and 200 ml Optimem (Gibco BRL, #51985-
026) and incubated for 45min at RT. For transfection,
cells were washed with 1� PBS and incubated for 5 h in
2ml starving medium containing the Optimen-DNA-
Solution. After 5 h, medium DMEM with 20% FCS was
added to the cells. Twenty four hours after transfection,
cells were washed with 1�PBS and fixed with methanol
for 3min, washed with 1� PBS and dried. Cells were
stained with DAPI in Vectashield (Vector). Cells were
analyzed for GFP expression and transfection efficiency.

Mice

All animal studies were approved according to the
German Animal Welfare Act. Mice were kept in the
animal facility at Artemis Pharmaceuticals GmbH in
microisolator cages (Tecniplast Sealsave). B6D2F1 mice
for the generation of tetraploid blastocysts were obtained
from Harlan, NL.

Doxycycline treatment. Solutions containing 2mg/ml
doxycycline (Sigma D-9891), 10% sucrose or 20 mg/ml
doxycycline, 1% sucrose or 2 mg/ml doxycycline, 0.1%
sucrose in drinking water were prepared every second day
and kept dark.

Luciferase detection

Organs were homogenized at 48C in lysis buffer (0.1M
KH2PO4, 1mM DTT, 0.1% Triton X-100) using a tissue
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grinder and centrifuged for 5min at 2000� g (48C).
Supernatant was assayed for Fluc activities using the
Dual Luciferase Assay (Promega, Inc.) according to the
manufacturer’s protocol. The luminescence was detected
using a Lumat LB 9507 (EG&G Berthold). Relative values
of firefly luciferase activity in different organs are given as
indicated. All values of Fluc activity were normalized by
using the Rluc activity for reference.

Protein isolation

Cells were lysed in protein extraction buffer containing
1% Triton X-100, 0.1% SDS, 10mM Tris-HCl pH 7.4,
1.25mM Tris Base, 10mM EDTA, 50mM NaCl, 50mM
NaF, 50 mg Aprotinin. Protein concentration was calcu-
lated according to Warburg–Christian.

Western blot

Proteins were fractionated on a 10% SDS-PAGE gel and
semi-dry blotted for 30min at 200mA. Primary antibodies:
aINSR (Rb (C-19) #sc-711, Santa Cruz Biotechnology)

was diluted 1:200, aAKT (AKT/Proteinkinase B: AKT
#9272, Cell Signaling Technology) 1:1000, tet02 (Mobitec,
#tet02) 1:500 and b-Actin 1:500 (Santa Cruz
Biotechnology #sc-47778) in TBS containing 2% milk
powder. Goat anti-rabbit IgG (whole molecule)-peroxi-
dase (Sigma, #A6154-1ML) was used as secondary anti-
body to detect INSR and AKT. For detection of tetR and
b-Actin, goat anti-mouse IgG (Mobitec #A1-900) was
diluted 1:1000 in 2% MP/TBS and detected using ECL
reagents (Amersham, #RPN 2105).

RNA isolation

Total RNA was isolated with peqGOLD TriFast
(peqLab, #30-2020) using 2.5ml for a confluent grown
10-cm plate. Cells were centrifuged for 15min at 13 000
r.p.m. and 48C. Supernatant was transferred in a
siliconized 2ml Eppendorf tube and 0.3� volume
Chloroform was added to the supernatant. The solution
was mixed and centrifuged for 15min at 13 000 r.p.m.
and 48C. The supernatant was transferred into a new
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Figure 1. Schematic representation of the inducible system and gene targeting strategy. (A) Principle of tetR-mediated control of shRNA expression.
Transcription of the RNA polymerase III-dependent promoter is blocked in cells expressing the tet repressor (tetR). Upon induction by doxycycline,
tetR is removed from the tet-operator sequences (tetO) inserted into the promoter, allowing transcription of shFluc. ShRNA expression leads to
RNAi-mediated knockdown of the target gene firefly luciferase. Renilla luciferase is used for reference to quantify firefly luciferase activity.
(B) Scheme of the targeting strategy. ShRNA and reporter constructs were independently inserted into the rosa26 locus by homologous
recombination in ES cells. Genes encoding the Renilla (Rluc) and firefly luciferases (Fluc) along with an adenovirus splice acceptor sequence and a
polyadenylation signal (pA) were placed downstream of the endogenous rosa26 promoter. The Fluc-specific shRNA is expressed under the control of
the U6-tet or H1-tet promoter, and terminated by five thymidines (shRNA). The loxP-sites flanking the shRNA expression cassettes were used to
generate a negative control through cre-mediated recombination in ES cells. (C) Southern blot analysis of genomic DNA from transfected ES cell
clones containing the shRNA- (lane #1 and #2) or the reporter-constructs (lanes #3 and #4). Homologous recombination at the rosa26 locus is
detectable by using EcoRV-digested genomic DNA and probe 1, resulting in a 11.7 kb band for the wt and a 2.5 kb band for targeted allele.
E: EcoRV; X: XbaI; neo: FRT-flanked neomycin resistance gene; hyg: FRT-flanked hygromycin resistance gene. (D) Western blot analysis from
protein extracts of ES cells expressing either the wt tetR or the itetR using tetR- or b-Actin-specific antiserum. Control: protein extracts from wt ES
cells.
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siliconized 1.5ml tube and protein was precipitated by
adding the same volume of isopropanol. RNA was
subsequently dissolved in DEPC-H2O.

Northern blot

A 30mg RNA was fractionated on a 15% denaturating
polyacrylamide gel and blotted on a nylon membrane at
3.3mA/cm2 for 35min. RNA was cross-linked to the
membrane using UV-light and incubated at 808C for
30min. The membrane was subsequently incubated for
2h in 10ml pre-hybridization solution and labeled using
radioactive, oligo probes against antisense strand of shRNA-
IR5 (gaccagacccgaagatttct) and against 5srRNA (tcctgcaatt-
cacattaattctcgcagctagc). A 10 U T4-Polynucleotide-kinase
(NEB) and 10mCi g- (32P)-ATP (10UmCi/ml) were used for
probe labeling.

Reverse transcription

cDNA was synthesized using the Reverse Transcription
Core Kit (Eurogentec). A real-time reaction of 20 ml
contained the following components: 1 ml cDNA, 1 ml
Probe (aInsr, Mm 00439693-m1), 8 ml DEPC-H2O and
10 ml qPCR Mastermix Plus (Eurogentec). Real-time PCR
reactions were performed using an iCycler Thermal cycler
instrument (Bio-Rad).

Measurement of insulin levels in plasma

Plasma mouse insulin levels were determined by
using the Insulin Mouse Ultrasensitive ELISA kit
(DRG Diagnostics) according to the manufacturer’s
protocol.
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Figure 2. Efficiency of H1/U6-shRNA-mediated firefly luciferase (Fluc) knockdown in mice expressing the codon-optimized tetR. Each configuration
(control, H1-tet shRNA, U6-tet shRNA) was analyzed using two to four mice at the age of 8–10 weeks, respectively. Percentages of
shRNA-mediated repression of firefly luciferase activity with standard error of the mean are shown for untreated controls (gray bars) and in animals
upon 10 days feeding with 2mg/ml doxycycline in the drinking water (white bars). In negative control animals (black bars), the shRNA expression
cassettes are removed through cre-mediated recombination. Relative values of relative firefly luciferase expression level in different organs were
calculated by using Renilla luciferases activities for reference. (A) H1-tet promoter-driven shRNA expression. (B) shRNA expression through the
U6-tet promoter.
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RESULTS

Establishing a configuration for inducible shRNA
expression in mice

We inserted tetO sequences 30 of the TATA box of the
human H1- and U6-promoter (H1-tet, U6-tet), similar to
the constructs described in two recent publications (12,13).
Both promoter constructs were tested using a dual
reporter system consisting of firefly luciferase (Fluc) as a
test substrate and Renilla reniformis luciferase (Rluc) as a
reference (Figure 1A). A firefly-luciferase-specific shRNA
sequence (16) under the control of either H1-tet or U6-tet
along with the luciferase reporter constructs and a gene
encoding a codon-optimized version of tetR (itetR (18))
were introduced into the Rosa26 locus through homo-
logous recombination in embryonic stem (ES)-cells
(Figure 1B and C).

We have chosen rosa26 for this purpose as this locus
mediates ubiquitous transgene expression in vivo using
RNA polymerase II- as well as RNA polymerase III-
dependent promoters (5,17). In contrast to random
transgenesis that often results in variable transgene
expression due to copy number, configuration and
integration site, we expected this strategy to facilitate an
optimal shRNA expression.

Recombinant ES cells were injected into blastocysts and
chimeric mice were obtained upon transfer of blastocysts
into pseudopregnant females using standard protocols (20).
The activity of firefly luciferase was determined in
different organs of the resulting mice. While the U6-tet
promoter showed residual activity even in the absence of
inductor (Figure 2B), regulation of H1-tet appeared tight
in all organs (Figure 2A). The activity of H1-tet was
undetectable before induction, but mediated a similar
pattern of RNAi in the presence of doxycycline as the
wild-type (constitutive) human H1 promoter in all
tissues, except brain (Figure 2A, (5)). In brain of
doxycycline-treated animals, 50% knockdown was
reached (Figure 2A) in comparison to 80% silencing
achieved by employing the constitutive H1 promoter (5).
The limited activity of the inducible shRNA construct in
brain may reflect a lower local concentration of
doxycycline (21). A weak activity of the shRNA
construct was also seen in spleen and thymus
(Figure 2A and data not shown), which is in accordance
with similar results using the constitutive H1 promoter in
the same chromosomal context (5). The reason for this
phenomenon is unclear. In all other tissues, induction
with doxycycline resulted in efficient repression of firefly
luciferase activity, ranging between 50 and 90% gene
silencing (Figure 2A, white bars).

In previous experiments, we also tested the activity of
U6-tet and H1-tet using the wt tetR in a similar
configuration as described above (Figure 1B). Here we
detected a high degree background shRNA activity in the
absence of doxycycline, particularly in kidney and brain
(Figure S1). In other organs such as liver, muscle and
heart, leakiness seemed less pronounced, indicating that
limited expression of tetR might be the reason for the
incomplete block of RNAi in some tissues. Comparing
the expression level of wt and codon optimized tetR in

transfected ES cells by western blotting supported this
speculation (Figure 1D).

Generation of a reversible diabetes model

We next applied our H1-tet configuration for generating
an inducible mouse model of insulin resistance and type 2
Diabetes mellitus. Six different shRNA sequences directed
against the insulin receptor (Insr) mRNA were tested in
the INSR expressing muscle cell line C2C12 (22). shRNA
coding regions were cloned into the H1-tet expression
vector pH1tetO (pIR1 to pIR6) and transiently trans-
fected into C2C12 cells. Western blot analysis of protein
extracts derived from transfected cells revealed a strong
RNAi activity using constructs pIR5 and pIR6, leading
to 480% reduction of INSR expression (Figure S2).
The RMCE strategy (5) was subsequently adapted for
targeted insertion shRNA sequence #IR5 under the
control of the H1-tet promoter along with a constitutive
expression cassette encoding the codon optimized
itetR (Figure 3A). Recombinase mediated integration
resulted in490% correctly targeted ES cell clones upon
transfection of the exchange vector (Figure S3A).
Northern blot analysis of isolated ES cell clones showed
a high level of doxycycline-dependent shRNA expression
(Figure 3B), resulting in a �70% knockdown of Insr
mRNA as quantified by real-time PCR analysis
(Figure S3B).
Recombinant ES cell clones were injected into tetra-

ploid blastocysts (23) and 35 eight-week-old ES mice were
derived within three months. Transgenic ES mice harbor-
ing expression cassettes for inducible shRNA expression
were fed with increasing concentrations of doxycycline in
the drinking water for 10 days and the degree of INSR
knockdown was analyzed in liver, muscle, heart and
brain. Western blot analysis revealed a near-complete
removal of INSR in animals treated with 2mg/ml
doxycycline, whereas the expression of INSR in untreated
controls was unaltered (Figure 3C). In liver and heart,
20 mg/ml doxycycline was sufficient for inducing the
INSR knockdown. In contrast, 2 mg/ml doxycycline in
the drinking water had no effect on INSR expression
(Figure 3C).
As a consequence of INSR knockdown, mice displayed

signs of insulin resistance such as severe hyperglycemia.
Blood glucose levels reached a maximum of �500mg/dl at
day 9 when treated with 20 mg/ml and at Day 5 when
treated with 2mg/ml doxycycline in the drinking water
(Figure 3D), indicating a dosage-dependent progression of
the disease. In contrast, treatment with 2 mg/ml doxycy-
cline did not result in any change of blood glucose levels
(Figure 3D). Control animals expressing an unrelated
shRNA against firefly luciferase showed no alteration of
glucose homeostasis, even when treated with high
concentrations of doxycycline (Figure 3D). When crossed
to wild-type C57BL/6 animals, INSR knockdown mice
transmitted the shRNA transgene at mendelian ratios.
Upon induction with 20 mg/ml doxycycline, shRNA-
transgenic offspring displayed the same phenotype as
parental mice (data not shown), indicating that the
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oligonucleotide probes. (C) Doxycycline dose response of INSR knockdown in mice. IR5 transgenic animals were treated in the absence or presence
of 2 mg/ml, 20 mg/ml or 2mg/ml doxycycline for 10 days, as indicated. Protein extracts were prepared from various tissues and subjected to western
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transgenes are not silenced following germ-line
transmission.

Upon removal of doxycycline from the drinking
water, glucose levels declined within seven days and
serum insulin returned to normal levels after 14 days,
demonstrating the reversibility of the inducible
promoter (Figure 4A and B). In these animals, glucose
homeostasis was fully restored as confirmed by
glucose tolerance testing (Figure 4C). Accordingly,
discontinuation of doxycycline treatment resulted in the
reappearance of INSR protein in the liver within 21 days
(Figure 4D).

DISCUSSION

In this work, we describe a straightforward method for the
generation of drug-inducible knockdown mouse models.
Several key issues for the state-of-the-art development of
transgenic mice are addressed: (i) Reproducible transgene
expression is warranted by the well-characterized rosa26
locus. (ii) High targeting efficiency of transgene constructs
into the rosa26 locus is achieved by exploiting recombi-
nase-mediated cassette exchange. (iii) Minimization
of elaborated genetic modifications is allowed by a
one-, rather than a multi-vector expression cassette.
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(iv) Tight and reversible regulation of shRNA expression
is obtained by the usage of a codon-optimized tet-
repressor. (v) Rapid generation of mice without further
breeding is achieved by tetraploid embryo complementa-
tion. The type 2 diabetes mouse model described in this
article illustrates the capability of this technology.
The model for insulin resistance presented herein,

exhibits several advantages over existing ones (10,11).
First of all, induction of insulin resistance allows to
circumvent potential confounding developmental effects
or compensatory mechanisms altering the phenotype.
Moreover, the temporal control of insulin receptor
knockdown can provide further insights into the impact
of environmental factors prior to the onset of the disease.
Second, reversibility of hyperglycemia provides a unique
model to mimic the effect of an ideal pharmacological
intervention. Along this line, it has so far not been
established to what extent perfect control of metabolism
after onset of disease is successful to prevent occurrence
and/or progression of diabetic complications or lead even
to reversion of them. Therefore, this model will be of
central importance to gain better insights into not only
diabetic retinopathy, nephropathy, polyneuropathy, but
also macrovascular complications such as myocardial
infection and stroke. Third, the obvious doxycycline-
dependent reduction of insulin repressor expression can be
extended to carefully determine the critical threshold of
insulin action necessary to (i) induce a compensatory
increase in pancreatic b-cell secretion and (ii) the
occurrence of hyperglycemia. Thereby, these experiments
will help to define the therapeutic efficiency required for
reversal of clinically relevant insulin resistance. Finally,
the single-allele configuration of the transgene circum-
vents time- and cost-consuming crossing experiments and
makes it an ideal model for genetic screens for insulin
resistance modulations, i.e. in a sensitized ENU-screen.
Previous examples of doxycycline-inducible shRNA

expression were restricted to in vitro applications or gene
knockdown in tumor cells transplanted into nude mice
(15,24–27). The activity of such systems in selected cell
clones are not predictive for in vivo applications in which
a tight control of RNAi needs to be achieved in different
cell types and throughout development. In addition,
these approaches included random transgenesis or lenti-
viral infection (28), each resulting in clones with unique,
irreproducible shRNA expression patterns. Screening
of several cell lines was required, which is laborious
and time consuming. Therefore, these techniques, albeit
being useful for the particular experiment presented,
are not generally applicable for different biological
questions.
Here, we show that a codon optimized rather than the

wild-type tetR mediates tight control of the H1-tet
promoter when integrated at the rosa26 locus. ShRNA-
mediated gene knockdown is achieved within 10 days of
doxycycline treatment. The system appeared to be
reversible within 14 days after withdrawal of the inductor.
This is in accordance with previous observations that
saturation of a system with doxycycline is an intrinsically
faster process than depletion (21,29). The kinetics of
reversible gene modulation may be further improvable by

applying other tetracycline derivates with a shorter half-
life in vivo.

The targeted insertion of all elements required for
inducible shRNA expression into rosa26 using RMCE,
and the subsequent ES cell injection using tetraploid
blastocysts accelerate the generation of conditional knock-
down mice significantly: 2 weeks for cloning of the RMCE
exchange vector, 3 weeks for generating targeted ES cell
clones, 4 weeks for the generation of newborn mice.
Therefore, our system facilitates a rapid performance
of in vivo gene function studies, providing a generally
applicable tool for reverse mouse genetics research.
Moreover, it permits the investigation of the effect of
gene knockdown after the onset of a chronic or acute
disease. This aspect is of particular interest for pharma-
ceutical drug target validation, as inducible gene silencing
in mouse models of human disease can provide an ideal
surrogate for the treatment of patients with antagonistic
drugs. Even multiple dose regimes can be tested in
preclinical studies by applying several rounds of induc-
tion. Furthermore, reversible knockdown of drug targets
can help to distinguish target dependent from target
independent effects of drug action.

Taken together, the technology described provides a
novel, rapidly applicable approach for the inducible and
reversible analysis of gene function in mice, overcoming
the limitations of recombinase-based conditional gene
targeting.
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