
RESEARCH ARTICLE

Machine learning approach to predict

postoperative opioid requirements in

ambulatory surgery patients

Akira A. Nair1☯, Mihir A. Velagapudi2☯, Jonathan A. Lang3‡, Lakshmana Behara4☯,

Ravitheja Venigandla4‡, Nishant Velagapudi4‡, Christine T. Fong5‡, Mayumi Horibe6☯,

John D. LangID
5‡, Bala G. NairID

5*

1 Lakeside High School, Seattle, WA, United States of America, 2 Department of Electrical Engineering and

Computer Sciences, University of California, Berkeley, CA, United States of America, 3 Haverford College,

Haverford, PA, United States of America, 4 Perimatics LLC, Bellevue, WA, United States of America,

5 Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States of

America, 6 Department of Anesthesiology, VA Puget Sound Hospital, Seattle, WA, United States of America

☯ These authors contributed equally to this work.

‡ These authors also contributed equally to this work.

* nairbg@uw.edu

Abstract

Opioids play a critical role in acute postoperative pain management. Our objective was to

develop machine learning models to predict postoperative opioid requirements in patients

undergoing ambulatory surgery. To develop the models, we used a perioperative dataset of

13,700 patients (� 18 years) undergoing ambulatory surgery between the years 2016–

2018. The data, comprising of patient, procedure and provider factors that could influence

postoperative pain and opioid requirements, was randomly split into training (80%) and vali-

dation (20%) datasets. Machine learning models of different classes were developed to pre-

dict categorized levels of postoperative opioid requirements using the training dataset and

then evaluated on the validation dataset. Prediction accuracy was used to differentiate

model performances. The five types of models that were developed returned the following

accuracies at two different stages of surgery: 1) Prior to surgery—Multinomial Logistic

Regression: 71%, Naïve Bayes: 67%, Neural Network: 30%, Random Forest: 72%, Extreme

Gradient Boost: 71% and 2) End of surgery—Multinomial Logistic Regression: 71%, Naïve

Bayes: 63%, Neural Network: 32%, Random Forest: 72%, Extreme Gradient Boost: 70%.

Analyzing the sensitivities of the best performing Random Forest model showed that the

lower opioid requirements are predicted with better accuracy (89%) as compared with

higher opioid requirements (43%). Feature importance (% relative importance) of model pre-

dictions showed that the type of procedure (15.4%), medical history (12.9%) and procedure

duration (12.0%) were the top three features contributing to model predictions. Overall, the

contribution of patient and procedure features towards model predictions were 65% and

35% respectively. Machine learning models could be used to predict postoperative opioid

requirements in ambulatory surgery patients and could potentially assist in better manage-

ment of their postoperative acute pain.
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1. Introduction

Pain is a commonly reported symptom among patients after surgery [1,2]. However, the man-

agement of acute postoperative pain continues to be difficult for both the patients and the

health care providers. Patients with unrelieved postoperative pain are associated with slower

recovery, delayed ambulation and increased risks of infection and thromboembolism [3]. Fur-

ther, patients with poorly controlled postoperative pain are at higher risk of developing

chronic pain [4]. In addition to patient impact, there are also deleterious consequences of inad-

equate pain management for hospitals, including extended length of stay, increased risk of

readmission, and increased cost of care [3].

Opioids are often used to manage postoperative pain [5]. Despite their widespread use to

mitigate pain, opioid use is also associated with negative side effects including neurological

effects, respiratory depression, gastrointestinal effects, and pruritus [6]. For these reason, opi-

oid-sparing multimodal analgesic options are increasingly being adopted for optimal pain con-

trol in the perioperative setting [7]. Nevertheless, opioids still have a critical role in acute

postoperative pain management especially for procedures where a primary neuraxial, regional

or local infiltration is not possible.

Predicting postoperative pain levels and opioid requirements could facilitate proactive

strategies that can optimize pain control to avoid underuse or overuse of opioids. Towards

this, previous studies have retrospectively looked for predictors of postoperative pain and anal-

gesic consumption, identifying four significant predictors including age, type of surgery, anxi-

ety levels, and psychological distress [8]. Some of these studies have focused on specific types

of surgeries and patient population to determine factors associated with postoperative opioid

usage [9,10]. To date, a review of the published literature indicates the lack of rigorous research

pertaining to the identification of perioperative predictive factors for acute postoperative pain

and opioid requirements across a wide spectrum of surgeries. Furthermore, previous studies

used traditional statistical methods as opposed to trying machine learning, potentially limiting

their predictive abilities [11].

Recently, artificial intelligence methods such as machine learning have increasingly been

used in the medical field to predict clinical events [12]. Machine learning is particularly suited

to analyze large datasets, compute complex interactions, identify hidden patterns, and generate

actionable predictions in clinical settings. In many cases, machine learning has been shown to

be superior to traditional statistical techniques [13–18]. Machine learning models offer a

promising method to predict pain levels and opioid requirements following surgery. However,

the applications of machine learning in the context of opioids have been specific and limited in

scope, with attempts to predict opioid overdose risk among Medicare beneficiaries with opioid

prescriptions and inadequate pain management in patients suffering from depression as two

examples [19,20].

In this study, we developed machine learning models to predict postoperative opioid

requirements for a wide range of outpatient surgeries. The models were developed and vali-

dated using a large dataset comprised of patient, procedure and provider data. The models

were built to predict postoperative opioid requirements prior to surgery using preoperative

data and at the end of surgery using both preoperative and intraoperative data.

2. Materials and methods

Study setting

This study was approved by the University of Washington Institutional Review Board (IRB#

STUDY00002256). Requirement for patient consent was waived. Our academic medical center
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performs approximately 18,000 adult surgical procedures annually with ambulatory surgeries

comprising approximately 40–45% of the surgical volume.

Data sources

Patient and procedure information on ambulatory surgeries for 3 years (2016–2018) were

extracted from our institution’s perioperative information management system data ware-

house. Only adult (� 18 years of age) outpatients that received general anesthesia were

included. Patients who were on patient-controlled analgesics or who received non-opioid anal-

gesics in the post anesthesia care unit (PACU) were excluded. Additionally, patients who

remained intubated, or had a peripheral nerve block placed for postoperative pain manage-

ment were also excluded. The inclusion and exclusion criteria as well as the patient counts are

presented in Fig 1. The choice of data variables for model development was largely based on

prior literature that identified factors influencing postoperative pain levels or opioid consump-

tion [8,21–24]. Patient and procedure specific parameters prior to and during surgery were

considered to achieve the goal of developing models to predict postoperative opioid require-

ments both prior to and at the end of surgery. The summarized list of patient and procedure

specific variables used for model development is outlined in Table 1.

Data preparation

Several data preparation steps were performed prior to model development. Records with out-

lier data values and key missing data points were identified. They comprised only a small frac-

tion of the total number of records (<1%, N = 179). Hence, they were simply excluded from

model development.

Data elements relating to medical, social and psychiatric histories, were embedded in free

text fields in the electronic medical record (EMR). Standard natural language processing tech-

niques were used to generate modelling features from these free text data. Pain levels recorded

Fig 1. Inclusion and exclusion criteria used to select the cohort for the study are shown. The total count of patients, the number of exclusions and the

final count of patients are shown.

https://doi.org/10.1371/journal.pone.0236833.g001
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in the EMR were a combination of patient reported numeric rating (0 –no pain to 10 most

severe pain) or nurse assessed pain levels (none, mild, moderate and severe pain). For model-

ing purposes, numeric rating pain scores were normalized to pain levels (0: no pain, 1–3: mild

pain, 4–6 moderate pain and 7–10 severe pain) [25].

Administered opioids could be of different types and potencies. Therefore, Morphine Milli-

gram Equivalent (MME) representation was used to consolidate the opioid doses into a single

normalized value [26–28]. The MME conversion ratios used for the study are tabulated in S1

Table. Numeric MME values are less practical to interpret and act in a clinical setting than cat-

egories of opioid requirements that correspond to pain levels. Hence, we proceeded to catego-

rize the MME values into four compartments of opioid requirement–None/very low, low,

medium and high. This categorization was based on the average MME opioids used when the

pain levels were none, mild, moderate and severe. The mean MME requirements for no, mild,

moderate and severe pain levels are shown in Table 2. The average value of MME requirements

for adjacent pain levels were used to determine the MME ranges of opioid requirement catego-

ries. MME ranges for the opioid requirement categories were: None/very low (0–3 MME), low

Table 1. Parameters used in prediction models. The parameters marked in green were used for postoperative opioid

requirements prediction prior to surgery and parameters marked in blue were added to the prediction models to per-

form a postoperative opioid requirements prediction at the end of surgery.

Patient specific parameters Procedure specific parameters

Age Surgical specialty

Gender Procedure type (scheduled)

Body Mass index (BMI) Procedure duration (estimated)

Race Preoperative holding area opioids

ASA physical status Preoperative holding area other drugs (Acetaminophen, Gabapentin,

Celecoxib)

Medical history or anomalies Preoperative pain levels

• Cardiac Anesthesia method

• Pulmonary • Endotracheal general anesthesia

• Renal • Laryngeal mask airway

• Endocrine (diabetes) • Total intravenous anesthesia

• Musculoskeletal Inhalation agents (type and duration)

• Hepatic Intraoperative opioids (MME)

• Neurological Other intraoperative meds

• Cancer • Acetaminophen

• Sleep apnea (Diagnosed or at risk) • Ketamine

• Chronic pain • Ketorolac

Social history • Naloxone

• Smoking status • Esmolol infusion

• Alcohol abuse • Lidocaine infusion

• Drug abuse • Propofol infusion

Psychiatric/Neurological issues Patient position

• Anxiety Local infiltration

• Depression Input fluids (Crystalloids, colloids, blood)

• Post-traumatic stress disorder

(PTSD)

Output fluids (Urine, blood loss, gastric output)

• Spinal cord injury

Home medications Providers

• On opioids • Surgeon

• On non-opioid pain medications • Anesthesiologist

https://doi.org/10.1371/journal.pone.0236833.t001
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(3–11 MME), medium (11–25 MME), and high (�25 MME). The categorized postoperative

opioid MME requirement served as the dependent variable for the predictive models.

Procedure types proved to be useful in defining decision boundaries, but were too numer-

ous for practical use without further processing. Hence, they were thus aggregated into a

smaller list based on the location of surgical site and whether the procedure was open or

closed. The recategorized procedure types and counts are in S2 Table.

Model development

The master dataset was randomly split into two groups comprised of a training dataset (80% of

the records) and a “holdout” dataset (20% of the records) for unbiased validation. Model devel-

opment and parameter tuning were each performed using the training dataset. Five models of

different classes were developed to predict postoperative opioid requirements: Multinomial

Regression, Naïve Bayesian, Neural Network, Random Forest and Extreme Gradient Boosting

Trees. Models were developed to predict probabilities of postoperative opioid requirements

for each procedure among the four categories (none/very low, low, medium and high). Models

were trained to predict opioid requirements prior to surgery using only preoperative data and

then a second time at the end of surgery using both preoperative and intraoperative data. This

two-phase model development matched the expected user requirements: an initial estimate

prior to surgery and a more informed estimate post-surgery both having utility in the clinical

setting.

Model development was performed in R programming environment (R Foundation for

Statistical Computing, Vienna, Austria) [29].

Model validation

Model validation was performed on the “holdout” dataset that was not used for training. Pre-

diction accuracy over the holdout set was used to differentiate models. The output for model

predictions were probabilities in each of the established four categories: none, low, medium, or

high opioid requirement. Prediction accuracy could be computed based on the single category

with the highest prediction probability and comparing that against the category in which the

actual opioid requirement falls. However, this approach becomes overly strict especially when

the model predicted probabilities in adjacent categories are similar. In consultation with our

clinical partners we adopted an alternate, more balanced, approach to compute accuracy.

Instead of simply selecting the category with the highest prediction probability the models

were evaluated based on their ability to perform an aggregate prediction within two adjacent

opioid requirement categories: None + Low, Low + Medium and Medium+ High. The aggre-

gate prediction bucket with the highest combined prediction probability was determined to be

the model prediction. The predicted aggregate bucket was compared to the bucket corre-

sponding to the actual opioid requirement for estimating the model accuracy. The concept is

shown in Fig 2. The model with the highest accuracy was chosen and further evaluated in

terms of precision and recall. Further, prediction accuracies for different surgical specialties

Table 2. Mean postoperative MME requirements for different peak pain levels in PACU.

Peak Pain in PACU Mean Postoperative MME MME ranges for opioid requirement categories

No pain (Pain score = 0) 1 None/very low: 0–3

Mild (Pain score 1–3) 5 Low: 3–11

Moderate (Pain score 4–6) 17 Medium: 11–25

Severe (Pain score 7–10) 34 High: > 25

https://doi.org/10.1371/journal.pone.0236833.t002
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were also determined. To explain the model predictions in terms of feature importance, we

used permutation method. The method works by randomly shuffling data one feature at a

time for the entire dataset and calculating how much the prediction accuracy decreases when a

feature is excluded. A larger change in prediction accuracy represents a greater importance of

that feature.

3. Results

A total of 13,700 patients were included in the study. The patient and procedure characteristics

are presented in Table 3. The mean ± SD age of the patients was 51±17 years with geriatric

patients (>65 years of age) comprising 22% of the population. The mean BMI was 28.4 ± 7.2

with 35% of the patients obese (BMI > 30). Female patients were a higher fraction (58%) while

racial demographics was predominantly white (83%). A significant portion of the patients suf-

fered from depression (24%) or anxiety (26%). Among home medications, 52% of the patient

cohort were on non-opioid pain medications and 23% on opioids. Chronic pain was diagnosed

in 3.8% of the patients. The mean ± SD of the procedure duration was 75±56 minutes with the

main surgical specialties being General (22%), ENT (18%) and Urology (15%). Table 3 also

presents the characteristics of the training and testing data subsets. The patient and procedure

factors were well matched between the two data subsets with none the factors significantly dif-

ferent between the datasets.

Exploratory data analysis

Exploratory data analysis was performed to understand relationships between variables and to

inform modeling steps. To have a basic understanding of the factors affecting opioid require-

ments, bivariate relationships between patient or procedure factors and postoperative opioid

requirements were found. The statistically significant preoperative factors are shown in Fig 3.

Longer duration procedures, patients on opioids and plastic surgeries were top factors that

were related to higher opioid requirements. On the other hand, no preoperative pain, older

age, urological surgeries were the top factors related to lower opioid requirements.

Model predictions

Models were validated on a hold-out dataset (N = 2740, 20% of total data). The prediction

accuracies for all five models when including just the preoperative features and when adding

Fig 2. The concept of using aggregate model prediction for model validation is shown. The models predicted probabilities of postoperative

opioid requirements in four buckets None/very low, Low, Medium and High. For model validation, the ability to predict within two adjacent

buckets (None + Low, Low + Medium, Medium + High) was considered. The aggregate prediction bucket that had the highest combined

prediction probability was considered as the model prediction. The predicted aggregate bucket was compared against the bucket corresponding

to the actual opioid requirement for estimating the model accuracy.

https://doi.org/10.1371/journal.pone.0236833.g002
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Table 3. Primary patient and procedure characteristics observed in the overall (N = 13,700), training (N = 10,960) and testing (N = 2740) datasets. Proportions are

presented for categorical variables while mean ± standard deviation (SD) are shown for continuous variables. The comparison of characteristics between the training and

testing datasets is also presented.

Overall (N = 13,700) Train (N = 10,960) Test (N = 2740) diff

Characteristics Counts Proportions /Mean ± SD Counts Proportions /Mean ± SD Counts Proportions /Mean ± SD p-

value

Age (years) 51 ± 17 52 ± 17 51 ± 17 0.43

• Geriatric (Age�65y) 3,352 24% 2,683 24% 669 24%

Sex:

• Male 5,699 42% 4,556 42% 1,143 42%

• Female 8,001 58% 6,404 58% 1,597 58% 0.91

Race:

• White 11,355 83% 9,062 83% 2,293 84% 0.22

• African American 640 5% 527 5% 113 4% 0.14

• Asian 1,040 7% 845 8% 195 7% 0.31

• Other 665 5% 526 5% 139 5% 0.58

BMI (kg/m2) 28.4 ± 7.2 28.4 ± 7.2 28.5 ± 7.2 0.67

• Obese (BMI>30) 4,094 30% 3,259 30% 835 30%

ASA physical status

• ASA� 3 4,740 35% 3,791 35% 949 35% 0.98

Medical history or anomalies

• Cardiac 5487 40% 4,393 40% 1094 40% 0.90

• Pulmonary 3,647 27% 2,907 27% 740 27% 0.63

• Renal 1,978 14% 1,609 15% 369 13% 0.11

• Endocrine (diabetes) 1,624 12% 1,313 12% 311 11% 0.38

• Musculoskeletal 6,874 50% 5,536 51% 1,338 49% 0.12

• Hepatic 647 5% 511 5% 136 5% 0.54

• Neurological 6,088 44% 4,872 44% 1,216 44% 0.96

• Cancer 4,902 36% 3,898 36% 1,004 37% 0.30

• Sleep apnea (diagnosed or at risk) 6,470 47% 5,198 47% 1,272 46% 0.36

• Chronic pain 516 4% 409 4% 107 4% 0.71

Social history

• Smoking status 1,303 10% 1,038 9% 265 10% 0.78

• Alcohol abuse 1,692 12% 1,355 12% 337 12% 0.95

• Drug abuse 1,310 10% 1,023 9% 287 10% 0.08

Psychiatric/Neurological issues

• Anxiety 3,521 26% 2,781 25% 740 27% 0.08

• Depression 3,342 24% 2,642 24% 700 26% 0.12

• Post-traumatic stress disorder (PTSD) 326 2.4% 253 2.3% 73 2.7% 0.31

• Spinal cord injury 255 1.9% 204 1.9% 51 1.9% 1.00

Home medications

• On opioids 3,107 23% 2,463 22% 644 24% 0.26

• On non-opioid pain medications 7,116 52% 5,682 52% 1,434 52% 0.66

Surgical specialty

• General 2,955 22% 2,352 21% 603 22% 0.55

• Neurological 676 5% 544 5% 132 5% 0.79

• Orthopedic 1,091 8% 872 8% 219 8% 0.98

• Gynecology 1,436 10% 1,147 10% 289 11% 0.93

• ENT 2,511 18% 2,016 18% 495 18% 0.71

• Urology 1,999 15% 1,606 15% 393 14% 0.70

(Continued)
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intraoperative features are show in Table 4. Random Forest and Multinomial Regression mod-

els had the best accuracy. Adding the intraoperative features did not enhance the prediction

accuracy of the models significantly. Table 5 presents detailed results for the best performing

model, which was the Random Forest. Model accuracies for different surgical specialties are

shown. Model accuracies varied for different surgical specialties. Oral and thoracic surgeries

had the highest accuracies, though counts of these surgeries were comparatively small. General

and plastic surgeries had lower accuracies. Since the model accuracies when predicting opioid

requirements at the beginning and end of surgery were similar further analyses focused on the

beginning of surgery stage. Table 6 presents the recall (sensitivity) and precision (positive pre-

dictive value) of random forest model predictions. Recall was highest when the model pre-

dicted to the “none+low” aggregate category. For the “low+medium” category recall was very

poor. Precision was highest for “none+low” and “medium+high” categories while lowest for

Table 3. (Continued)

Overall (N = 13,700) Train (N = 10,960) Test (N = 2740) diff

Characteristics Counts Proportions /Mean ± SD Counts Proportions /Mean ± SD Counts Proportions /Mean ± SD p-

value

• Thoracic 504 4% 408 4% 96 4% 0.63

• Vascular 167 1% 140 1% 27 1% 0.25

• Plastic 1,619 12% 1,302 12% 317 12% 0.68

• Oral 400 3% 306 3% 94 3% 0.09

Surgery duration (min) 75 ± 56 75 ± 56 75 ± 55 0.86

BMI–Body Mass Index, ASA–American Society of Anesthesiologists, ENT–Ear Nose Throat.

https://doi.org/10.1371/journal.pone.0236833.t003

Fig 3. Bivariate relationships between preoperative features and postoperative MME opioid requirements are

shown. Only statistically significant (p< 0.05) relations are shown with standard estimate (Std Estimate) representing

the strength of the relationship. The positive and negative relations are show in green and red colors respectively.

https://doi.org/10.1371/journal.pone.0236833.g003
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“low+medium”. Table 7 shows the confusion matrices for each category of opioid requirement

with true positive, true negative, false positive and false negative counts and rates. Overall, the

model performance was poorer when predicting higher opioid requirements. The model had

most difficulty predicting the “low+medium” opioid requirement as compared with the other

categories. Model performance metrics in predicting single categories is also presented in S3

and S4 Tables.

Feature importance

Feature importance of the Random Forest model, determined through permutation method,

is presented in Table 8. The average relative importance of different features contributing to

model prediction is outlined. The type of procedure, patient’s medical history and procedure

duration were the top three features contributing to model predictions. Overall, patient fea-

tures contributed 65% while procedure features contributed 35% towards model predictions.

4. Discussion

Management of acute postoperative pain with opioids needs to be optimal to avoid the adverse

effects of overdose and underdose. Towards this, we applied artificial intelligence methods

Table 4. Prediction accuracies of different models prior to surgery and at the end of surgery are presented. The

models utilized preoperative factors for predictions prior to surgery while the end of surgery predictions used both pre-

operative and intraoperative factors.

Validation Data Set: N = 2740

Observed Opioid Requirements in Validation Data Set

None Low Medium High

1,290 (47%) 409 (15%) 536 (20%) 505 (18%)

Model Accuracy

Prior to Surgery End of Surgery

Multinomial Logistic Regression 71% 71%

Naïve Bayes 67% 63%

Neural Network 30% 32%

Random Forest 72% 72%

Extreme Gradient Boost 71% 70%

https://doi.org/10.1371/journal.pone.0236833.t004

Table 5. Detailed prediction accuracies of random forest model for different categories of surgeries and aggregate opioid requirements. Prediction accuracies prior

to and after surgery are shown.

Surgical Specialty Mean opioid requirement (MME) Accuracy

Beginning of surgery End of surgery

General (N = 603) 12.1 ± 17.8 67% 70%

Gynecology (N = 289) 11.0 ± 17.2 71% 72%

Neuro (N = 132) 12.6 ± 25.1 70% 74%

Oral (N = 94) 7.7 ± 17.1 87% 86%

Orthopedic (N = 219) 19.7 ± 21.2 74% 70%

Otolaryngology (N = 495) 11.3 ± 25.4 68% 67%

Plastic (N = 317) 20.0 ± 23.4 67% 66%

Thoracic (N = 96) 2.9 ± 8.4 95% 94%

Urology (N = 393) 6.8 ± 14.4 80% 80%

Vascular (N = 27) 16.2 ± 25.2 70% 59%

Overall 12.2 ± 20.7 72% 72%

https://doi.org/10.1371/journal.pone.0236833.t005
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specifically, machine learning in this instance to predict postoperative opioid requirements so

that proactive planning could be enabled. We used a comprehensive and large perioperative

dataset to develop and validate the models which were trained to make predictions preopera-

tively prior to surgery and at the end of surgery. Our study showed that machine learning

models can predict postoperative opioid requirements with an accuracy around 70% when

adjacent opioid requirement categories are aggregated. Among the models tried, Random For-

est, Multinomial regression and Extreme Gradient Boost models performed better than Naïve

Bayes and Neural Network. The differences between the performances of these higher per-

forming models were only marginal.

Several key findings are noted while observing the model predictions. Surprisingly, the

model accuracies were very similar prior to surgery and at the end of surgery; suggesting that

Table 6. Recall and precision of random forest model predicting aggregate opioid requirements. Prediction results prior to surgery are shown.

Recall Precision

None + Low Low + Medium Medium + High None + Low Low + Medium Medium + High

88% 5% 41% 72% 50% 73%

(N = 1699) (N = 945) (N = 1041) (N = 1699) (N = 945) (N = 1041)

https://doi.org/10.1371/journal.pone.0236833.t006

Table 7. Confusion matrix for each category of opioid requirement with true positive, true negative, false positive and false negative counts are shown. Also, pre-

sented are the True Positive Rate (TPR), False Negative Rate (FNR), False Positive Rate (FPR) and True Negative Rate (TNR). Positive Predictive Value (PPV), False Omis-

sion Rate (FOR), False Discovery Rate (FDR) and Negative Predictive Value (NPV) are also presented.

Opioid category Predicted

None + Low Positive Negative Total

Actual Positive 1500 199 1699 TPR 88% FNR 12%

Negative 572 469 1041 FPR 55% TNR 45%

Total 2072 668 2740

PPV FOR

72% 30%

FDR NPV

28% 70%

Opioid category Predicted

Low + Medium Positive Negative Total

Actual Positive 43 902 945 TPR 5% FNR 95%

Negative 43 1752 1795 FPR 2% TNR 98%

Total 86 2654 2740

PPV FOR

50% 34%

FDR NPV

50% 66%

Opioid category Predicted

Medium + High Positive Negative Total

Positive 423 618 1041 TPR 41% FNR 59%

Negative 159 1540 1699 FPR 9% TNR 91%

Total 582 2158 2740

PPV FOR

73% 29%

FDR NPV

27% 71%

https://doi.org/10.1371/journal.pone.0236833.t007
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intraoperative data (intraoperative opioids, other types of analgesics, inhalation agents, fluids,

patient position, etc.) did not contribute to improving model accuracy. This may prove to be

advantageous because a model that can preoperatively predict the postoperative opioid

requirements without compromising accuracy could potentially enable proactive pain man-

agement strategies prior to surgery.

Model sensitivity (recall) and precision were only modest at best and that too only for the

“none+low” category. The model had particular difficulty predicting whether a patient’s opioid

requirement would fall in the “low+medium” category with a tendency to misclassify the

requirement as “none+low”. The model performance was better when predicting “none+low”

as compared with other categories. This may explain why model accuracies varied for different

surgical specialties. The specialties that had higher opioid requirements tended to have lower

model accuracies.

Feature importance for best performing Random Forest model predictions made prior to

surgery reveals interesting observations (Table 8). The scheduled procedure type proved to be

the most important feature in model predictions. Yet, patient specific factors—demographics,

medical history, social history, and psychiatric issues together played a predominant role in

determining the postoperative opioid requirements.

Despite including a comprehensive dataset of preoperative and intraoperative parameters,

model accuracies in predicting postoperative opioid requirements were not over 72%. This

suggests that additional factors influencing opioid requirements were potentially not included

in the data used for training the models. A potential factor that we considered was provider

practice pattern in ordering opioids for pain management. However, adding surgeon and

anesthesiologist data into the model led to no notable improvement. Accuracy of machine

learning models can be, in principle, improved with more data. Additional data for model

training could be obtained either by extending the time range of the dataset or obtaining data

from more institutions. However, here are downsides to each approach. By extending the time

range, the risk for encountering changes in practice and documentation patterns over time

increases potentially compromising data consistency. Similarly, institutional variations in case

Table 8. Feature importance of Random Forest Model explaining the relative importance of various features con-

tributing to predictions of opioid requirements. Similar features are consolidated.

Features Relative

importance

Procedure type 15.4%

Medical History (Cardiac/Pulmonary/Neurological/Hepatic/Endocrine/Musculoskeletal/

Renal/Cancer)

12.9%

Procedure Duration 12.0%

Age 9.8%

Surgical specialty 8.3%

Body Mass Index 8.2%

Home and preoperative pain medications (Opioid/Non opioid) 7.3%

Preoperative Pain Levels 4.8%

ASA Physical Status 4.2%

Race 4.2%

Social History (Tobacco/Alcohol/Recreational Drug Use) 4.1%

Psychiatric/Neurological issues (Anxiety/Depression/PTSD/Spinal Cord Injury) 4.1%

History or risk for sleep apnea 2.1%

Gender 1.9%

History of Chronic Pain 0.6%

https://doi.org/10.1371/journal.pone.0236833.t008
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mix and practices can negatively affect consistency of multi-institutional data. In this particu-

lar project, we noted that adding two additional years of data yielded no improvement in

accuracy.

The single center nature of data is a limitation of the study and whether the model perfor-

mance can be replicated in other centers is unknown at this time. As a future step training and

validating the model against standardized multicenter data such as those hosted by Multicen-

ter Perioperative Outcomes Group (www.mpog.org) could be a way to validate the model

across institutions. The second limitation of this project is that we focused only on outpatients.

This was deliberate to avoid the confounding factors of patient-controlled analgesia, regional

blocks for postoperative pain management and variable length of stay that are difficult to

incorporate into the model. For this reason, we chose to keep the scope limited to outpatients

in this first modeling effort.

In summary, machine learning models were able to predict postoperative opioid require-

ments in ambulatory surgery patients. Prediction accuracies remained unchanged even after

adding intraoperative information to preoperative data. In general, model prediction sensitivi-

ties were greater in patients requiring lower amounts of opioids as compared with those

requiring higher amounts. Translating such models into point of care tools could provide

assistive intelligence to the perioperative care provider leading to improved management of

postoperative acute pain.
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