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 Abstract 

 

Objective: Multipotential cells are mobilized into peripheral blood in response to trauma, in particular in severe burns. These cells migrate to 

the site of injury in response to chemotactic signals to modulate inflammation, repair damaged tissue and facilitate tissue regeneration.  We 

evaluated the possibility of isolating and in vitro expand mesenchymal stromal cells (MSCs) from granulation tissue (GT) during debridement 

of a burn wound, as a persective strategy to improve skin regeneration.  

Methods: GT obtained from a 12-month-old burn patient was in vitro cultured.  Expanded MCSs were characterized for morphology, 

immunophenotype, differentiation capacity and proliferative growth.  Antifibrotic features were also evaluated. 

Results: It was possible to isolate and in vitro expand cells from GT with the morphology, phenotype, proliferative and differentiation capacity 

typical of MSC, these cells were defined as GT-MSC.  GT-MSCs exhibited antifibrotic features by releasing soluble factors, this activity was 

superior to that observed in BM-MSC.  

Conclusions: Successful isolation and expansion of MSCs from GT is reported. Considering their functional characteristics, GT-MSCs could 

be considered a good candidate adjuvant therapy to improve burn wound healing, particularly in pediatrics. 
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Granulation tissue-derived mesenchymal stromal cells: a potential 

application for burn wound healing in pediatric patients 

Introduction 

 

Pediatric burns are a major form of injury, affecting millions of 

children worldwide, and may be caused by scald incidents, fire 

injury or child abuse[1]. Burn scars often create great functional 

problems and their disfigurement can cause serious psychosocial 

problems [2-4]. 

 

Mesenchymal stromal cells (MSCs) have shown promise as a tool in 

cell therapy to treat different conditions, including wound 

regeneration[5-10]. MSCs are an outstanding tool for cell therapy 

applications, not only because of their multipotent nature, but also 

due to their ability to home to and engraft in damaged tissues, 

release trophic factors, promote neovascularization, manage 

oxidative stress and trigger anti-inflammatory responses[5,9-12]. 

Accumulating evidence suggests that MSC act through a 

combination of paracrine cell signalling and cell trans-

differentiation, enhancing wound regeneration and improving 

angiogenesis[12, 13]. Recently, it has also been reported that 

multipotent cells mobilize to the peripheral blood after burn 

incidents and migrate to the site of injury in response to chemotactic 

signals where they modulate inflammation, repair damaged tissue 

and facilitate tissue regeneration[14, 15].  

 

The most recognized source of MSCs is the bone marrow, however, 

other sources have been described such as adipose tissue, teeth, 

bone,  muscle,  placenta,  liver,  pancreas,  umbilical  cord  and  cord 
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blood[16]. Spyrou et al[17]. described the granulation tissue (GT) as an 

abundant source of cells with important therapeutic efficacy in wound 

healing and tissue repair.  

 

We describe the isolation and in vitro expansion of cells from 

granulation tissue (GT) obtained during debridement of a burn wound 

in a child. Based on these results, we propose that MSCs expanded 

from GT, may be considered a perspective strategy to improve skin 

regeneration in burn wound care.  

 

Methods 

 

GT was obtained from a 12 month-old boy undergoing burn treatment 

15 days post-injury (severe thermal burn with full-thickness injury). 

The patient’s GT was used for in vitro cell expansion, after obtaining 

written informed consent from parents.  

 

Isolation and culture  

 

Isolation and expansion of cells from GT, were performed following 

standard MSC culture procedures, as previously described[18, 19]. 

Briefly, tissue samples were incubated at 37°C for 30 minutes,  in 

serum-free α-minimum essential medium (αMEM) (Gibco, Life 

Technologies, Paisley, UK) supplemented with antibiotics and 

collagenase type II (Sigma Aldrich).  Next, collagenase activity was 

blocked with complete medium (αMEM+10% FBS,  Euroclone, Milan,  
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Italy). The cell suspension was then collected and plated at 

160,000/cm2 in non-coated T175 flasks (Corning Costar, NY, USA) 

in D-MEM+10% FBS and incubated at 37°C, 5% CO2 for 48-hours. 

Medium was then changed twice a week. 

 

At confluence, MSCs were trypsinized (Trypsin EDTA, Lonza, 

Milan, Italy) and replated at 4,000 cells/cm2, for expansion. Cells 

were propagated to reach senescence phase and kept in culture for 

additional 8 weeks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 illustrates the GT-MSCs isolation and expansion. 

  

Characterization of ex-vivo expanded GT-cells 

 

Proliferative capacity 

 

Proliferative capacity was defined as cumulative Population Doubling 

(cPD) calculated with the following formula: PD=log (n. of harvested 

cells/n. of plated cells)/log2.  

 

Phenotyping 

 

Cells were characterized by flow-cytometry. Fluorescein 

isothiocyanate (FITC)- or phycoerythrin (PE)-conjugated monoclonal 

antibodies specific for CD73, CD34, CD90, CD14, CD45, CD31, 

CD105, class I-HLA and HLA-DR, (Beckman Coulter, IL, Milan, 

Italy) were used. Appropriate, isotype-matched, antibodies were 

employed as controls. Analysis was performed by direct 

immunofluorescence with a FACS Navios flow-cytometer (Beckman 

Coulter). 

 

 

 

Differentiation capacity 

 

The osteogenic and adipogenic differentiation capacity of GT-cells 

was assessed at P2-4 as previously described[18]. For osteogenic 

differentation complete medium supplemented with 10-7 M 

dexamethasone and 50 mg/ml L-ascorbic acid and  5 mM ß-glycerol 

phosphate (Sigma-Aldrich, St Louis, MO) was used while for 

adipogenic differentiation complete medium with 10-7M 

dexamethasone, 50 mg/ml L-ascorbic acid, 100 mg/ml insulin, 50 

mM isobutyl methylxanthine, 0.5 mM indomethacin (Sigma-Aldrich) 

and 5 mM b-glycerol phosphate was used. After two week 

incubation, cells were stained for alkaline phosphatase (AP) activity 

using Fast Blue (Sigma-Aldrich) and for calcium deposition with 

Alizarin Red (Sigma-Aldrich) to evaluate osteogenic differentation. 

Adipogenic differentiation was assessed by staining of fat droplets 

awith Oil Red O (Sigma-Aldrich). 

 

Senescence assay  

 

Senescence was defined by β-galactosidase (SA-β-gal) staining Kit 

(Cell Signaling Technology, Danvers, MA), according to the 

manufacturer's instructions.  

 

Co-culture experiments 

 

To assess the paracrine effect of GT-cells, dermal fibroblasts were 

co-cultured using a transwell system. Briefly, GT-cells (1.5x104 

cells/well) were plated on Transwell membrane (0.4-mm pores, 

Corning Costar) with fibroblasts (6x104 cells/well) in the lower 

chambers and cultured for 4 days in RPMI 1640 (Euroclone, Milano, 

Italy) 10% FCS (Euroclone). Co-cultures were stimulated with 100 

ng/mL of Fibroblast Growth Factor (FGF, Sigma, Milan, Italy) or not 

stimulated. For cell proliferation evaluation, fibroblasts were then 

harvested and viability was calculated using 0,2% Trypan Blue 

(Sigma). Cultured fibroblasts alone were used as controls. In 

addition, the culture medium was collected at 72 h to examine the 

concentration of TGFβ. Fibroblasts co-cultured with BM-MSCs were 

used as a control. 

 

TGFβ quantification by ELISA 

 

The quantification of TGF-β1 levels in FGF activated fibroblast co-

culture supernatants were tested in order to define the role of this 

soluble factor in scar formation. Briefly, 96-well plates were coated 

with anti-human TGF- β1 (Endogen Tema), in carbonate/bicarbonate 

buffer, pH 9.6 overnight at room temperature. After three washes, a 

post-coating was performed for 1 hour at room temperature. After 

samples activation with 1N HCl for 10 minutes and neutralization 

with 1.2 N NaOH/0.5 M HEPES, they were incubated for two hours 

at room temperature. Detection antibody, specific for TGF-β1, was 

added and plate incubated at RT. After washing, Streptavidin-

conjugated horseradish peroxidase was added and plates were further 

incubated for 20 minutes at room temperature. Plates were washed 

again three times and substrate solution (hydrogen peroxide and 

stabilized tetramethylbenzidine) was added. After 20 minutes in the 

dark. Absorbance was read at 450 nm                                                       

(Lettore Titertek Plus MS 212 - ICN).  Cytokine concentrations 

(expressed in pg/ml) were calculated using the standard curve. 

 

Statistical analysis 

 

A comparison of the groups was made with Kruskall-wallis non 

parametric ANOVA followed by two- by-two subgroup analysis 

corrected for multiple tests. Statistical significance was defined as  

p <0.05. Data analyses were performed with the STATA statistical 

package (released 14.2, 2012, Stata Corporation, College Station, 

Texas, USA). 
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Figure 1. Scheme of the GT-MSCs isolation and expansion 
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Results 

 

Characterization of GT-derived cells 

 

Cells were successfully isolated from GT and propagated in vitro. 

After 7 days culture, it was possible to observe the appearance of 32 

colony forming units (CFU-F) in 1,5x106 plated cells. Cells were 

plastic adherent and had the characteristic MSC “spindle-shape” 

morphology (Figure 2, Panel A) and normal proliferation capacity 

as demonstrated by cPD (Figure 2, Panel B). Moreover, they 

showed positive expression of CD73, CD90, CD105 and HLA-I 

and negative expression of CD34, CD14, CD45, and HLA-DR 

(Figure 2 C), the cells were termed GT-MSCs. 

 

MSC isolated from GT poorly differentiated into adipocytes; this 

was confirmed by the presence of small lipid droplet formation 

(Figure 2D). MSC isolated from GT also poorly differentiated into 

osteoblasts, as confirmed by poor calcium deposition upon 

histological detection (Figure 2, Panel E); poor AP activity was 

noted as well (Figure 2, Panel F). 

 

GT-MSCs   were   expanded   up to P19, when they entered into 

senescence, as confirmed by typical senescence-associated β-

Galactosidase staining (Figure 2, Panel G).  

 

Anti fibrotic effect of GT-MSC 

 

Fibroblasts cultured in the presence of GT-MSCs showed 

suppressed proliferation, (based on trypan blue viability score) 

compared with control fibroblasts both with or without 

inflammatory stimulation (p<0.001), while BM-MSCs did not 

induce this suppressive effect (p=0.19 and p=0.10, respectively) 

(Figure 3, Panel A). 

 

TGF-β1 quantification 

 

The quantification of TGF-β1 levels in FGF activated fibroblast 

co-culture supernatants showed that in the presence of GT-MSC, 

TGF-β1 levels were superimposable with that quantified in control 

wells (1460 pg/ml and 1477 pg/ml, respectively), while in the 

presence of BM-MSC, TGF-β1 levels were slightly increased 

(1651 pg/ml) compared to controls (p=0.31) (Figure 3, Panel B). 

 

Figure 2. Characterization of GT derived cells.  Panel A: typical “spindle-shape” morphology of in vitro expanded GT-MSCs, Original 10x magnification  using an inverted Leica 

DM-IL microscope equipped with a Nikon Digital Sight DS-Fi1 camera linked to a NIS Element F Imaging system; Panel B: Proliferative capacity (defined as cumulative Population 

Doubling, cPD) was obtained by tracking cultured MSCs at each passage; Panel C: Representative surface antigen analysis by flow cytometry (y axis=cell numbers (count), x axis= 

fluorescence intensity). Empty histogram represents isotype-matched control. Grey histogram represents stained cells. Overlapping histograms indicates absence of positive cells. 

Panel D-F: differentiation into adipocytes and osteoblasts. Poor differentiation capacity is revealed by the presence of small lipid droplet formation (stained with oil red O) and by 

poor calcium deposition (stained with alizarin red) and poor AP activity upon histological detection; Panel G: Representative evaluation of β-galactosidase activity in GT-MSC at 

senescence passage (P19). Senescent cells are stained blue. 
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Discussion 

 

In this brief report we demonstrated that MSCs can be in vitro isolated 

and expanded from GT tissue of burn wounds. Cells derived from GT 

presented the typical MSC morphology and phenotype with regular 

proliferative capacity. GT-MSCs also exhibited antifibrotic features, 

for this reason they are an attractive alternative cell source with 

potential in burn wound healing and tissue repair. 

 

 

The treatment of burns is a delicate art, especially in children and 

these injuries remain a major challenge worldwide. Nearly a fourth 

of all burn injuries occur in children under the age of 16, of whom 

the majority are under 5 years of age[1]. Scar tissue and skin grafts in 

children are subject to exagerated inflammatory responses, which 

may create a hypertrophic scar with an unsightly appearance and risk 

of impaired mobility[2-4]. To improve the quality of the scar, and 

diminish functional problems and disfigurement, new cell sources 

have been exploited for skin tissue regeneration.  

 

Pelizzo G, et al. J Stem Cells Regen Med 2018; 14(1) 

Figure 3. Anti fibrotic effect of GT-MSC and quantification of TGF-β1. Panel A: Number of fibroblasts alone (lined boxes) or in the presence of GT-MSCs (grey boxes) or BM-MSC 

(white boxes) after 4 days incubation.  Black boxes represent the number of fibroblasts plated at time 0. Proliferation is reported for fibroblasts activated or not with  FGF. Viable cells 

were counted by Trypan Blue 0,2%. Panel B: TGF-β1 levels quantified in supernatants of fibroblasts activated with FGF under different culture conditions (Fibroblasts alone, 

Fibroblast+GT-MSC,  Fibroblast+BM-MSC). 
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MSCs have also been proposed as therapy for lost tissues, including 

the skin, due to their potential to differentiate into multiple cell 

types and replace the missing tissue[5, 9-12] . Although MSCs from 

bone marrow have been successfully used for therapeutic purposes 

and often designated as the gold standard, the accessibility and 

availability of these cells is limited, preventing their wider 

application in clinical situations. Therefore, more accessible stem 

cell sources have been proposed, such as peripheral blood, adult 

tissue such as adipose, teeth, bone, muscle, neonatal birth-

associated tissues including placenta, cord blood and skin 

derivates[16].  

 

To the best of our knowledge, we showed for the first time, that 

MSCs could also be isolated from debrided burn GT. Wound 

healing is a complex process that requires the interaction and 

coordination of a cascade of cellular responses to injury and 

includes three overlapping stages: inflammatory phase, 

fibroproliferative phase, and remodeling phase[20]. During the 

fibroproliferative stage, dermal fibroblasts from the wound margin 

proliferate and migrate into the wound, generate GT, and begin to 

remodel the wound matrix to create new dermal tissue.  GT begins 

to be formed approximately four days after lesion formation, and is 

characterized by a high density of fibroblasts, granulocytes, 

macrophages and microcapillaries[20]. GT is often discarded during 

surgical burn treatment and thus represents a readily available and 

accessible source.  

 

The first step in skin repair is wound closure, the next step is 

management of scar formation[20]. At this point, the skin has the 

capacity to stimulate the production of fibroblasts in very high 

quantities, especially in children, with the risk of creating a 

hypertrophic scar and consequent retraction or impaired 

articulation[1-4]. There is increasing evidence that MSCs are trophic 

mediators of tissue repair; these cells promote scar-free wound 

healing and inhibit fibrotic tissue formation[21, 22]. Paracrine effect is 

considered one of the main underlying mechanisms behind the 

therapeutic effects of stem cells[11, 13, 23]. In particular, the exosome, 

an essential paracrine factor for intercellular communication, plays 

a dominant role in cell-to-cell communication and modulates the 

molecular activities of recipient cells[9, 11-13, 23, 24]. Our results 

confirm the anti-fibrotic properties of MSC, in particular GT-

MSCs. These features were demonstrated by in vitro suppression of 

fibroblast proliferation and inhibition of a the potent driver of tissue 

fibrosis, TGF-β1[25, 26,27]. Moreover, we confirmed their paracrine 

method of action since results were obtained in co-culture 

experiments using transwell plates. Another interesting observation 

was the difference found between GT-MSC and BM-MSC in terms 

of antifibrotic activity; the former were more efficacious. 

 

We also observed that adipogenic and osteogenic differentiation, 

hallmarks of MSCs, although detectable in all experiments, were 

less efficient in GT-MSCs compared with BM-MSCs, as 

demonstrated by microscopic examination. Indeed, contrasting data 

are available in the literature regarding the differentiation capacity 

of MSCs obtained from different sources[28-30].  

 

In conclusion, we reported on the successful isolation of MSCs 

from GT and their in vitro expansion. Although further studies are 

needed to confirm these observations, we speculate that GT-MSCs 

may be “committed” by the wound microenvironment and as such 

would be a logical candidate to improve burn wound management 

and skin repair, particularly in the pediatric setting. 
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