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ABSTRACT

Motivation: Reconstruction of the network-level evolutionary history

of protein–protein interactions provides a principled way to relate inter-

actions in several present-day networks. Here, we present a general

framework for inferring such histories and demonstrate how it can be

used to determine what interactions existed in the ancestral networks,

which present-day interactions we might expect to exist based on

evolutionary evidence and what information extant networks contain

about the order of ancestral protein duplications.

Results: Our framework characterizes the space of likely parsimoni-

ous network histories. It results in a structure that can be used to find

probabilities for a number of events associated with the histories. The

framework is based on a directed hypergraph formulation of dynamic

programming that we extend to enumerate many optimal and near-

optimal solutions. The algorithm is applied to reconstructing ancestral

interactions among bZIP transcription factors, imputing missing pre-

sent-day interactions among the bZIPs and among proteins from five

herpes viruses, and determining relative protein duplication order in

the bZIP family. Our approach more accurately reconstructs ancestral

interactions than existing approaches. In cross-validation tests, we

find that our approach ranks the majority of the left-out present-day

interactions among the top 2 and 17% of possible edges for the bZIP

and herpes networks, respectively, making it a competitive approach

for edge imputation. It also estimates relative bZIP protein duplication

orders, using only interaction data and phylogenetic tree topology,

which are significantly correlated with sequence-based estimates.

Availability: The algorithm is implemented in Cþþ, is open source

and is available at http://www.cs.cmu.edu/ckingsf/software/parana2.

Contact: robp@cs.cmu.edu or carlk@cs.cmu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Improved techniques for understanding how collections of pro-

tein interactions have evolved over time have a number of appli-

cations. For example, they can help identify stable and rewired

modules (Kreimer et al., 2008) and protein complexes (Pereira-

Leal et al., 2007). The quality of inferred networks under various

parameters can help estimate the probabilities of different evo-

lutionary events (Li et al., 2012; Middendorf et al., 2005;

Navlakha and Kingsford, 2011) or correct for phylogenetic

branch lengths (Zhu and Nakhleh, 2012). Ancestral network re-

construction has been explored to improve network alignment

algorithms (Dutkowski and Tiuryn, 2007; Flannick et al., 2006,
2009; Singh et al., 2007). The study of ancestral metabolic path-

ways can reveal how changes in metabolic pathways relate to
changes in the environment (Borenstein and Feldman, 2009;

Borenstein et al., 2008; Mithani et al., 2009). Zhang and Moret
(2008, 2010) apply network evolution inference to improve infer-

ence of regulatory networks in present-day species.
Previous algorithms for network history reconstruction in-

clude the use of graphical models (Dutkowski and Tiuryn,
2007; Pinney et al., 2007), greedy local search (Navlakha and

Kingsford, 2011) and extensions thereof (Li et al., 2012; Zhu
and Nakhleh, 2012), maximum-likelihood inference (Zhang

and Moret, 2008, 2010) and other approaches (Gibson and
Goldberg, 2009). Patro et al. (2012) introduced a new parsimony

framework that modeled the problem as one of finding the fewest
number of interaction gain and loss events that reconstruct the

observed present-day networks. Many of these previous
approaches find only one possible network history and make

inferences based on that single history. However, there may be
a large number of optimal and near-optimal histories. A priori,

we do not know how different these solutions may be, or how
representative of the ensemble the solution at which we arrive

is. Further, although maximum-likelihood–based approaches
do not necessarily produce a single history, Carvalho and

Lawrence (2008) suggest that such estimators may not generally
characterize the posterior-weighted ensemble of solutions well.

A maximum-likelihood network history inference method has
been applied to the problem of predicting regulatory interactions

in present-day networks (Zhang and Moret, 2008, 2010).
However, that approach requires a known complete ordering

of the duplication events in each homology group, which our
approach does not. Further, being based on a parameterized

network evolution model, it requires the estimation of numerous
model parameters.

To overcome these limitations, we present an approach, based
on a novel algorithm and advanced dynamic programming tech-

niques, which is able to efficiently characterize the relevant por-
tion of the space of network histories without resorting to

sampling. By formulating our dynamic program in the forward
hypergraph framework (Gallo et al., 1993), it becomes clear how

to explore the space of solutions. We develop an extension of the
k-best parsing algorithm of Huang and Chiang (2005) that allows

us to aggregate solutions of equivalent quality. As a result, rather
than enumerating individual solutions, we are able to enumerate

solution classes (i.e. the set of all solutions having the same cost)
and provide a characterization of the space of optimal and near-

optimal solutions to an instance of the network history inference
problem. Inspired by Feynman and Brown (1942), we call this

method a sum-over-parsimonious-histories (SOPH) approach to*To whom correspondence should be addressed.
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ancestral network reconstruction. Although related to certain
approaches in natural language processing, our approach for
generating a weighted ensemble of parsimonious solutions is

novel and may also prove useful in other areas of computational
biology.
For every potential interaction—either ancestral or extant—

our algorithm computes the posterior probability, summed over
an ensemble of parsimonious and near-parsimonious histories,
which the interaction exists. We show this approach outper-

forms the graphical model formulation used in Pinney et al.
(2007) and Dutkowski and Tiuryn (2007). Further, as posterior
probabilities are provided for all potential interactions

(including extant ones) that participate in the ensemble, we
are able to impute missing interactions and to quantify the
consistency—in terms of evolutionary parsimony—of a given

set of interactions.
When applied to the problem of predicting ancestral inter-

actions among bZIPs, the SOPH approach is particularly bene-

ficial when noise is added to the present-day networks. These
noisy networks simulate the common scenario in which the meas-
urement of present-day interactions is error-prone. The SOPH

method seems to be both accurate and robust. Further, anec-
dotally, Fossum et al. (2009) argue that the interaction between
KSHV-1 proteins UL33 and UL31 is highly conserved across

many herpes species, and we find that our SOPH approach pre-
dicts an ancestral interaction between the orthology groups of
these proteins with the second highest probability among all

potential ancestral interactions.
We test the approach’s ability to predict missing edges in pre-

sent-day networks, and we show that it often outperforms a

state-of-the-art approach for edge prediction based on network
topology (Lei and Ruan, 2013). On the bZIP transcription factor
network, where we perform leave-one-out, 5-fold and 10-fold

cross-validation, we find that our approach most often puts
edges from the test set in the top 1% of the probabilities assigned
to pairs.
We also perform edge prediction on a collection of five herpes

virus protein interaction networks (Fossum et al., 2009) in a
similar leave-one-out setting (the data are too sparse for
higher-fold cross-validation). Here, the left-out edge is, on aver-

age, in the top 25% of high-probability edges. We also break-
down performance based on which orthology groups the

interaction participants are members of, and find that the good
performance is driven by generally good performance for most
pairs of orthology groups. As these data are believed to have

high–false-negative rate, there surely are real missing edges in
the given present-day networks, meaning the actual performance
is likely in fact better.
The ensemble of parsimonious network histories encoded by

our framework can be used to answer other types of queries
about the network histories that are not even possible in existing
maximum-likelihood approaches that work based on interaction

trees. As an illustration, we use the SOPH framework to predict
the relative duplication order between pairs of ancestral bZIP
proteins. Existing maximum-likelihood approaches (Dutkowski

and Tiuryn, 2007; Pinney et al., 2007; Zhang and Moret, 2008,
2010) cannot perform this task, as a total order of duplication
events is required for the inference procedure used by those

algorithms. We find that the relative duplication orders predicted

by our SOPH framework, which were predicted without the use
of phylogenetic branch length information, are significantly cor-

related with the duplication order derived from the protein

sequences.

2 APPROACH

2.1 Overview

At a high level, we formulate the network history inference prob-

lem as a combinatorial optimization problem that seeks a parsi-

monious or low-cost set of interaction gain and loss events that
explain the observed present-day networks. We rewrite the com-

binatorial problem by encoding it as an instance of the optimal

derivation problem on a directed ordered hypergraph that allows

us to efficiently count the number of solutions of various costs

that are close to the optimal and to compute the probability that

any particular interaction gain or loss event is present in the

ensemble of near-optimal histories. The ensemble of histories

that is compactly encoded by the hypergraph can also be used
to answer other queries about the histories themselves, such as

inferring the relative duplication order of proteins within a

species.

2.2 The network history inference problem

The network history inference problem seeks to find a set of

gains and losses of protein interactions that is consistent with
both the observed present-day interactions and the phylogenetic

history relating the proteins. Formally, we are given present-

day networks G1 ¼ ðV1,E1Þ, . . . ,Gk ¼ ðVk,EkÞ for species

S ¼ f1, . . . , kg. We are also given a set T of binary phylogenetic

trees where T 2 T has leaves associated with a subset of

V ¼
S

i Vi. Every v 2 V appears as a leaf in at most one tree,

and without loss of generality, we may assume that every v 2 V

appears in exactly one such tree. Nodes in each tree are labeled as

either protein duplication events or speciation events.
An interaction event is a triple ðu, v, aÞ, where

u 2 T1 2 T , v 2 T2 2 T and a 2 fgain, lossg. T1 may equal T2

but neither u nor v can be an ancestor of the other. If a ¼ gain,

the event represents the gain of an interaction between the ances-
tral proteins u and v. If a ¼ loss, it represents the loss of an

interaction.

Interactions are assumed to be inherited through duplication
events. An interaction exists between two proteins if it has been

gained between a pair of their ancestors and not subsequently lost.

Specifically, given a set I of interaction events, an interaction

exists between u and v if there are ancestors x of u and y of v

such that the event ðx, y, gainÞ is in I , and there are no nodes x0, y0

such x0 is an ancestor of u and a descendant of x, and y0 is an

ancestor of u and descendent of y such that ðx0, y0, lossÞ is in I .
We say that a set I of interaction events

� is valid if the events are logically and temporally consistent.

That is, a gain event occurs only at a time when the edge

does not exist, a loss event occurs only when the edge exists

and time ranges can be assigned to every node such that

events only happen between pairs of nodes that have over-

lapping time ranges (note that we do not explicitly find these

time ranges).
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� reconstructs G1, . . . ,Gk if, for all u, v 2 V, I implies that
edge fu, vg exists if and only if that edge is present in

G1, . . . ,Gk.

The network history inference problem is then

PROBLEM 1. (Network History Inference) Find the smallest set

I of triples on T that represents a valid history of G1, . . . ,Gk and

that reconstructs the present-day networks G1, . . . ,Gk. If a func-

tion c(e) that assigns a cost to interaction event e is given, we seek
the lowest-cost set I .

Finding a score-weighted ensemble of solutions to this prob-

lem allows us to solve the related problems of (i) predicting
ancestral interaction networks; (ii) imputing missing inter-

actions in present-day networks; and (iii) inferring relative

orders for duplication events that are consistent with a molecular

clock.

3 METHODS

3.1 Directed ordered hypergraphs

We use the hypergraph definition and a number of related definitions

given by Huang and Chiang (2005). Specifically, we define a directed

ordered hypergraph as H ¼ ðVH,EH, r, cÞ, where V is the set of vertices,

E is the set of ordered hyperarcs, r 2 V is a designated root node and

c : EH ! R is a function assigning costs to the hyperedges. Each hyper-

arch e is a pair ðhðeÞ, tðeÞÞ, where hðeÞ is a vertex called the head of the

hyperarc and tðeÞ is an ordered list of vertices called the tail of the

hyperarc. We denote by tiðeÞi the ith element of the tail of e. Without

loss of generality, we will assume that every vertex is the head of some

hyperarc e; the tail of e can be an empty list (denoted here as hi).

A hyperarc with head x and tail y1, . . . is written as x hy1, . . .i.

We call the set of hyperarcs with v as their head the backward star of v,

and denote it by BSðvÞ ¼ fe 2 EHjv ¼ hðeÞg. Any vertex w that appears in

the tail of some hyperarc e where e 2 BSðvÞ is said to precede v.

3.2 The optimal derivation problem

We will formulate the network history inference problem as an instance

of the optimal derivation problem in the ordered hypergraph framework

(Huang and Chiang, 2005). This framework allows one to explicitly rep-

resent the space of solutions to certain classes of combinatorial problems

by encoding these solutions in the topology of a directed ordered hyper-

graph. Such an ordered hypergraph representation is used in a wide var-

iety of different fields, including natural language processing (Huang and

Chiang, 2005; Klein and Manning, 2001) and operations research

(Nielsen et al., 2005). The highly similar directed hypergraph framework

was first introduced in computational biology by Finkelstein and

Roytberg (1993), where it was shown how many classical dynamic pro-

gramming problems from sequence alignment to RNA secondary struc-

ture prediction could be formulated in this framework. Recently, Ponty

and Saule (2011) applied dynamic programming in the directed hyper-

graph framework to the problem of pseudoknotted RNA folding, and

they extended the algorithm to allow the computation of the moments of

additive features (e.g. free-energy and helicies).

The optimal derivation of an acyclic, directed, ordered hypergraph is

D�ðrÞ, defined recursively by

D�ðuÞ :¼ min
e2BSðuÞ

cðeÞ þ
X
i

D�ðtiðeÞÞ

( )
: ð1Þ

By traversing the hypergraph in topological order starting with the nodes

that have only zero-length tails, the solutions to subproblems are

available when needed. This is the basic strategy behind traditional dy-

namic programming approaches, and the hypergraph representation

simply makes the relation between the terms of the recurrence explicit

by encoding them in the topological structure of the hypergraph. Each

vertex in the hypergraph represents a term of the recurrence, and the

hyperarcs encode the sub-terms (tail nodes of the arc) on which a term

(head node of the arc) depends (as illustrated, e.g. in Fig. 1).

3.3 Network history inference as optimal derivation

The network history inference problem can be encoded as an instance of

the optimal derivation problem as follows. We set the hypervertices of the

hypergraph H to be

VH :¼ ðfu, vg, sÞju, v 2 T and s 2 fpresent, absentg
� �

: ð2Þ

Node ðfu, vg, sÞ in H represents whether there is an interaction between

proteins u and v just before either of the proteins duplicate. We exclude

from VH any hypervertices involving proteins u, v that cannot have an

interaction between them because one is an ancestor of the other or

because they are in different species.

Let uL and uR denote the left and right children of node u. For every

hypernode ðfu, vg, presentÞ where u and v are not leaves, we have the

following hyperarcs:

ðfu, vg, presentÞ  hðfuL, vg, presentÞ, ðfuR, vg, presentÞi ð3Þ

ðfu, vg, presentÞ  hðfuL, vg, absentÞ, ðfuR, vg, absentÞi ð4Þ

ðfu, vg, presentÞ  hðfu, vLg, presentÞ, ðfu, vRg, presentÞi ð5Þ

ðfu, vg, presentÞ  hðfu, vLg, absentÞ, ðfu, vRg, absentÞi ð6Þ

The hyperarcs aforementioned encode the option of recursing into either

the children of u or the children of v and the option of losing the u–v

interaction [Equations (4) and (6)] or not losing it [Equations (3) and (5)].

The cost of hyperarcs (4) and (6) is the cost of a loss event, and the cost of

hyperarcs (3) and (5) is 0. The analogous hyperarcs exist for head nodes

of the form ðu, v, absentÞ, with present and absent switched. Finally,

for those hypervertices where u ¼ v (representing potential homodimer

interactions), the incoming hyperarcs are slightly different. Specifically,

denoting present as p and absent as a, a hypervertex ðfu, ug, pÞ appears

as the head of the following hyperarcs:

ðfu, ug, pÞ  hðfuL, uLg, pÞ, ðfuR, uRg, pÞ, ðfuL, uRg, pÞi ð7Þ

ðfu, ug, pÞ  hðfuL, uLg, aÞ, ðfuR, uRg, aÞ, ðfuL, uRg, aÞi: ð8Þ

Fig. 1. Mapping recurrence to a hypergraph. An illustration representing

a particular recurrence term in the hypergraph. Each hyperarc encodes a

set of subterms that must be evaluated to provide a solution to the head

vertex ðfu, vg, pÞ. The arrows denote derivations with back-pointers, and

they show the first (dashed blue), second (dashed orange), third (solid

blue) and fourth (solid orange) best derivations of the head vertex, and

which derivations of the tail vertices were used to achieve them
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The hyperarc in (7) encodes the recurrence where a homodimer inter-

action for protein u is inherited by its progeny, implying the edges

fuL, uLg, fuR, uRg and fuL, uRg. The hyperarc in (8) encodes the recur-

rence in which the homodimer interaction is lost before u’s duplication.

Just as with Equations (3–6), the analogous hyperarcs exist for hyperver-

tices of the form ðfu, ug, aÞ with p and a switched.

If u or v is a leaf, we omit the hyperarcs above that would involve u or

v’s non-existent children. If both u and v are leaves, we add the trivial

hyperarcs ðfu, vg, presentÞ  hi and ðfu, vg, absentÞ  hi with an empty

tail. In this case, the cost of ðfu, vg, presentÞ  hi is the cost of a loss

event if edge fu, vg exists in the observed present-day networks and 0

otherwise; the cost of ðfu, vg, absentÞ  hi is the cost of an interaction

gain if present-day edge fu, vg exists. We can also assign equal, non-zero

costs to leaf nodes to designate that the state of an interaction is unknown

rather than present or absent.

THEOREM 2. Let D� be the set of hyperarcs used in an optimal

derivation of the hypergraph defined earlier in the text. Let set I

contain a gain event corresponding to every hyperarc in D� that

transitioned from absent to present and let I further contain a

loss event corresponding to every hyperarc that transitioned

from present to absent. Then I is the lowest-cost solution to

the network history inference problem (Problem 1), except that

I may contain temporally inconsistent events.

We omit the proof of Theorem 2 because of space, but it follows

directly from the proof in Patro et al. (2012), translated into the hyper-

graph framework. The issue of allowing temporally inconsistent events is

apparently what makes Problem 1 difficult. Here, we hope to mitigate the

effect of temporally inconsistent solutions by summing over many near-

optimal solutions.

In the rest of this article, we will refer to solutions having minimum

cost as optimal, regardless of their inclusion of temporally inconsistent

events. Thus, when we say a solution is optimal, we mean that it has the

absolute minimum cost with regard to the parsimony criteria of any his-

tory generating the extant interactions. This is justified as, in practice,

such temporally inconsistent optimal solutions seem to be rare (Patro

et al., 2012). When we say that a solution is near-optimal, we mean

that it is optimal or it has a cost close to that of an optimal solution; it

need not be temporally consistent.

All of the extensions to the recurrence and cost function described

in Patro et al. (2012) can be encoded in the hypergraph framework,

including directed edges, asymmetric interaction gain and loss costs and

weighted branch length costs.

3.4 Counting optimal and near-optimal solutions

There may be many near-optimal derivations representing different

network histories. We would like to use all these histories to compute

probabilities for particular events (e.g. interaction events or an order of

duplication events) to have occurred. First, we show how to compute the

number of derivations of various costs.

Let DjðxÞ be the set of the jth-best derivations rooted at hypervertex x.

That is, D0ðxÞ is the set of optimal derivations, and D1ðxÞ is the set of

non-optimal derivations with cost as close to optimal as possible. We call

DjðxÞ a cost class, and let CjðxÞ denote the cost of each derivation in

DjðxÞ.

We want to accumulate the sizes of the top-k cost classes of the root of

the hypergraph. This will give us a distribution of the costs of near-

optimal derivations; thus, a distribution of costs of near-optimal network

histories. That is, we would like to compute jDjðxÞj for j ¼ 1, . . . , k for

some k. In general, this constitutes many more than the top-k individual

solutions because there are many ways to obtain different solutions of

equivalent cost. The key to developing an efficient algorithm for this task

is to realize that we can count all derivations belonging to the top-k cost

classes of a vertex without enumerating them.

Every derivation D in DjðxÞ is built up from a choice of hyperarc

e ¼ x ht1, . . .i combined with (potentially near-optimal) choices of

derivations of each of the members of the tail ht1, . . .i of that hyperarc.

Derivation D thus includes some subderivations Dti 2 Ddi ðtiÞ, where di is

the index of the cost class used in the subderivation for ti for derivationD.

However, the size jDjðxÞj does not depend on the specific choices of Dti

but only their cost classes di. Specifically, a particular choice of hyperarc

e ¼ x ht1, . . . , tjeji and of a set of fdigi leads to

#ðx ht1, . . . , tjeji, d1, . . . , djejÞ :¼
Y
i

jDdi ðtiÞj ð9Þ

possible derivations of the same cost c e, d1, . . . , djej
� �

. Let ~d represent

a vector of choices of cost classes [e.g. ~d ¼ ðd1, . . . , djejÞ]. Then the

size of a cost class can be expressed recursively by combining

Equation (9) with

jDjðxÞj ¼
X

e2BSðxÞ
~d : cðe, ~dÞ¼Cj ðxÞ

#ðe, ~dÞ: ð10Þ

Unfortunately, implementing the aforementioned sum directly would be

computationally expensive, as it involves summing over many choices of ~d.

However, we can exploit the fact that derivations in cost class jþ 1 are

related to derivations in cost class j in the following way. Denote by b‘ the

vector having a 1 in its ‘th position and a 0 everywhere else. Then, we

define the neighborhood of a pair ðe, ~dÞ to be the set Nðe, ~dÞ ¼

fðe, ~dþ b‘Þg
ej j
‘¼1. In other words,Nðe, ~dÞ is the set of choices for cost classes

for the subderivations that use the same cost classes as ~d except for one

item in the tail of e, for which the next higher cost class is used. We then

have the following lemma.

LEMMA 3. Let ðe, ~dÞ be a derivation that falls in cost class

DjðxÞ. Then any derivation in Djþ1ðxÞ is in Nðe, ~dÞ.

Again, for space, we omit a full proof, but the lemma is intuitive:

to go up one cost class you should only change the cost class used for

one of the subderivations. This is the essential observation behind so-

called cube pruning and cube growing approaches (Gesmundo and

Henderson, 2010; Huang and Chiang, 2005) for enumerating k best

derivations.

Lemma 3 implies that we can efficiently enumerate the top-k cost

classes for a vertex x by maintaining a priority queue of the potential

best derivations that allows us to walk from the optimal class D0ðxÞ with
~d ¼ ~0 to higher cost classes. The priority queue is initially populated with

fðe, ~0Þge2BSðxÞ. When a derivation is removed from the queue, its neighbors

are added to the priority queue sorted by their cost, and this process

continues until all derivations have been exhausted or until the top-k

cost classes have been enumerated. Lemma 3 guarantees that all items

in cost class jþ 1 will be processed after those in cost class j. Algorithm 1

formalizes this process. The process can be made even more efficient

using the faster cube pruning approach introduced by Gesmundo and

Henderson (2010).

To compute jDjðxÞj for all hypervertices x, we process hypervertices

in topological order starting from the leaves and moving up the hyper-

graph. Each leaf has only two derivations. The cost classes for non-leaf

hypervertices can be computed via Algorithm 1. As the cost function is

monotonically increasing within each edge, to obtain the top- k cost

classes at a vertex x, it will always be sufficient to have computed the

top- k cost classes for all of x’s preceding vertices. This algorithm is

similar to Algorithm 2 from Huang and Chiang (2005), except that

cost classes of derivations with equivalent costs using different hyperarcs

are merged. A simple example of this algorithm is illustrated in

Supplementary Figure S4
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3.5 Estimating probabilities of network history events

We now describe an algorithm that can use the counts derived via the

algorithm in Section 3.4 to estimate probabilities for network history

events (i.e. the interaction state or relative duplication order of ancestral

proteins) based on how often they occur in the ensemble of near-optimal

solutions. At a high level, the algorithm distributes a probability mass

at hypervertices in accordance with how frequently they appear in near-

optimal solutions.

Assigning weights to cost classes. Events that occur in derivations in

low-cost classes are intuitively more believable than those that occur in

very high-cost classes. We must decide the relative weight placed on these

classes. If there is only a single cost class, all of the weight is assigned to

the solutions from the class. Otherwise, a cost class DjðxÞ of cost CjðxÞ

is assigned weight using following equation involving a user-provided

parameter �:

wðj,xÞ ¼
1

Zx
exp �

xmin � CjðxÞ

xmax � xmin

� �
ð11Þ

where Zx ¼
P
s
exp � xmin�s

xmax�xmin

� 	
is a normalizing constant, s ranges over

the costs of all cost classes associated with vertex x, and xmin and xmax are

shorthand for the minimum and maximum costs for the computed

cost classes of x. When � is large, cost classes are given near-equal

weight. At low �, high-cost classes count for little.

Assigning probabilities to hyperarcs. Algorithm 2 traverses H in

reverse topological order starting from the root. For every hyperarc

e ¼ x ~t, it computes a probability parc½e� that is equal to the sum of

the fractions of time that this arc was used in each cost class, with each cost

class weighted according to function w aforementioned. Specifically, let

p j
arc½x ~t � ¼

#ðe, jÞ

jDjðxÞj

� �
ð12Þ

be the conditional probability that a derivation of hypervertex x will use

hyperarc e ¼ x ~t given that the derivation is of cost CjðxÞ. #ðe, jÞ gives

the number of times e was used in a derivation in DjðxÞ. Then, the total

probability of hyperarc x ~t is given as

parc½x ~t � ¼
X
j

wð j,xÞ � p j
arc½x ~t �, ð13Þ

where the sum runs over cost classes at x. Therefore, the probability mass

contributed to hyperarc e by cost classDjðxÞ is the weight of this cost class

times the conditional probability that e was used in a derivation in DjðxÞ.

Assigning probabilities to hypervertices. The probability assigned

to a hypervertex x is the sum, over all hyperarcs e where x 2 tðeÞ, of the

probability of the hypervertex hðeÞ times parc½e�. That is, for every hyper-

arc e with x appearing in its tail, the probability mass deposited at x by e

is the total probability of the head (say, y) of this hyperarc times the

probability that e is used in a near-optimal derivation of y. In actuality,

two probabilities, an ‘in’ and ‘out’ probability are computed for each

vertex. This is described in greater detail in Supplementary Section S2.

3.6 Predicting interactions

As the hypergraph encodes as its vertices all potential protein inter-

actions—both extant and ancestral—the task of predicting scores for

such interactions is straightforward. After running Algorithm 2, to deter-

mine a probability for edge fu, vg existing, we simply look at the ‘out’

probability assigned to hypervertex x ¼ ðfu, vg, presentÞ. Note that the

pair fu, vg may not be considered in all potential histories, as different

relative duplication orders may lead to histories in which u and v never

co-exist. However, if one assumes that u and v co-exist, one can condition

the relevant probabilities based on that assumption and compute

the conditioned probability p0out½x� ¼ pout½x�= pout½x� þ pout½ �x�ð Þ, where

�x ¼ ðfu, vg, absentÞ. Interestingly, one can use these same probabilities

to compute a probability, according to the ensemble of parsimonious

histories, which a pair of proteins actually co-existed.

Probabilities are also computed for extant pairs of proteins. One way

to view these scores is as a phylogenetic smoothing of the input networks.

This suggests that we may use the output scores of potential interactions

to identify specific interactions that we would or would not expect to see

given the duplication histories and the rest of the observed interactions.

To predict potential extant interactions, we consider pairs of proteins

with no interaction in the input data but between which the probability

output by Algorithm 2 is relatively high. For example, if interlogs exist

for the potential edge in evolutionarily close species, then we expect that

the derivations for a reasonable fraction of parsimonious and near-par-

simonious histories will rely on the present interaction state between these

two proteins (even though, taken in isolation, the present state will have a
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higher cost than the absent state). Thus, the algorithm is using all of the

information encoded by the input interactions and the protein phylogeny

to jointly determine the probability with which we expect to observe a

given edge.

3.7 Estimating relative duplication order

We can also use the ensemble of parsimonious histories encoded by our

method to compute a probability for the relative duplication order of a

pair of ancestral proteins u and v. Let

Pu ¼
X

s2fpresent, absentg
w2ðancðvÞ[fvgÞnancðuÞ

with spðwÞ¼spðvÞ

p0out½ðfuL,wg, sÞ� þ p0out½ðfuR,wg, sÞ�
� �

,

where ancð�Þ denotes the set of ancestors of a protein. Pu is simply the sum

of probabilities that the children of u existed before the children of v, v

itself, or any ancestor of v. Pv is defined analogously, swapping the roles

of u and v. Then Pu represents the sum of probabilities over parsimonious

histories that u duplicated before v, whereas Pv represents the probability,

in our ensemble, that v duplicated before u. Thus, to predict the relative

duplication order of u and v, we can simply compare the probabilities Pu

and Pv and predict that the protein having the larger of the two prob-

abilities was the first to duplicate.

3.8 Data and testing methodology

3.8.1 bZIP transcription factors To evaluate the ancestral network

reconstruction task, we use the bZIP family of proteins. Similar tests were

first performed by Pinney et al. (2007), who produced these data. The

bZIP transcription factors make an enticing set of data on which to test

methods for ancestral network reconstruction because the interactions

between these transcription factors are strongly mediated by their

coiled-coil leucine zipper domains, and the strength of these interactions

can be computationally predicted with high sensitivity and specificity

using sequence alone (Fong et al., 2004). This means that the interaction

affinity of ancestral proteins can be estimated with reasonably high con-

fidence by first estimating the ancestral sequence and then performing a

sequence-based prediction of the interaction affinity between the ancestral

protein sequences. This sequence-based method was used to predict the

interaction strength between both extant and inferred ancestral bZIP

proteins sequences. The predicted affinities among present-day proteins

were used to generate the extant interactions. Affinities among ancestral

proteins were taken as the ‘ground truth’ ancestral interactions (Pinney

et al., 2007).

We experiment with three different variations on these data. The ori-

ginal data consist of interaction scores as predicted by the software of

Fong et al. (2004). This software computes a score for each pair of pro-

teins, which predicts the affinity of their potential interaction. Higher

scores are assigned to pairs of proteins for which the model predicts a

greater propensity for a strong interaction between these proteins.

Present-day interactions were created between those pairs for which the

interaction score is �30.6 (the score for which the probability of an inter-

action existing given the score is 0.5) (Pinney et al., 2007). To create two

noisy versions of the data, Gaussian noise with mean 0 and standard

deviations of 10 and 20 was added to the original scores [which were

in the range ð�42:87, 59:18Þ], which were then converted to binary inter-

actions as in the original dataset.

3.8.2 Herpes viruses
Protein interaction data. We use the whole proteome interaction

networks of five different herpes viruses experimentally determined by

Fossum et al. (2009). The viruses are the Epstein–Barr virus, herpes sim-

plex virus 1 (HSV-1), murine cytomegalovirus (mCMV), Kaposi’s sar-

coma-associated herpesvirus (KSHV) and the varicella-zoster virus.

Together, the viruses span the �, � and � herpesvirus subfamilies and

represent a sampling of viruses, which have diverged substantially, as the

speciation of their common ancestor 	400 M years ago (McGeoch and

Gatherer, 2005; McGeoch et al., 2006). Despite this divergence, there is

still a set of core orthologs that are present in all of the species.

Gene and species trees. We use the species tree representing the relation-

ships between the five herpes virus species given by (McGeoch and

Gatherer, 2005; McGeoch et al., 2006). For each of the proteins in the

core orthology groups assigned by Fossum et al. (2009), we obtained the

sequences from the UniProt database (The UniProt Consortium, 2012).

We then constructed gene trees for each of the orthology groups using

PyCogent (Knight et al., 2007). Finally, the gene trees were rooted and

reconciled with the species tree using the Notung 2 software (Durand

et al., 2006; Vernot et al., 2008).

Leave-one-out cross-validation on pairs of orthology groups. Given the

reconciled gene trees for each core orthology group and the high-confi-

dence interactions reported by Fossum et al. (2009), we perform our

cross-validation experiments as follows. Let O denote the set of core

orthology groups, and for each pair fa, bg of groups in O�O, let Iab
denote the set of interactions within and between groups a and b. For

each pair fa, bg of orthology groups where jIabj41, we remove each

interaction i in Iab in turn, while leaving the remaining interactions

fixed. This yields a problem instance consisting of the reconciled trees

Ta and Tb for orthology groups a and b, and the set of interactions

Iab n fig. We run SOPH on this instance, and we record the score assigned

to each potential interaction. We rank the potential interactions accord-

ing to their probabilities, and we report the relative rank of i, the left-out

interaction, among the list of potential, non-input interactions.

In other words, let La and Lb denote the leaf nodes of Ta and Tb (not

considering nodes marked as lost by the reconciliation algorithm) and

Lab ¼ La [ Lb. Then, we consider all potential interactions i0 2 Pab,

where Pab ¼ ffu, vgju, v 2 Lab ^ spðuÞ ¼ spðvÞg n ðIab n figÞ, and sort them

in descending order according to their assigned scores. The requirement

that spðuÞ ¼ spðvÞ enforces that fu, vg is only a potential interaction if

u and v belong to the same species. We compute the relative rank of

i in this list as rankrelðiÞ ¼ rankðiÞ=ðjPabj � 1Þ. Ideally, the relative rank

should be low, indicating that the left-out edge was near the top of the

list of predicted interactions. The relative rank is always in the range of

0–1 (inclusive), and if the ranks were assigned randomly, we would expect

the left-out interaction to have relative rank of 0.5 on average (this

property holds empirically).

4 RESULTS

We now describe the performance of the SOPH framework for
the three inference tasks—ancestral network reconstruction,

missing interaction imputation and determination of relative
protein duplication order—set forth in Section 1.

4.1 Reconstructing bZIP ancestral networks in the

presence of noise

For each of the noise levels of the input data (� ¼ 0, 10, 20), we
reconstruct three ancestral networks—Teleost (ancestor of Danio

rerio and Takifugu rubripes), vertebrata (ancestor of D.rerio,
T.rubripes and Homo sapiens) and chordate (ancestor of
D.rerio, T.rubripes, H.sapiens and Ciona intestinalis). For all

experiments, we use the top k¼ 40 cost classes and set �, the
parameter that determines the relative weight of the different

cost classes to 1:5k ¼ 60.
To measure the quality of the ancestral network reconstruc-

tion, we use three separate metrics, the BEDROC score
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(Truchon and Bayly, 2007), the area under the ROC (AUROC)

and the area under the precision-recall curve (AUPR). The

BEDROC metric is an AUC metric meant to deal with the so-

called early enrichment or early recognition problem. Intuitively,

the BEDROC metric weights the accuracy more heavily early on

in the retrieval list. This is appropriate for the task of inferring

ancestral interactions because we expect the density of such inter-

actions to be relatively low, and because we care most about

those inferred ancestral interactions in which we have high con-

fidence. When computing BEDROC scores, we set the early-

recall parameter � to 20.0 as suggested by Truchon and Bayly

(2007).
Table 1 demonstrates the performance of our ancestral net-

work reconstruction procedure compared with the single-history

parsimony approach (Patro et al., 2012) and the probabilistic

model used by Pinney et al. (2007). We find that our method

often outperforms both other methods under the three metrics

shown in Table 1.
These results show the potential benefit of using the SOPH

approach to the ancestral network reconstruction problem, espe-

cially in the typical situation where the error rates of measured

present-day interactions can be very high (Stumpf et al., 2007).

More generally, the results demonstrate that the probabilistic

method, although clearly more robust to noise than the naı̈ve

parsimony approach, is not inherently superior in this aspect to

advanced methods based on parsimony. In particular, the results

of the SOPH approach with noisy input interactions suggests

that a method based on analyzing an ensemble of parsimonious

solutions can exceed the accuracy of methods based on max-

imum likelihood. By exploring all near-optimal parsimonious

histories, SOPH is able to overcome one of the main shortcom-

ings of previous parsimony-based approaches and to provide

substantially better performance, in most cases, than any of the

pre-existing methods.

We note that the cases in which the maximum-likelihood ap-

proach is most competitive with SOPH is in the most ancient

ancestral species. However, this is also the species in which we

have the least confidence in the ground-truth data, as ground-

truth ancestral interactions were computed based on the inter-

action scores of inferred ancestral sequences.

We cannot perform a similarly exhaustive validation of the

ancestral predictions for the herpes virus networks because we
do not have a general scheme for determining ground-truth

ancestral interactions. Anecdotally, however, we note that the
second highest probability ancestral interaction predicted by

our method in the common ancestor of all five herpes virus
species was between the orthology groups containing HSV-1 pro-

teins UL33 and UL31. The interactions between these orthology
groups were posited by Fossum et al. (2009) to be highly con-

served in their study of evolutionarily conserved protein inter-
action in the herpes networks; suggesting that this interaction

likely did exist in the ancestral network.

4.2 Imputing missing present-day bZIP interactions

We also test the accuracy of SOPH for predicting missing extant
interactions in the present-day bZIP networks. Let L denote

the set of leaves (i.e. extant proteins) in T, and let I be the
set of ground-truth interactions among L. We define

U ¼ ffu, vg 2 L� LjspeciesðuÞ ¼ speciesðvÞg as the universe of
potential interactions.
We performed leave-one-out (LOO) and 10- and 5-fold cross-

validation (CV) to test the accuracy of our imputations. In
LOOCV, the mean relative rank of the left-out interaction is

0.05 and the median relative rank is 0.01. We observe a minor
decrease in performance, with mean ranks of 0.06 and 0.08 and

median ranks of 0.01 and 0.02, when simulating lower data

Table 1. Ancestral network reconstruction accuracy of several methods under various levels of noise �

Ancestor Method BEDROC (� ¼ 0, 10, 20) AUROC AUPR

Vertebrata SOPH 0:96, 0:9, 0:83 0:96, 0:91, 0:88 0:75, 0:64, 0:55

Parsimony 0:89, 0:8, 0:7 0:84, 0:77, 0:78 0:68, 0:58, 0:52

Probabilistic 0:83, 0:76, 0:7 0:96, 0:91, 0:86 0:63, 0:53, 0:43
Teleost SOPH 0:95, 0:9, 0:81 0:97, 0:94, 0:9 0:76, 0:68, 0:57

Parsimony 0:84, 0:78, 0:66 0:87, 0:8, 0:8 0:67, 0:6, 0:53

Probabilistic 0:88, 0:82, 0:71 0:97, 0:94, 0:9 0:7, 0:6, 0:47

Chordata SOPH 0:97, 0:93, 0:75 0:95, 0:88, 0:85 0:7, 0:6, 0:44
Parsimony 0:87, 0:86, 0:56 0:73, 0:75, 0:60 0:59, 0:58, 0:35

Probabilistic 0:93, 0:92, 0:68 0:95, 0:93, 0:88 0:67, 0:63, 0:43

Note: The performance of our SOPH approach, a single-history parsimony approach (Patro et al., 2012) and the probabilistic method described by

Pinney et al. in reconstructing the ancestral interaction networks we consider.

Fig. 2. A histogram of the relative ranks of the left-out edges in 10-fold

cross-validation experiments on the bZIP network
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coverage with 10- and 5-fold cross-validation. Alternatively, the

edges predicted by the RWS (Lei and Ruan, 2013) method have

higher mean relative ranks of 0.12, 0.14 and 0.18 and median

relative ranks of 0:08, 0:08 and 0.1 on LOO, 10-fold and 5-fold

cross-validation tests, respectively.

The histogram of relative ranks among all experiments (10-

fold CV results; Fig. 2) displays a highly skewed distribution for

both methods, but SOPH clearly assigns relative ranks closer to 0

(the optimum) for most edges. In fact, with the SOPH predic-

tions, the vast majority of the testing edges appear in the top 2%

of the potential edges, and the frequency of lower probabilities

for the true left-out edge falls off exponentially. This suggests

that our algorithm is able to identify missing present-day edges

with high accuracy.

4.3 Imputing present-day interactions in herpes viruses

We also applied our network history inference framework to

predict missing edges in herpes viruses. Unfortunately, the core

orthology groups are small enough, and the interactions between

and within them sparse enough, that the testing methodology

precludes anything other than leave-one-out cross-validation

(described in Section 3.8). We test the relative ranks of the

SOPH predictions, as well as those of RWS and a variant thereof

(RWS�) where predicted self-loops are removed in a post-pro-

cessing step. Although our method only considers the inter-

actions within and between each pair of orthology groups in

isolation, RWS is provided with the entire core interaction net-

work for each test. The distributions of relative ranks for the

three different methods are shown in Figure 3.
Across all homology groups, the relative ranks computed by

SOPH for the left-out interactions are substantially lower than

we would expect by chance, with a mean relative rank of 0.23,

and median rank of 0.16, indicating that the left-out edge is

nearly always in the top 25% of the possible edges. The unmodi-

fied RWS predictions obtain mean relative rank of 0.78 and

median of 0.79. This is primarily because of the fact that RWS

always predicts the existence of a homodimer interaction. In

certain protein families with a high homodimerization rate (like

bZIP), such predictions are often accurate. However, in the

herpes networks, where homodimers are rare, these predictions

are problematic for RWS. Thus, we also tested a variant of the

RWS predictions (RWS�) where all predicted homodimer scores

were set to 0 in a post-processing step. This results in a mean

relative rank of 0.14 and a median relative rank of 0; a huge

improvement in performance over the unmodified RWS predic-

tions. Setting any homodimer scores to 0 also improves the

SOPH predictions, but not as drastically. However, such infor-

mation about the homodimerization rate is not often known a

priori, and one strategy is not always better than the other (e.g.

RWS outperforms RWS� in bZIP). Thus, although RWS either

predicts the existence of all or no homodimer interactions, SOPH

can predict them effectively on a protein-by-protein basis.

Some of the cases in which the experimentally deleted edge is

given a low probability (by either method) are likely because of

interactions, which are surprising from an evolutionary perspec-

tive, or simply a result of the sparsity of the input dataset. In

particular, as the experimental dataset used to perform these tests

is hypothesized to have a relatively high–false-negative rate itself

(Fossum et al., 2009), it is likely the case that the evolutionary

evidence to improve the prediction of edges is simply missing.

Performance on individual pairs of orthology groups. Figure 4
provides a heatmap of the average relative rank of imputed inter-

actions between pairs of orthology groups. Because of the spars-

ity of the initial data and the presumed low density of the true

interaction networks, many pairs of orthology groups contain

one or zero interactions between them (they appear white in

Fig. 4) and are left-out of the experiment. Among the remaining

groups, we notice a somewhat bimodal distribution of relative

ranks. Between many pairs of groups, the missing interactions

can be perfectly imputed (relative rank of 0), whereas between

others, the task seems incredibly difficult (e.g. between groups 4

and 24 the average relative rank of the left-out edge was 0.63).

Again, this suggests that when there is sufficient evolutionary

evidence, missing interactions can be imputed with high accur-

acy. Because we do not have a true gold-standard set of inter-

actions, we cannot reliably hypothesize whether the imputed

interactions with large relative ranks are because of a failure of

the method (i.e. evolutionarily non-parsimonious interactions) or

simply false-negatives in the input data.

Fig. 3. Histogram of the ranks of the left-out edge in cross-validation

experiments for the herpes virus networks. RWS denotes the standard

RWS method, which always predicts homodimer interactions. As the

core herpes network has few such interactions, the resulting predictions

are poor. For RWS�, all homodimer predictions produced by RWS were

set to 0. This extra information substantially improves the RWS predic-

tions; however, such information is usually not known when performing

an edge imputation task. SOPH, on the other hand, can effectively predict

homodimer interactions on a protein-by-protein basis

Fig. 4. Imputing missing interactions (per-group). A heatmap of the aver-

age relative ranks of the left-out edge between pairs of orthology groups
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4.4 Inferring relative order of duplications

Because probabilities for several kinds of evolutionary events can

be extracted from the ensembles of histories, the method can also

be used to estimate the relative duplication order of ancestral

proteins as described in Section 3.7. Accurate independent meas-

urements of duplication order can help validate branch lengths

and also estimate the relative ordering of speciation events.

We will compare our inferred duplication order with the du-

plication order implied by an ultrametric embedding of the bZIP

phylogeny. The branch lengths inferred on the original bZIP tree

[constructed via PAML (Yang, 1997)] do not satisfy the ultra-

metric property; thus, they are not consistent with a molecular

clock and cannot be directly used to infer duplication order. By

embedding the given branch lengths into an ultrametric tree

using the method provided in Huerta-Cepas et al. (2010), we

obtain consistent relative orderings based on sequence informa-

tion alone.
To measure the agreement between the orders inferred by

SOPH and those inferred by sequence, we compute the standard

Kendall � � b statistic among all intra-species pairs of gene du-

plication events that were not related by direct evolution. Let N

be the total number of tested pairs, nc be the number of such

pairs that the two methods place in the same relative ordering, nd
be the number of pairs for which they disagree, tx be the number

of tied pairs given the tree ordering and ty be the number of tied

pairs given the SOPH ordering. Then � � b ¼ ðnc � ddÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN� txÞðN� tyÞ

p
.

Among all 5194 relevant pairs, there are 3745 concordant and

1349 discordant pairs, leading to � � b ¼ 0:47. This correlation is

highly significant, with a P-value of 2� 10�12, using the analytic

estimation of variance suggested in Hazewinkel (2000). When

performing the aforementioned test, we did not supply SOPH

with the branch lengths, and the method did not use any infor-

mation about the relative duplication order or protein sequences

apart from the ancestral relationships encoded in the tree topol-

ogies themselves. This relatively good performance means that

there is a substantial amount of information about the relative

duplication order of proteins encoded in the network. The rela-

tively high � � b and low P-value indicate that the SOPH ap-

proach is able to reconstruct, in a largely independent way, the

relative order of duplication events.

We note that if we use the duplication order implied by the

non-ultrametric version of the bZIP phylogeny—where the

branch lengths still encode evolutionary information but

cannot be interpreted directly as representing evolutionary

time—we obtain a � � b of 0.20 (3109 concordant and 2084 dis-

cordant pairs) and an associated P-value of 0.002. This suggests

that SOPH can be useful in providing a separate and not-often

considered source of information (extant interaction networks)

when attempting to determine a consistent set of branch lengths

and duplication orders.

5 CONCLUSION

We have introduced a novel sum-over-histories method for sol-

ving the network history inference problem. It addresses short-

comings of existing methods by using a weighted ensemble

consisting of all optimal and near-optimal parsimonious

histories. We show that this makes the results robust to the pres-

ence of noise in the input (Section 4.1) and allows our parsimony

approach to outperform the probabilistic approach to ancestral

network reconstruction (Pinney et al., 2007) at all considered

noise levels.
The algorithms we present have practical running times. Our

implementation required only 1.5 min to compute—in serial—

the results for all cross-validation experiments on the herpes

virus datasets (an average of51 s per experiment). On the sig-

nificantly larger bZIP dataset, the algorithm requires 6.5, 8.5,

10.4, 12.4, 14.4, 16.9 and 34.4 s, respectively, to compute solu-

tions using the top 1, 10, 20, 30, 40, 50 and 100 cost classes,

suggesting an empirically linear relationship between the running

time and the number of requested cost classes.
The sum-over-histories approach is also general and allows

many other questions to be answered about how a sequence of

proteins, and their interactions have evolved. We find that our

method can reliably exploit evolutionary evidence to discover the

existence of missing interactions. SOPH may be useful in prior-

itizing low-throughput but high-accuracy protein interaction ex-

periments by suggesting which interactions are more likely than

others to exist given the current experimental and evolutionary

evidence. The SOPH approach also recovers the ultrametric tem-

poral ordering relationships between duplication events well,

without using any direct information about sequence or branch

lengths.
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