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Abstract
The long-term monitoring of respiratory status is crucial for the prevention and diagnosis of respiratory diseases.
However, existing continuous respiratory monitoring devices are typically bulky and require either chest strapping or
proximity to the nasal area, which compromises user comfort and may disrupt the monitoring process. To overcome
these challenges, we have developed a flexible, attachable, lightweight, and miniaturized system designed for
extended wear on the wrist. This system incorporates signal acquisition circuitry, a mobile client, and a deep neural
network, facilitating long-term respiratory monitoring. Specifically, we fabricated a highly sensitive (11,847.24 kPa−1)
flexible pressure sensor using a screen printing process, which is capable of functioning beyond 70,000 cycles.
Additionally, we engineered a bidirectional long short-term memory (BiLSTM) neural network, enhanced with a
residual module, to classify various respiratory states including slow, normal, fast, and simulated breathing. The system
achieved a dataset classification accuracy exceeding 99.5%. We have successfully demonstrated a stable, cost-effective,
and durable respiratory sensor system that can quantitatively collect and store respiratory data for individuals and
groups. This system holds potential for everyday monitoring of physiological signals and healthcare applications.

Introduction
Breathing constitutes a fundamental physiological pro-

cess, essential for sustaining life1. Respiratory dysfunction
often signals various underlying pathological conditions2,3.
As such, continuous monitoring of respiratory status is
crucial for the prevention of respiratory diseases and for
guiding clinical care. Respiratory monitoring techniques are
broadly categorized into two main groups: direct monitor-
ing and indirect inference methods4,5. Direct monitoring
captures respiratory signals by tracking thoracic and
abdominal movements as well as airflow changes6–9.
Although this approach can provide a precise reflection of

respiratory status, its usage is often hampered by discomfort
and impracticality for prolonged periods.
Conversely, indirect inference methods, which have

gained considerable attention recently, predominantly esti-
mate respiratory status by analyzing physiological signals
such as heart rate variability and pulse waveform to deter-
mine respiratory frequency10–12. Motin M. A introduced a
novel approach for monitoring respiratory function using
principal component analysis combined with the ensemble
empirical mode decomposition (EEMD-PCA) algorithm,
applied to photoplethysmography (PPG) signals from public
databases, aimed at estimating respiratory frequency11.
Despite their non-invasive nature and suitability for long-
term monitoring, indirect methods may lack the precision
of direct methods in estimating respiratory rates. Thus,
refining the accuracy of these indirect techniques remains a
significant challenge.
The human pulse wave provides critical insights into

both physiological and pathological processes13,14.
Research has demonstrated a significant correlation
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between characteristics of the pulse wave and respira-
tory activity15–17. Changes in the amplitude, baseline,
and frequency of the pulse wave have been associated
with variations in respiratory activity18. Respiratory
sinus arrhythmia (RSA) exemplifies this relationship,
highlighting the influence of respiration on heart rate
regulation19. Previous research has utilized signal
quality indices to improve the accuracy of respiratory
frequency estimation directly from pulse character-
istics20–24. However, this method lacks stability during
long-term monitoring. Traditional methods for classi-
fying respiratory states often rely on simple threshold
techniques, which, while straightforward, are limited in
their ability to accurately determine respiratory states25.
The application of advanced computational methods
such as machine learning and deep learning has shown
promise in enhancing classification accuracy. Techni-
ques including support vector machines26, random
forests27, and one-dimensional convolutional neural
networks (1D-CNNs)28,29 have been used for data
classification, although they struggle with modeling
temporally variable data. Recurrent neural networks
(RNNs)30 excel in capturing temporal dynamics but
face challenges related to gradient training. In contrast,
bidirectional long short-term memory networks
(BiLSTM)31 have demonstrated improved sequence
representation capabilities. Additionally, integrating
BiLSTM with ResNet32 is anticipated to overcome
gradient issues and enhance feature extraction in
complex respiratory data analysis.
In this study, we developed a wearable wristband device

designed for precise, continuous monitoring of respiration.
The core element of this system is a highly sensitive flexible
pressure sensor, characterized by a sensitivity of
11,847.24 kPa−1, a detection range from 1 to 50 kPa, a rapid
response time of only 37ms, and a durability exceeding
70,000 cycles. This device proficiently monitors the radial
artery pulse during respiration and preprocesses the pulse
signal, enabling differentiation among slow, normal, and fast
breathing rhythms, as well as simulated respiratory states.
Additionally, we evaluated the performance of BiLSTM and
ResNet-BiLSTM neural networks; our findings indicated
that the ResNet-BiLSTM provided superior training stabi-
lity and achieved a classification accuracy of 99.5%. Fur-
thermore, the integrated sensing platform, comprising
sensors, flexible printed circuit boards, and mobile appli-
cations, supports long-term respiratory monitoring. This
integration facilitates personalized health management and
aids in the treatment of respiratory diseases.

Results and discussion
System design and integration
Figure 1a, b depicts the configuration of the respiratory

monitoring system, which includes two primary components:

a flexible sensor for pulse detection and a flexible circuit with
encapsulation for data acquisition and processing. The sys-
tem’s integrated flexible design not only enhances wearability
—thereby improving pulse data monitoring—but also
ensures user comfort. The pulse sensor’s thickness is merely
300 μm, which simplifies its attachment. The fabrication
process of the pulse sensor, as shown in Fig. 1b, begins with
the sequential printing of an electrode layer composed of
interdigital silver electrodes (Fig. 1b-V) and a spacer layer
made from thermoplastic polyurethane (TPU) ink (Fig. 1b-
IV) on a TPU substrate (Fig. 1b-VI). This assembly is then
aligned with another TPU substrate (Fig. 1b-II), which has
been previously printed with a sensitive layer composed of
CNT-based material (Fig. 1b-III). The device is ultimately
fully encapsulated using a PDMS film (Fig. 1b-I, VII), which
not only enhances comfort against the skin but also extends
the device’s operational lifespan. Laser etching technology is
used to create fingerprint-like, ring-shaped structures on the
back layer of the PDMS film (Fig. 1b-VII), improving the
sensor’s surface texture and mechanical adhesion33.
Figure 1b further illustrates the encapsulation process of the
flexible circuit board (FPCB). The FPCB and sensor are
connected via a flexible cable, powered by a rechargeable
lithium-ion battery, and encapsulated with silicone, resulting
in a microsystem that is highly flexible and lightweight (9 g),
thereby minimizing the physical and psychological burden on
the user34.
Figure 1c depicts the schematic diagram of a flexible

circuit designed for data acquisition and processing. This
circuit, as outlined in Fig. S1, comprises a MCU module, a
Bluetooth module, an ADC module, and a power supply
module. The pulsation of the radial artery prompts a
variation in the sensor signal. This variation is amplified
and then processed by a 24-bit high-precision ADC
(AD7760). The power module includes a 3.7 V recharge-
able lithium-ion battery and a Type-C charging port,
incorporating a TP4057 charging chip. The micro-
controller unit (ESP32) is responsible for data handling,
storage, and communication. It transmits the processed
data through a Bluetooth Low Energy (BLE) chip
(BG22C224) to an application for display purposes.
Additionally, Fig. S2 offers both a three-dimensional view
and a detailed schematic of the circuit components.

Operating principle and algorithm design
The radial pulse serves as a direct indicator of myo-

cardial pumping strength35. During systole, when the left
ventricle contracts, the pulse of blood is propelled from
the aorta to the radial artery, manifesting as a detectable
pulse at the wrist (Fig. 1a). A flexible sensor, affixed to the
radial tuberosity of the wrist, enables precise pulse mea-
surement in an optimal location without the need for a
medical professional. Analysis of the pulse wave allows for
the measurement of heart rate changes synchronized with
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respiratory phases, termed respiration-induced fluctua-
tion in ventricular filling (RIFV), respiration-induced
alterations in cardiac output (RIAV), and respiration-
induced variations in pulse baseline (RIIV). Additionally, a
bidirectional long and short-term memory network
(BILSTM), in conjunction with multiple residual net-
works (ResNet), is employed to analyze temporal features
and distinguish between four respiratory states: slow,
normal, fast, and simulated breathing. The incorporation
of ResNet enhances the capture of complex spatial data,
thereby improving the understanding and operational
training of BILSTM. This integration also addresses the
issue of vanishing gradients, thereby enhancing the effi-
ciency and performance of the network during training
sessions. By capturing pulse signals and integrating them
with a deep learning network (ResNet-BILSTM), the
system achieves an impressive overall classification accu-
racy of 99.5% on the dataset. This performance results in
stable, long-term monitoring of respiratory status.

Comparative analyses with similar studies underscore that
this research introduces an advanced respiratory sensor
system that is not only wearable and comfortable but also
capable of long-term monitoring without requiring spe-
cialized physician assistance for localization. Furthermore,
it is characterized by high accuracy, as documented in
Table S125–29,36–46.

Sensor and circuit encapsulation preparation
To ensure stable and continuous monitoring of wrist

pulse signals, a flexible piezoresistive sensor was devel-
oped. Figure 2a delineates the methodology utilized in the
sensor’s preparation. The surface of the TPU film is
treated with plasma to eliminate contaminants, thereby
enhancing the adhesion of the subsequently printed
materials. The sensor is fabricated by sequentially
depositing a silver electrode layer and a TPU spacer layer
onto the TPU film via a screen printing technique, as
illustrated in Fig. S3a. Following this, a sensitive material
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Fig. 1 Schematic illustration of the flexible sensor system. a The flexible sensor is mounted on the radial tuberosity of the wrist to capture the
pulse signal, which is then processed to ascertain real-time respiratory status using the ResNet-BiLSTM model. b A schematic layout of the system is
provided, showcasing the integration of the pulse detection sensor and the flexible circuit for data acquisition and processing. c Detailed diagram of
the data acquisition and processing flexible circuit
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—similar to that used in our previous work47—is printed
onto another plasma-treated TPU film using the same
screen printing process (Fig. S3b). The assembly is then
fully encapsulated with a plasma-treated PDMS film,
topped with a fingerprint-like PDMS layer that has

undergone laser etching and further plasma treatment
(Figs. S4 and S5). Figure 2b presents cross-sectional and
in-plane microscopic images of the finalized structure. An
evaluation of the sensor’s sensitivity and linearity, with
variations in ring spacings (Fig. S6) and widths (Fig. S7),
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Fig. 2 Manufacturing process for the assembly of the flexible sensor. a Overview of the sensor preparation process. b Optical and SEM images
displaying the fingerprint-like ring-shaped structure on the underlying PDMS film. c SEM image of the electrode layer. d SEM image of the sensitive
layer. e Optical image of the sensor, highlighting its resilience to stretching, twisting, and protrusion
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revealed that optimal performance is achieved with a ring
width of 200 µm and a spacing of 150 µm. Comparative
analyses of the response and relaxation times across dif-
ferent configurations of ring spacings (Fig. S8) and widths
(Fig. S9) indicated negligible differences. The sensor
demonstrates remarkable flexibility, effectively enduring
mechanical stresses such as stretching, bending, twisting,
and arching, as evidenced in Figs. 2e and S10. This flex-
ibility ensures a snug fit over the radial tuberosity of the
wrist, maintaining direct contact with the skin and
thereby enhancing the stability and accuracy of the signal
detection. Additionally, the microstructural integrity of
the interdigital electrode layer and the sensitive layer was
examined (Fig. 2c, d), revealing no significant structural
changes compared to those prepared 1 month earlier (Fig.
S11). The elemental composition of both the sensitive and
interdigital electrode layers (C, N, O, with the addition of
Ag in the electrode layer, Figs. S12 and S13) was analyzed
using an energy dispersive X-ray spectrometer (EDS).
Results confirmed that there were no substantial changes
in the composition compared to samples analyzed
1 month prior (Figs. S14 and S15), with the elemental
ratios remaining stable (Figs. S16 and S17). We conducted
a comparative analysis of the sensitivity, linearity,
response time, and relaxation time between a newly pre-
pared sensor and a counterpart fabricated 1 month prior.
The analysis revealed that the newly prepared sensor
demonstrated enhanced sensitivity and linearity, which
can be ascribed to an increased carbon content in its
sensitive layer (Figs. 3d and S16, S18). Additionally, we
assessed the response and relaxation times of both sensors
across ten trials each. The data indicated that the sensor
prepared 1 month ago exhibited superior response and
relaxation times, likely due to a higher concentration of
silver in its electrode layer (Figs. S17 and S19). These
observed performance discrepancies are presumably the
result of variations in the sensor fabrication processes.
The implementation of standardized equipment and more
precise manufacturing techniques could potentially
reduce these variations. Despite these differences, the
overall performance disparity between the two sensors is
minimal and does not adversely affect the sensor’s typical
functionality. Our findings suggest that both the sensitive
and interdigital electrode layers maintain robust long-
term stability, which is essential for the reliable and
continuous monitoring of human physiological signals
over prolonged periods.
The circuit packaging was engineered using inverted

mold technology and was encapsulated with a mold sili-
cone resin48 (Fig. S20). A digital optical image, depicted in
Fig. S21, illustrates the circuit package under various
mechanical stresses including protrusion, bending,
stretching, and twisting. The FPCB demonstrated excep-
tional bending properties (Fig. S22). Following

encapsulation with silicone, the device not only proved to
be stretchable but also comfortable to wear, ensuring
strong adhesion to the skin surface of the arm (Fig. S23).
This enhanced adhesion was evident in Fig. S24, which
highlighted the device’s lightweight and flexible nature,
enabling a highly comfortable fit and excellent wear
resistance, crucial for long-term data monitoring on the
forearm.

Device characterization
The performance of the flexible pressure sensor was

rigorously evaluated, as depicted in Fig. 3a. The high-
precision dynamic electrical testing platform is composed
of several critical components: testing control apparatus,
data storage units, a precision LCR meter, and a testing
machine. The sensors underwent pressure and bending
tests facilitated by an electric translation fixture. This
testing machine is specifically engineered to apply peri-
odic forces and displacement amplitudes, effectively
simulating real-world scenarios. The LCR meter meticu-
lously records the output signals, such as sensor current,
thereby providing comprehensive data regarding the
sensor’s performance across various testing conditions.
Through investigating the impact of the CNTs/TPU ratio
on the sensor’s efficacy, an optimal ratio of 1:4 was
established. A statistical histogram of the normalized
current output amplitude at a pressure of 50 kPa was
constructed (Fig. 3b), revealing that the sensor’s signal
output peaked under the 1:4 doping ratio condition
(Fig. 3c). The sensor demonstrated exceptional sensitivity
across a pressure range from 1 to 50 kPa, with a sensitivity
of 11,847.24 kPa−1 within the 0–13 kPa range and
3883.36 kPa−1 throughout the linear operating range of
13–50 kPa (Fig. 3d). Unlike traditional single pulse sen-
sors, which require medical professional intervention to
identify the optimal pulse location and thus may limit
broader application, our sensor features a straightforward
design enabling user-driven tactile interaction with the
radial tuberosity of the wrist. To accommodate the pulse
regions of different individuals’ wrists, the sensor was
designed with an effective detection area of
5.5 mm × 24.8 mm, encompassing five pulse-sensing
regions (Fig. S25). Pressure testing across these five sen-
sing zones indicated an effective and consistent response
at all locations (Figs. 3e and S26). The bending response
of the flexible sensor was also assessed, with bending
displacements ranging from 0.5 mm to 8mm (Fig. 3f); the
output current was observed to increase linearly with
bending displacement (Fig. 3g). Moreover, the sensor
exhibits an exceptionally low detection limit of approxi-
mately 120 Pa (Fig. 3h) and is capable of detecting forces
significantly below 1 kPa49. It also demonstrated a rapid
response time of 37ms and a relaxation time of 13ms, as
illustrated in Fig. 3i. Long-term stability was tested by
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subjecting the sensor to a pressure of 50 kPa for 70,000
cycles, with no significant signal degradation observed,
thereby demonstrating its excellent cyclic stability
(Figs. 3k and S27). Furthermore, after subjecting the

sensor to more than 10,000 cycles at pressures in the five
sensing regions, only minimal peak deviation of the cur-
rent signal was detected (Fig. 3j). These properties affirm
that the sensor is well-suited for long-term applications
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and meets the criteria for high precision and responsive-
ness required in pulse monitoring.

Sensor application
Figure 4a illustrates the specific setup utilized for

acquiring pulse and respiration data. Before the collection
of these signals, volunteers were required to remain sta-
tionary for 2 min to stabilize their physiological state, as
depicted in Fig. 4a-I and further demonstrated in Sup-
plemental Movie 1. Instructions were given to ensure that
participants placed their arms flat on the table, main-
tained relaxed wrists, and kept their fingers naturally
curved, as shown in Fig. 4a-V. Each volunteer was out-
fitted with a commercial respiratory sensor on the chest
and a long-term respiratory monitoring system on the
forearm. Additionally, a medical-grade airbag wristband,
calibrated to 15 kPa pressure, was positioned on the wrist
to exert controlled pressure on the wrist sensor (Fig. 4a-
IV). A key component of the setup was a flexible sensor
affixed to the radial styloid process of the wrist, secured
with medical tape. The system included mobile and
computer terminals capable of displaying and storing both
pulse (Fig. 4a-III) and respiratory data (Fig. 4a-II) in real
time. This functionality allows for the immediate analysis
of the collected signals to identify and discard any
anomalous data. During respiratory activities, the expan-
sion and contraction of the chest cavity induce alterations
in the circulatory system’s blood flow. These variations
manifest as changes in the amplitude, frequency, and
baseline of the pulse waveform, correlating with the
RIAV, RIFV, and RIIV features, which are detailed in
Fig. 4b.
To analyze the respiratory status of the volunteers, a

32-s sample comprising pulse and respiration data was
selected. The baseline drift in the pulse signal was cor-
rected using an envelope recognition algorithm. Subse-
quently, a sliding window algorithm facilitated the
identification of peaks and valleys, and the extraction of
RIAV, RIFV, and RIIV features from the pulse signals, as
illustrated in Fig. S28. The initial sampling rates for pulse
and respiration data were 100 Hz and 50 Hz, respectively.
These time series data were then downsampled to a fre-
quency of 5 Hz to compile the final dataset. In this study,
13 volunteers contributed to the data collection, during
which their respiratory states were monitored across three
distinct levels: slow, normal, and fast breathing. Figure 4d
displays the corresponding pulse and respiration data for
these states. Additionally, Figs. 4e and S29 depict the
interaction between respiration and pulse over a 100-s
interval, demonstrating the impact of different respiratory
states on this relationship. Analysis of the energy dis-
tribution in the time-frequency images across various
respiratory states revealed substantial differences, indi-
cating a correlation between respiratory and pulse rates

for each state. Figure 4c shows the respiratory frequency
distribution for the different states, which can be sum-
marized as follows: slow breathing at approximately 6
breaths per minute (bpm), normal breathing at approxi-
mately 15 bpm, and fast breathing at approximately 30
bpm. However, significant overlap in the respiratory fre-
quencies of these states results in low classification
accuracy when employing the threshold method to dif-
ferentiate between them. To improve the dataset and
model, a pulse simulator was introduced as a fourth
respiratory state, enhancing the generation of more pre-
cise and comprehensive respiratory state data. This
enhancement allows the model to more effectively
recognize the different respiratory states, thus increasing
the robustness and accuracy of classification. The long-
term respiratory status monitoring system is designed to
be attached to the simulated radial artery of the pulse
generator using medical tape, as shown in Fig. S30, with
pulse signals continuously collected over a period of 2.8 h
(Fig. S31). In the pulse dataset, the three human states
exhibit a broader range of pulse rates, whereas the
machine-generated pulse rates tend to cluster around 70
bpm, as demonstrated in Fig. S32. This consistency in
machine-generated pulse rates can be attributed to the
enhanced stability of the machine-generated pulse cycle.
The dataset was constructed using pulse feature data

from four respiratory states. BiLSTM models were
employed to process the time series of RIAV, RIFV, and
RIIV features, aiming to capture contextual information
and enhance time series recognition (Fig. S33). However,
during the training phase, individual BiLSTM models
often experienced suboptimal training and performance
due to local optimization, leading to significant fluctua-
tions in accuracy and loss values (Fig. S34). This issue is
likely due to the models’ tendency to settle into local
minima during the optimization process, which adversely
affects their generalization capabilities. The integration of
a Residual Network (ResNet) effectively mitigated these
issues by substantially improving the network’s ability to
identify relevant features while maintaining the integrity
of the training process. This enhancement bolstered the
model’s training stability and generalization capabilities
(Figs. 4g and S35). Figure 4f shows the configuration of
the ResNet-BiLSTM network, and Table S2 lists the
specific model parameters. The classification accuracy of
the ResNet-BiLSTM model reached as high as 99.5%
(Fig. 4h). In contrast, the overall accuracy of the BiLSTM
model was slightly lower, at 99% (Fig. 4i), particularly in
recognizing slow breathing. After integrating the residual
network for optimization, the recognition accuracies for
the four respiratory states—slow breathing, normal
breathing, fast breathing, and simulated breathing—
showed significant improvement and a more balanced
distribution. The accuracies for each state were 99.7%,
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98.5%, 99.6%, and 100%, respectively. The confusion
matrices in Fig. S36 display the classification accuracies
for the training and test sets of the two models.
The ResNet-BiLSTM model presents a robust tool for

the long-term monitoring of respiratory status. For this
purpose, a 32-s pulse signal was selected, preprocessed,
and its features extracted to serve as input data for the
ResNet-BiLSTM model. This model then classifies the
respiratory state. The 32-s pulse data is refreshed every
2 s, and following the completion of the processing phase,
the most recently classified state is obtained through
modeling. This iterative process continuously monitors an
individual’s respiratory state. In this study, pulse data were
collected from six volunteers, each exhibiting three dis-
tinct respiratory states: slow, normal, and fast, over a
period exceeding 300 s. The ResNet-BiLSTM model, in
conjunction with a standalone BiLSTM model, was
employed to achieve extended monitoring of respiratory
functions. Concurrently, respiratory states identified by
commercial respiratory sensors served as reference labels
for comparison of outcomes. Figure 5a–d, S37 and S38
depict the results of continuous respiration monitoring
for the volunteers, including pulse and respiration ima-
gery during transitions between respiratory states. Speci-
fically, Fig. 5a-II displays 32-s pulse and respiration data
corresponding to the yellow-highlighted areas in Fig. 5a-I.
Transition points a and b correspond to shifts from slow
to normal respiration, while points c and d denote tran-
sitions from normal to fast respiration. The ResNet-
BiLSTM model, along with the BiLSTM model, demon-
strates high accuracy in recognizing mixed respiratory
states and effectively mitigates the impact of external
disturbances and fluctuations in respiratory state. In
contrast, traditional respiratory rate thresholding methods
lack the robustness required to manage such sudden
changes, often resulting in the incorrect identification of
respiratory states. For instance, when monitoring the
respiratory state of Volunteer 3 over an extended period,
the recognition accuracy of the ResNet-BiLSTM model
reached 100%, significantly outperforming the BiLSTM
model, as depicted in Fig. 5c. Subsequently, the average
classification accuracy for each individual across all
respiratory states was analyzed and presented in a radar
plot (Fig. 5e). As illustrated in Fig. 5e, the accuracy curve
of the ResNet-BiLSTM model exhibits a larger area and a
more uniform distribution, indicating superior stability
across various conditions. Furthermore, the model
demonstrates enhanced robustness compared to the
BiLSTM model. To analyze the results of the hierarchical
output feature matrix “Bilstm1” depicted by the two
models in Figs. 4f and S33, we employed the t-SNE
downscaling technique with the objective of visualizing
the dataset (Fig. 5f, g). Each data point, representing a
specific respiratory state, was mapped from a high-

dimensional feature space to a two-dimensional repre-
sentation for visualization purposes. Points representing
the same respiratory state were grouped into four cate-
gories, each labeled with 95% confidence circles. Figure 5g
reveals considerable uncertainty in the BiLSTM model’s
performance, as evidenced by the overlap between the
confidence circles.

Conclusion
This study introduces an innovative wearable wrist-

worn system designed for the long-term monitoring of
respiratory activity. Characterized by its fingerprint-like
configuration, the system enhances surface roughness and
mechanical adhesion, thereby ensuring sustained sensor
performance over extended periods. Weighing only 9
grams, the system significantly alleviates the burden on
the user. Furthermore, it utilizes a ResNet-BiLSTM model
for respiratory monitoring, achieving a classification
accuracy of 99.5%. This compact and highly adaptable
system offers precise long-term monitoring of various
breathing patterns, an improvement over traditional
sensors which may be placed in the mouth, nose, chest, or
abdomen and often cause physical and psychological
discomfort to users. Integrated with a dedicated mobile
application, the system facilitates the quantitative collec-
tion and analysis of respiratory data, supporting daily
monitoring and health management. This groundbreak-
ing approach is anticipated to play a significant role in the
prevention of respiratory diseases and in forming the
foundation for clinical treatment decisions.

Methods
Manufacturing of flexible sensors
The manufacturing process of flexible sensors began

with the preparation of a TPU particle solution. This
involves dissolving 2 grams of TPU sourced from Ruix-
iang Polymer Material Management Department in
Zhangmutou, Dongguan, into 5 milliliters of dimethyl-
formamide (DMF, Aladdin). The mixture was then stirred
using a magnetic stirrer (LC-MH Pro, Shanghai Lichen
Bangxi Instrument Technology Co., Ltd.) at a temperature
of 80 °C and a speed of 800 rpm for 3 h. Subsequently,
carbon nanotubes (CNT, Suzhou Carbon Peak Graphene
Technology Co., Ltd.) were added, and the stirring con-
tinued at 80 °C and 1200 rpm for an additional 6 h. The
mixture was then subjected to ultrasonic waves (LC-UC-
21, Shanghai Lichen Instrument Technology Co., Ltd) at
80 °C for 1 h to enhance dispersion. Afterward, the mix-
ture was stirred again at 80 °C and 1200 rpm for 2 more h
to obtain the sensitive layer solution. Simultaneously, a
PDMS solution was prepared by mixing 5 grams of sili-
cone rubber masterbatch with 0.5 grams of hardener
(Dow Corning, USA), supplemented by 0.05 grams of
pigment, and stirred for 3 min. This mixture was then
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placed in a sealed box and degassed using a vacuum pump
(2RS-4, Shanghai Xinyi Instrument Co., Ltd) for 5 min to
eliminate any air bubbles. Once degassed, the solution
was ready for application. An aluminum plate was
cleansed with deionized water and positioned in the
center of a Spin Coater (KW-4B, Beijing Saidekesi Elec-
tronics Co., Ltd). The PDMS solution was carefully
deposited onto the center of the plate, and the Spin
Coater was activated for 1 min. Following spinning, the
aluminum plate was removed and placed on a hot bench
at 80 °C for 6 h to cure the PDMS film.
TPU film (XJU150, 0.05 mm thickness, provided by

Shanghai Xingxia Polymer Products Co., Ltd.) was cut
into two 8 cm × 8 cm pieces. These pieces were heated at
80 °C for 20 min to facilitate expansion and subsequent
size adjustment. Upon cooling, the films were treated in a
plasma cleaner (PDC-36G, supplied by Hefei Kejing
Material Technology Co., Ltd.) for 1 min to eliminate
surface contaminants and small particles, thereby
enhancing surface adhesion. The treated TPU films were
then affixed onto a screen printing table (equipment
provided by Hunan Deyun Printing Equipment Co., Ltd.),
and a printing mesh bearing electrode patterns was placed
atop the films. Conductive silver paste was screen-printed
onto the TPU film using a scraper, followed by a heating
step at 80 °C for 5 min to form the electrode layer. The
same screen printing method was employed to deposit a
sensitive layer solution onto another treated TPU film,
which was similarly heated at 80 °C for 5 min to develop
the sensitive layer. Subsequently, the TPU film with the
electrode pattern was transferred back to the screen
printing table, and a TPU solution was applied to establish
the spacer layer using the identical printing technique.
The two printed TPU films were then aligned such that
the sensitive layer completely covered the interdigital
electrodes of the electrode layer. A flexible flat cable
(40 mm long, 2.5 mm wide, 0.1 mm thick) from a data
acquisition module was connected to the electrode layer
to facilitate signal acquisition. The assembled layers were
placed in a vacuum oven (DZF, manufactured by Hang-
zhou Mei Instrumentation Technology Co., Ltd.) and
heated at 70 °C for 90min to ensure adhesion between the
upper and lower TPU substrates, thus forming semi-
finished sensors. A plasma-treated PDMS film was then
cut to form the upper PDMS layer, while another plasma-
treated PDMS film was etched using a 355 nm ultraviolet
laser (YLCF65U, produced by Wuhan Yuanlu Co., Ltd.) to
create a fingerprint-like structure on the lower PDMS
layer. The laser etching process was conducted three
times at a speed of 1000 mm/s, with a pulse frequency of
60 kHz and a pulse interval of 12 μs. Finally, the sensor
was encapsulated using the upper and lower PDMS layers,
and the assembly was heat-pressed with a hot press
machine (provided by Yiwu Yizhao Machinery Co., Ltd.)

for 1 min at 80 °C. This process bonded the layers toge-
ther, resulting in the production of a flexible sensor.

Manufacturing of flexible circuit packaging
The process of encapsulating circuits involved the use of

inverted mold technology. A silicone base and curing
agent (ShinBon408, Dehua County Xinbang Chemical
Materials Trading Co., Ltd) were mixed at a ratio of 50:1.
Subsequently, a pigment was uniformly incorporated into
the mixture to ensure consistent coloration throughout.
This mixture was then poured into the mold and sub-
jected to a vacuum defoaming process to eliminate air
bubbles. After allowing the mixture to set for 12 h, the
silicone underwent a curing process. Upon completion,
the mold was opened to reveal the encapsulated circuit,
with both upper and lower layers fully formed as shown in
Fig. S20.

Morphological characterization of materials
The morphological features of the silver electrode, the

sensitive layer, and the fingerprint-like ring structure were
examined using a scanning electron microscope (Carl
Zeiss AG, G300).

Sensor performance testing
The electromechanical performance of the sensors was

evaluated using a digital LCR meter (TH2840B, Tonghui)
and a mechanical tester (ZQ-990B, ZhiQu). A variable
pressure ranging from 1 to 50 kPa was applied to the
sensors, along with a bias potential of 1 V, also adminis-
tered using the digital LCR meter (TH2840B, Tonghui).
Following this, the current output of the sensor was
measured to determine its performance indices.

BiLSTM respiratory state classification model
In this study, synchronous pulse and respiration data

from 13 volunteers and a machine were collected over a
duration of 32 s. The respiration data served as the basis
for assigning state labels. The pulse data were pre-
processed to derive three distinct time series at a sampling
rate of 5 Hz, representing RIAV, RIFV, and RIIV. Each
respiratory state—slow breathing, normal breathing, fast
breathing, and machine breathing—was represented by
677 instances, cumulating in a total pulse dataset of 2708
cases. To ensure robust model training, the dataset was
randomly divided into training, validation, and test sets in
a 6:2:2 ratio, respectively.
During the data analysis phase, a BiLSTM network was

developed using MATLAB software. The network was
configured with 100 neurons in the input layer that
received the three distinct feature time sequences: RIAV,
RIFV, and RIIV. These inputs were then processed
through a fully connected layer, leading to the generation
of four output channels corresponding to the four types of
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respiratory states: slow respiration, normal respiration,
fast respiration, and machine respiration.
Throughout the training process, the actual respiratory

states of the subjects were utilized to assess the accuracy
of the model’s predictions. The performance of the model
was incrementally improved through iterative optimiza-
tion. Comprehensive statistical analyses were performed
on the BiLSTM model’s continuous prediction results,
aiming to evaluate the predictive performance of the
model in accurately classifying respiratory states.

ResNet-BiLSTM respiratory state classification model
In this study, we employed the ResNet module to

optimize the performance of deep learning networks for
respiratory state classification. The model was configured
to process three characteristic time series—RIAV, RIFV,
and RIIV—each sampled at a frequency of 5 Hz. To pre-
pare for the application of the BiLSTM model, we inte-
grated a residual network with output channels of 64 and
128, while meticulously preserving the integrity of the
dataset. This architecture was designed to enhance the
network’s ability to extract features, thereby improving
the stability of the model during training.
After the training phase, we conducted a comprehensive

statistical analysis to evaluate the performance of the
ResNet-BiLSTM model in the continuous prediction of
respiratory states. We compared these results with those
obtained from the training phase and with the outcomes
from a conventional BiLSTM model. The comparative
analysis revealed that the ResNet-BiLSTM model
demonstrated superior efficacy in recognizing respiratory
states.
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