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The majority of COVID-19 patients experience mild to moderate disease course and
recover within a few weeks. An increasing number of studies characterized the long-term
changes in the specific anti-SARS-CoV-2 immune responses, but how COVID-19 shapes
the innate and heterologous adaptive immune system after recovery is less well known. To
comprehensively investigate the post-SARS-CoV-2 infection sequelae on the immune
system, we performed a multi-omics study by integrating single-cell RNA-sequencing,
single-cell ATAC-sequencing, genome-wide DNA methylation profiling, and functional
validation experiments in 14 convalescent COVID-19 and 15 healthy individuals. We
showed that immune responses generally recover without major sequelae after COVID-
19. However, subtle differences persist at the transcriptomic level in monocytes, with
downregulation of the interferon pathway, while DNA methylation also displays minor
changes in convalescent COVID-19 individuals. However, these differences did not affect
the cytokine production capacity of PBMCs upon different bacterial, viral, and fungal
stimuli, although baseline release of IL-1Ra and IFN-g was higher in convalescent
org April 2022 | Volume 13 | Article 8381321
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individuals. In conclusion, we propose that despite minor differences in epigenetic and
transcriptional programs, the immune system of convalescent COVID-19 patients largely
recovers to the homeostatic level of healthy individuals.
Keywords: COVID-19, SARS-CoV-2, convalescence, multi-omics, single-cell sequencing, DNA methylation
INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by the novel
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
has resulted in a considerable global morbidity and mortality (1).
The majority of infected individuals experience mild to moderate
symptoms and recover within several weeks after infection (2).
Earlier studies have reported that lymphopenia and a higher level
of T cell exhaustion serve as the hallmarks of severe infection (3,
4). The release of inflammatory cytokines, e.g., interleukin (IL)-6,
IL-1b, tumor necrosis factor (TNF)-a, and IL-8, tend to rise
during this viral infection, determining severe inflammatory
complications (5, 6). Elevated neutrophil count with higher
neutrophil-to-lymphocyte ratio (NLR) as well as reduced
monocyte, basophil, and eosinophil counts were also reported in
peripheral blood from COVID-19 patients, with NLR being used
as an early warning marker for COVID-19 severity (7).

Changes at the transcriptomic level were also observed in
immune cells isolated from COVID-19 patients, with the
response to interferon(IFN)-a and inflammatory pathways
being significantly upregulated (8). On the other hand, during
severe COVID-19 infection, patients experienced reduced IFN-a
and IFN-b production and activity, which leads to a high viral
load and imbalanced inflammatory response (9). Moreover,
lower expression of HLA-DR molecules was observed on
monocytes and dendritic cells from COVID-19 infected
patients, a sign of immune paralysis (10–12).

SARS-CoV-2 also hijacks the host epigenetic processes and
may subsequently alter the transcriptome to evade the host
immune defense. Recent studies reported hypermethylation in
the gene regions related to IFN response and significant
hypomethylation in the gene regions related to inflammation
and cytokine production in severe COVID-19 cases, resulting in
the shutoff of antiviral IFN response, uncontrolled inflammation,
and cytokine storm (13, 14). One recent study found that the
DNA methylation signatures from 44 5’-C-phosphate-G-
3’(CpG) sites could predict COVID-19 disease severity (15).

While much has been done to understand the activation of
immune responses during SARS-CoV-2 infection, much less is
known about the long-term immunological sequelae of these
processes. On the one hand, COVID-19 induces a robust
adaptive immune memory response, which is characterized by
an increased number of effector andmemory T cells and antibody-
producing plasma cells (16). Whether the immunological effects of
COVID-19 extend beyond adaptive immune memory and also
incorporate changes in innate and heterologous adaptive
immunity is not known. Multi-omics integration can provide a
deeper understanding of the immune system (17). We, therefore,
investigated whether COVID-19 continues to affect the immune
org 2
system’s functioning after recovery. To this end, we integrated
multi-omics studies and functional assays to explore if SARS-
CoV-2 infection induces any persistent changes at the
transcriptome, epigenome, or chromosome accessibility level in
convalescent COVID-19 individuals.
METHODS

Study Subjects
The ethical approval for the study was obtained from CMO
Arnhem-Nijmegen (NL32 357.091.10). All participants gave
written consent for their participation in the study. In total, 14
convalescent COVID-19 patients and 15 sex-matched healthy
donors (controls) from Radboudumc, the Netherlands,
participated in this study. Convalescent patients were included
in the study based on self-reported symptoms and subsequent
confirmation of the presence of IgA, IgG, and IgM antibodies
against the SARS-CoV-2 Spike protein in the circulation. All
controls were at healthy status during sampling and did not
experience COVID-19 based on antibody level (Figure S1). At
the time of inclusion, patients had no reported COVID-19
symptoms or any other infections. Inclusions took place
between April and June of 2020, during the first wave of the
pandemic in the Netherlands. The demographic and clinical
characteristics of the participants are provided in Table 1.

Isolation and Cryopreservation of
Peripheral Blood Mononuclear
Cells (PBMCs)
Whole blood was diluted with phosphate-buffered saline (PBS),
and PBMC isolation was performed by density gradient
centrifugation using Ficoll-Paque (GE Healthcare, IL, USA).
The PBMC fraction was collected and washed three times with
PBS. The cells were resuspended in RPMI 1640 Medium (Dutch
modification) (Thermo Fisher Scientific, MA, USA)
supplemented with 1 mM sodium pyruvate (Thermo Fisher
Scientific), 2 mM GlutaMAX supplement (Thermo Fisher
Scient ific) , and 5 µg/mL gentamic in (Centraform,
Netherlands). For DNA methylation, single cell RNA
sequencing (scRNA-seq), and single cell ATAC sequencing
(scATAC-seq) analysis, and future stimulation assays, cells
were cryopreserved in RPMI containing 40% bovine calf
serum (Cytiva, MA, USA) and 15% dimethyl sulfoxide
(VWR, PA, USA).

Flow Cytometry From Whole Blood
After erythrocyte lysis in isotonic NH4CL buffer and washing
twice with PBS, total leukocytes were obtained. White blood cell
April 2022 | Volume 13 | Article 838132
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counts were determined by a cell counter (Coulter Ac-T Diff®

cell counter; Beckman Coulter, CA, USA) and used to calculate
the absolute numbers of CD45+ leukocytes identified by flow
cytometry as previously described in detail (18). Briefly, half a
million of total leukocytes per staining panel were used to
analyze surface markers with the Navios™ flow cytometer
(Beckman Coulter). Cells were transferred to a V-bottom 96-
well plate and washed twice with PBS containing 0.2% bovine
serum albumin (BSA; Sigma-Aldrich, St. Louis, USA), stained for
20 minutes at room temperature in the dark with the staining
panels of interest and washed twice with PBS containing 0.2%
BSA. The conjugated antibodies specific for human cells are
given in Table S1. The gating strategy used in flow cytometry
analyses were provided in Figure S2. Data analysis was
performed using the Kaluza 2.1® software (Beckman Coulter).

scRNA Sequencing
Frozen cells were rapidly thawed at 37 °C and transferred into
50 mL centrifuge tubes. Subsequently, cells were counted using
an automated cell counter (Thermo Fisher Scientific). An equal
number of cells (3,300 per individual) from 4 different
individuals were pooled together and loaded into a 10X
Chromium Controller to generate Gel Beads-in-emulsion
(GEMs). scRNA-seq libraries were generated according to the
manufacturer’s instructions (Chromium Next GEM Single Cell
3’ Reagent Kits v3.1 (Dual Index) User Guide, Rev A, CG000315
Rev A). In brief, all the loading cells were separated into
nanoliter-scale droplets. Within each droplet, cDNA was
generated via reverse transcription, adding a cell barcoding
sequence and unique molecular identifier (UMI) to each
cDNA molecule. Library quality per pool was examined using
the Agilent Bioanalyzer High Sensitivity DNA kit. Sequencing
was carried out on NovaSeq 6000, having a 50,000 reads depth
per cell. DNA was isolated from PBMCs and then subjected to
genotyping by Illumina Global Screening Array Beadchip to
demultiplex the pooled samples.

scRNA Sequencing Data Analysis
The Cellranger (v.4.0.0) utility of 10X genomics was used to
process the scRNA-seq data. The standard protocol of the
Cellranger pipeline consists of mapping sequenced reads and
Frontiers in Immunology | www.frontiersin.org 3
measuring gene expression (19). The human reference genome
(GRCh38) was used for mapping sequence reads. Later,
demultiplexing of individuals mixed in the same pool was
done by using the genotype-free clustering method souporcell
(20). Further downstream analyses were performed using the
Seurat package V4 (21) in R following its default pipelines, i.e.,
quality filtering, data normalization, and scaling. During quality
filtering, mitochondrial and ribosomal genes along with cells
having mitochondrial reads > 25% and expressed genes > 5000
or < 250 were removed. Data normalization was done using a
global-scaling normalization method, namely “LogNormalize”.
Subsequently, data was scaled prior to dimensionality reduction
through principal component analysis (PCA) using the top 2,000
variable features detected using the vst method. Uniform
Manifold Approximation and Projection (UMAP) technique
was utilized for cell clustering. The “FindAllMarkers” function
was used for identifying marker genes for each cluster. Using
publicly available information, each cluster was annotated based
on top marker genes (having the lowest adjusted p-value and
positive logFC). Differentially expressed genes (DEGs) between
convalescent COVID-19 patients and controls were detected
through the “FindMarkers” function using the MAST test (22)
adjusted by age and sex. Genes that were expressed in at least
10% cells and with adjusted P-value (after Bonferroni post-hoc
correction) < 0.05 were considered significant. Gene Ontology
(GO) enrichment analysis of significant DEGs was done using
the “clusterProfiler” package in R (23). Later, for cross-
validation, a matrix containing the total gene count per sample
was generated from Seurat by summing up all the read counts
per gene, and the pseudo-bulk RNA analysis was performed
through DESeq2 (24).

scATAC Sequencing
Cryopreserved PBMCs were thawed at 37°C and transferred into
50 mL centrifuge tubes. PBMCs were washed in PBS through
centrifugation at 400G for 5 minutes at 4 °C and lysed for
3 minutes on ice. After discarding the supernatant, lysed cells
were diluted within 1× diluted nuclei buffer (10X Genomics)
prior to counting with trypan blue using a Countess II FL
Automated Cell Counter to validate lysis. An equal number of
nuclei (approximately 3000 nuclei per sample) from four
TABLE 1 | General characteristics of the study population.

Convalescence Control P value

(n=14) (n=15)
Age/years (mean ± sd) 60 ± 11 50 ± 14 0.054
Gender (# M/# F) 7/7 7/8 1
BMI (kg/m2) 22 ± 2.53 22 ± 1.85 0.97

Symptom Fever and headache 12/14
(# of having symptom/# all individuals) sleepy and tired 7/14

no taste 6/14
no smell 5/14
cough 4/14
pain 4/14
weight loss 2/14
nausea 1/14
no appetite 1/14
A
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individuals were pooled together and then loaded into the
Chromium Next GEM Chip H based on the user guides from
10X genomics (Chromium Next GEM Single Cell ATAC
Reagent Kits v1.1 User Guide, CG000209 Rev D). After
breaking the emulsion, the barcoded tagmented DNA was
purified and amplified for sample indexing and generation of
scATAC-seq libraries. The final libraries were quantified using
the Agilent Bioanalyzer High Sensitivity DNA kit. Sequencing
was performed on NovaSeq 6000 with a depth of 25,000 reads
per nuclei.

scATAC Sequencing Data Analysis
Using the cellranger-atac mkfastq (10X Genomics, v.1.2.0)
utility, raw sequencing data were converted to FASTQ format.
Reads were aligned based on the human reference genome
(GRCh38). Demultiplexing and doublets removal was done
using souporcell (20). Each scATAC-seq library fragment file
was utilized further for downstream analysis. Employing the
ArchR package (v.1.0.1) within R, quality control (cells having a
transcription start site (TSS) enrichment score < 4 and unique
nuclear fragments < 1000 were filtered), dimensionality
reduction (iterativeLSI function, default parameters), harmony
batch correction (25) (addHarmony function, default
parameters), clustering (addClustersfunction, method =
“Seurat”, resolution = 1, UMAP) and cluster visualization
(addUMAP function) were done (26). The default parameter
of ArchR was used to calculate gene expression by computing a
“gene score’’ based on chromatin accessibility within a gene body
and distally & proximally from the transcription start site (TSS).
A gene score matrix was created using the gene score profiles for
all cells. Later, the wilcoxon rank-sum test was used to identify
cell type specific marker genes. Gene having adjusted P-value
(Benjamini-Hochberg) < 0.05 and logFC >= 0.05 were
considered as marker genes. Each cluster was annotated based
on cell type specific marker genes and cluster specific marker
genes retrieved from scRNA-seq data. Further, using the method
(“addGeneIntegrationMatrix” function) developed by Stuart
(27), the gene score matrix was integrated with scRNA
expression data. MACS2 (28) strategy (getMarkerFeatures
function, useMatrix = “PeakMatrix”) was adapted on an
integrated dataset to call peaks in each cluster. Peaks having
logFC greater than 0.05 and P-value < 0.05 were considered as
marker peaks. For cross-validation, a peak matrix per sample was
generated, and the pseudo-bulk ATACseq analysis was
performed through ArchR.

In Vitro Measurement of
Interferon Response
Six healthy controls and six convalescent COVID-19 patients
were used to assess interferon response. Cryopreserved PBMCs
were stimulated with 10 ng/ml recombinant human IFN-a2
(R&D Systems), 1000 U/ml IFN-b (R&D Systems), and 50 ng/ml
IFN-g1b (Miltenyi Biotec, Germany) for 24 hours. Stimulations
were performed in U-bottom 96-well tissue culture plates with
5x105 PBMCs per well. RNA isolation was carried out using the
RNeasy Mini kit (Qiagen, Germany), and cDNAs were generated
Frontiers in Immunology | www.frontiersin.org 4
with the iScript cDNA synthesis kit (Bio-Rad Laboratories, CA,
USA) according to the instructions of the manufacturers. RT-
qPCR for the interferon-response genes IFI44L, IFI6, IRF3, IRF7,
IRF9, ISG15, and OAS2 was performed with StepOnePlus PCR
System (Applied Biosystems, MA, USA). HPRT1 was used as the
housekeeping control gene. Primers and reaction conditions are
provided in Tables S2, S3.
DNA Methylation Analysis
DNAwas isolated fromwhole blood using QIAampDNAMicro Kit
(Cat: 56304, Qiagen, Hilden, Germany), and the concentration was
determined using a NanoDrop spectrophotometer at 260 nm. The
high-quality DNA from 20 samples (11 convalescent COVID-19
and 9 controls) were obtained successfully for the genome-wide
DNA methylation profiling through the Illumina Infinium©

MethylationEPIC array (~850,000 CpG sites). The DNA
methylation values were gained from the raw IDAT files using the
minfi package in R (v.4.0.3) (29). Initially pre-processing was
performed to filter bad quality probes with a detection P-value >
0.01, cross-reactive probes, polymorphic probes (30), and probes in
the sex chromosome. Subsequently, after stratified quantile
normalization (31), the comparison was made between
convalescent COVID-19 individuals and controls to detect the
relative proportion of cell types and differentially methylated CpG
sites. Based on methylation value, cell proportion was estimated
using modified Housman’s method implemented in the
estimateCellCounts2 function of the FlowSorted.Blood.EPIC R
package (32). Later, differential analysis of cell-type proportions
was done using the regression model of the DirichletReg package
of R. Differentially methylated CpG sites were detected by a linear
regression model using the limma R package (33), with age and sex
as covariates. The Spearman correlation was calculated between the
cell proportion and the top 150 CpG differentially methylated sites.
DMRs analysis was done by using combp R package (34).
PBMC Stimulations and Cytokine
Measurements
5x105 PBMCs per well were seeded in U-bottom 96-well tissue
culture plates (Greiner Bio-One, Austria) and stimulated with 10
ng/ml lipopolysaccharides (LPS) derived from Escherichia coli
O55:B5 (Sigma-Aldrich, MO, USA), 106/ml heat-killed
Staphylococcus aureus, 106/ml heat-killed Candida albicans,
R848 (InvivoGen), or heat-inactivated(30 minutes, 60°C)
SARS-CoV-2 Wuhan-Hu-1 strain (NRW-42 isolate, GISAID
accession number: EPI_ISL_425126) (35) with 1 µg/ml soluble
purified mouse anti-human CD28 (BD Biosciences, New Jersey,
USA), for 24 hours and 7 days in the presence of 10% pooled
human serum. A control condition without any stimulant was
included. Cells were incubated at 37°C with 5% CO2.
Stimulations with R848 and SARS-CoV-2 were performed later
with cryopreserved cells, while the rest of the stimulations were
done with freshly isolated PBMCs. Concentrations of TNF-a, IL-
6, IL-1b, IL-1Ra, and IFN-g in culture supernatants were
determined using DuoSet ELISA kits (R&D Systems, MN,
April 2022 | Volume 13 | Article 838132
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USA). IFNa concentrations were determined using VeriKine
Human Interferon Alpha ELISA Kit (PBL Assay Science, NJ,
USA) according to the manufacturer’s instructions. Supernatants
from 7 days stimulations were used for IFN-g, and the remaining
cytokines were measured in 24-hour supernatants.
RESULTS

Study Design
To characterize the immunological features of convalescent
COVID-19 patients, we collected blood from 14 convalescent
COVID-19 patients and 15 healthy donors. At the time of
sampling, none of the control individuals experienced any
symptoms or signs of infection, including COVID-19. All
Frontiers in Immunology | www.frontiersin.org 5
convalescent COVID-19 patients had recovered from SARS-
CoV-2 infection. Out of the 14 patients, only one convalescent
COVID-19 patient had experienced a severe COVID-19 and was
admitted to an intensive care unit (ICU), while the remaining 13
experienced mild infections. The recovery time for most of the
convalescent COVID-19 patients (9 out of 14) was ca. one
month, only one patient with one-week recovery time and two
patients with around two-month recovery time. Sex was
distributed almost equally in both convalescent and healthy
individuals. The mean age of convalescent COVID-19 patients
and control individuals were 60 ± 11 years and 50 ± 14 years,
respectively (Table 1).

To explore the effect of the SARS-CoV-2 infection on the immune
system after recovery, we have performed a comprehensive set of
assays and analyses, which were summarized in Figure 1A.
A

B

FIGURE 1 | Study design and immune cell populations of healthy controls and convalescent COVID-19 patients. (A) The summary of the experiments performed in
the study. Blood was drawn from 15 healthy controls and 14 convalescent COVID-19 patients. Flow cytometry, RT-qPCR, and ELISA were performed to determine
the cell counts, assess interferon stimulated gene expressions, and measure the cytokine levels in culture supernatants, respectively. Single-cell RNA sequencing
was used to determine the transcriptome. Single-cell ATAC sequencing and whole-genome methylation assay were performed to analyze the epigenetic differences
between convalescent COVID-19 individuals and controls (This figure was created with BioRender.com). (B) Dot plots showing proportions of T cell subsets between
the convalescent COVID-19 individuals and controls from flow cytometry. Mann-Whitney test was used to analyze the differences between controls (black dots) and
convalescent patients (red dots).
April 2022 | Volume 13 | Article 838132
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Subtle Differences of Immune Cell
Composition in COVID-19 Convalescence
Since acute SARS-CoV-2 infection leads to striking changes in
immune cell types in the blood, flow cytometry analysis was
performed to assess whether the abundance of various immune
cell subsets in convalescent COVID-19 individuals is still
different from those of healthy controls. The absolute numbers
and percentages of most immune cell subsets, such as
neutrophils, natural killer (NK) cells, B cells, and T cells,
were similar between convalescent patients and controls
(Figures S3A–C). Although COVID-19 leads to a dramatic
decline in CD4+ T and CD8+ T cells in the acute phase, these
cell populations in convalescent patients were not significantly
different from those of uninfected people, indicating the full
recovery from lymphopenia (Figure 1B). We observed that
regulatory T cells (Treg) and CD4+ naive/terminally
differentiated effector memory cell (naïve/TEMRA) populations
were somewhat more abundant in the convalescent COVID-19
individuals compared to controls, but these differences were not
statistically significant (Figure 1B).

Single-Cell RNA-Seq and ATAC-Seq
Analysis of PBMCs in Convalescent
COVID-19 Individuals
Next, we performed an integrative analysis of scRNA-seq and
scATAC-seq in convalescent and healthy individuals. For scRNA-
seq analysis, we examined 66,753 single cells from 21 individuals
(12 convalescent and 9 controls) after QC (Figure S4A). Uniform
manifold approximation and projection (UMAP) was used for cell
clustering. In total, we detected 11 immune cell types, namely,
CD4+ T cells (IL7R+), CD8+ T cells (CD8A+CD8B+GZMK+), B
cells (CD79A+), NK cells (NKG7+GZMB+), classical monocytes
(CD14+LYZ+), non-classical monocytes (FCGR3A+), platelets
(PPBP+), and monocyte-derived dendritic cells (mDCs, HLA-
DPhigh, HLA-DRhigh) (Figures 2A, B). Subsequently, we analysed
38,186 nuclei from 16 individuals (9 convalescent and 7 controls)
in scATAC-seq analysis (Figures 2C, D and Figure S4B–D). It is
pertinent to note that a strong correlation of the marker genes
between scRNA-seq and scATAC-seq analysis was detected
(Figure S4E). Subsequently, we compared the cell compositions
of both scRNA-seq and scATAC-seq. No statistically significant
difference was detected between the convalescent COVID-19
patients and controls (Figures 2E, F). This supports the findings
of the flow cytometry measurements showing full recovery of the
immune cell subsets.

Pathways of Antigen Processing and
Presentation via MHC II Remain
Downregulated in Convalescent COVID-19
Individuals at Transcriptional Level
To identify if any differences exist at the transcriptomic level
between immune cells of convalescent COVID-19 patients and
controls, we performed a differential expression analysis. After
correcting for age and sex, 907 differentially expressed genes
(DEGs) were identified with false discovery rate (FDR) < 0.05
Frontiers in Immunology | www.frontiersin.org 6
and absolute log-fold change (logFC) > 0.05 (Figure S5A). DEGs
were found predominantly in monocytes (both classical
(DEGs=579) and non-classical (DEGs=62)) and CD4+ T
(DEGs=172) cells. Moreover, we assessed the number of DEGs
at different logFC thresholds: we identified 293 DEGs with
FDR < 0.05 and absolute logFC > 0.1, and 30 DEGs with FDR
< 0.05 and absolute logFC > 0.25. Although the number of DEGs
decreased with higher logFC thresholds, most of them
predominantly existed in monocytes and CD4+ T cells
(Figure S5A). This indicates that the observed differences in
the transcriptional profile of convalescent COVID-19 patients
were mainly in monocytes and CD4+ T cells. Additionally, we
compared the peak accessibility in each cell type based on
scATAC-seq data. After multiple testing correction, none of
the peaks were significant, which indicated that the open
chromatin accessibility between convalescence patients and
healthy controls did not show significant difference. The
differential expressed genes were mainly found in classical
monocytes. In classical monocytes, for peaks in the proximity
(500kb) of up-regulated DEGs in convalescence, 7205 peaks were
up-regulated (mean log2FC = 1.077) in convalescence while
7371 peaks were down-regulated (mean log2FC = -1.073). For
peaks in the proximity (500kb) of down-regulated DEGs in
convalescence, 10252 peaks were down-regulated (mean
log2FC = -1.078) in convalescence while 9777 peaks were up-
regulated (mean log2FC = 1.086). None of these peaks were
significantly different between convalescence and controls (P-
value FDR adjusted > 0.5).

Differential expression analysis in the scRNA-seq revealed
that MHC class II genes, such as HLA-DRB5, HLA-DPB1, HLA-
DPA1, HLA-DRB1, and HLA-DRA, were downregulated in
convalescent COVID-19 individuals (Figure 3A). Moreover,
antigen processing and presentation via the MHC II pathways
were downregulated in CD4+ T cells (Figure 3B). On the other
hand, no significant difference in the surface expression of HLA-
DR in CD4+ T cells and monocytes between healthy and
convalescent individuals was observed (Figure S5B).

Interferon Pathway in Convalescent
COVID-19 Patients and Healthy Volunteers
Since we identified DEGs mainly in classical monocytes (Figure
S5A), we performed a sub-clustering analysis of these cells.
Initially, using UMAP, we captured 6 sub-clusters in classical
monocytes. Further inspection revealed that one healthy control,
HC04, was markedly different from others (Figures S5C, D).
Classical monocytes-specific pseudo-bulk RNA analysis also
showed that HC04 was separated from the main group in a
PCA plot (Figure S5E). Therefore, we temporarily removed
HC04 while performing differential expression analysis within
the classical monocytes. After discarding HC04, we re-performed
sub-clustering and detected five sub-clusters (Figure 3C). The
top markers for each sub-cluster are shown in Figure 3D. DEGs
between convalescent individuals and controls mainly occurred
in cluster 0 (S100Ahigh) and cluster 1 (IL7Rhigh) with FDR < 0.05
and logFC > 0.05 (Figure S5F). Subsequently, GO enrichment
analysis was performed using the DEGs present in cluster 0 (812
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DEGs) and cluster 1 (33 DEGs), respectively. The upregulated
DEGs in convalescent individuals were enriched in antigen
processing and presentation via MHC I. while the down-
regulated DEGs were enriched in response to the interferon
pathway in the S100Ahigh classical monocytes. No enriched
pathway was found in DEGs from cluster 1 (Figure 3E). The
genes engaged in the down-regulated interferon response
pathway included interferon regulatory factor 3 (IRF3), IRF7,
IRF9, 2’-5’-Oligoadenylate Synthetase 2 (OAS2), interferon-
alpha inducible 6 (IFI6), interferon-alpha inducible ligand 44
(IFI44L), interferon-stimulated gene 20 (ISG20), and ISG15
(Figure 3F). These genes were thus selected for the in vitro
validation of the sequencing results.
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IFN production constitutes the major first line of defense
against viruses. Type I and type II IFNs induce hundreds of
antiviral effectors, or ISGs, to achieve a cell-intrinsic state of viral
resistance (36). Since IFN response pathway genes were
downregulated in monocytes of convalescent patients, we
hypothesized that expressions of those genes would be different
between healthy and convalescent COVID-19 individuals after
stimulation with IFN-a, IFN-b, and IFN-g. Therefore, PBMCs of 6
healthy and 6 convalescent individuals were stimulated with type I
and II interferons, and genes involved in IFN response were
analyzed via RT-qPCR. The baseline gene expressions were not
different between controls and convalescent individuals (Figure
S5G). On the other hand, we found that expression of three ISGs,
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C

FIGURE 2 | Single-cell transcriptome and epigenome analysis defined major immune cell subsets in convalescent COVID-19 individuals. (A) A total of 41486 and
25266 single-cell transcriptomes from COVID-19 convalescent and control samples were obtained respectively. Using the uniform manifold approximation and
projection (UMAP) method, we captured 11 major cell types based on the canonical markers in the dot plots (B). (B) Dot plot showing the expression level of the
marker genes in each cell type. Dot size reflects the proportion of cells expressing the indicated gene; the color encodes the average expression level (low=blue,
high=red). (C) A total of 21102 and 17084 nuclei from 9 COVID-19 convalescent and 7 control samples were obtained respectively. Seven major cell types were
captured based on the canonical markers shown in the feature plot(D). (D) The UMAP showing the labelled gene score for each cell. Blue represents the minimum
gene score while red represents the maximum gene score for the given gene. The minimum and maximum scores are shown in the bottom of each panel. The gene
of interest are shown in the upper of each panel. Cell proportions from (E) single-cell RNA sequencing and (F) single-cell ATAC dataset between convalescent
COVID-19 and controls in the seven main cell types, CD4+ T cells, CD8+ T cells, B cells, NK cells, classical monocytes, non-classical monocytes, and mDCs.
April 2022 | Volume 13 | Article 838132

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. COVID-19 Immune Sequelae
namely, IRF3, ISG15, and IFI6, were significantly higher in
convalescent COVID-19 individuals after stimulation with IFN-
b, IFN-a/b, and IFN-b, respectively (Figure 3G), indicating that
the degree of induction by type I IFNs is higher for some of the
IFN regulated genes in convalescent individuals compared to
healthy volunteers. We performed pseudo-bulk RNA analysis
Frontiers in Immunology | www.frontiersin.org 8
between convalescent COVID-19 individuals and controls and
found no significant difference, in line with the RT-qPCR results
from non-stimulated PBMCs (Table 2). Consistently, pseudo-bulk
ATAC analysis also revealed no significant difference in the
chromatin accessibility of ISGs associated with the interferon
response pathway in PBMC between conditions (Table 2).
A

B

D

E

F

G

C

FIGURE 3 | Antigen processing and presentation via MHC II were downregulated in convalescent COVID-19 individuals, while baseline expressions of Interferon-
Stimulated Genes (ISGs) in PBMCs are comparable to uninfected individuals. (A) Dot plot showing the MHC II expression levels across different conditions. The size
of the dot depicts the percentage of cells within classical monocytes or non-classical monocytes; the color encodes the average expression level (low=blue,
high=red). (B) Dot plot showing the GO enrichment analysis of DEGs in CD4+ T cells. The color and size of the dot indicate the significance (adjusted P-value) and
the percentage of DEGs in the given GO term, respectively (BP, biological process, MF, molecular function). Top 10 enriched categories were shown. (C) UMAP of
single-cell RNA sequencing data in classical monocytes in convalescent COVID-19 (n = 11) and control (n=9) samples. 5 cell clusters were identified. (D) Dot plot
showing the top 10 markers for each cell cluster using the Wilcoxon Rank Sum test. The 0-4 in the y-axis means the cell clusters from(C). The color and size of the
dot indicate the gene expression level (low=blue, high=red) and percentage of cells which expressing these markers. (E) Dot plot showing the GO enrichment
categories of the DEGs found in each cluster. (F) Dot plot showing the interferon response genes expression levels across different conditions. The size of the dot
depicts the percentage of cells expressing the indicated genes within cluster0; the color encodes the average expression level (low=blue, high=red). (G) Box plots
showing the gene expressions of the seven interferon-stimulated genes (IRF7, IRF9, IRF3, ISG15, OAS2, IFI44L, and IFI6) 24 hours after stimulation with recombinant
human IFN-a, IFN-b, and IFN-g. Fold changes over RPMI (unstimulated condition) were reported. Mann-Whitney test was used to analyze the differences between
controls and convalescent patients (n = 6, *P value < 0.05, **P value < 0.001).
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These results suggest that the down-regulation of the interferon
pathway is specific to monocytes, while at the PBMC level, this
pathway is not changed.
The Differences in DNA Methylation
Sites in Convalescent COVID-19 Patients
Mainly Originated From Monocytes
and CD4+ T Cells
Earlier studies have reported that the host cell epigenetic
landscape of DNA methylation changes during SARS-COV2
infection (14). Therefore, we performed DNA methylome
profiling from high-quality DNA of 20 whole blood samples
(11 convalescent COVID-19 and 9 controls). Initially, pre-
Frontiers in Immunology | www.frontiersin.org 9
processing of the dataset scanned 794,745 good-quality probes.
Cellular deconvolution analysis using modified Housman’s
method (32, 37, 38) detected six cell-types, namely NK, CD8+
T, CD4+ T, B cells, neutrophils, and monocytes, which were
present in both convalescent COVID-19 individuals and
controls. The relative proportion of these six cell types did not
significantly differ (Figure 4A). This result, consistent with our
flow cytometry, scRNA-seq and scATAC-seq analyses, indicated
that the cell proportions returned to normal levels after recovery
from SARS-CoV-2 infection.

Furthermore, epigenome-wide association analysis (EWAS)
was performed to assess the difference in genome-wide DNA
methylation profiles between convalescent COVID-19
individuals and controls. No significant differentially
A B

DC

FIGURE 4 | A predominance of down-regulated methylation sites was observed in convalescent COVID-19 patients, mainly originating from monocytes and CD4+ T
cells. (A) Box plot showing the estimated cell proportions in convalescent COVID-19 (n = 11) and control (n = 9) samples based on the methylation. No significant
difference was observed in estimated cell proportions between the two conditions. (B) The number of up-/down-regulated and hyper/hypomethylated CpG sites in
top 150 differentials methylated CpG sites ordered by raw P value from the linear regression model. A preponderance of hypermethylated sites and down-regulated
methylation value was consistently observed at various thresholds compared with those in healthy controls. Fisher’s exact test was used for the statistical analysis.
(C) The density ridgeline plots showing the correction between the estimated cell proportions and the up-regulated CpG sites in the top 150 differentially methylated
CpG sites. (D) The density ridgeline plots showing the correction between the estimated cell proportions and the down-regulated CpG sites in the top 150
differentially methylated CpG sites. One side Wilcoxon test was used to calculate the significance of the correlation.
TABLE 2 | Expressions of interferon-stimulated genes analyzed by pseudo-bulk RNAseq and pseudo-bulk ATACseq.

Gene pseudo bulk RNA pseudo bulk ATAC

log2FC raw P log2FC raw P

ISG15 0.66 0.055 0.14 0.513
IFI6 1.04 0.021 0.04 0.693
IFI44L 1.18 0.285 0.31 0.048
IRF7 0.41 0.262 -0.29 0.249
OAS2 0.46 0.314 -0.46 0.088
IRF9 0.16 0.617 0.05 0.903
IRF3 -0.006 0.984 0.17 0.209
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methylated CpG sites (DMSs) (FDR < 0.05) were identified
(Figures S6A-C). Subsequently, to detect any minor changes at
the molecular level, we scanned the top 50, 75, 100, and 150
DMSs. A prevalence of hypermethylated and demethylated CpG
sites was consistently observed at these top DMSs in convalescent
COVID-19 patients compared with those in healthy controls
(Figure 4B). Thus, genome-wide DNA methylation profiles of
convalescent COVID-19 individuals show only minor
differences compared to controls.

Next, we aimed to detect individual cell types where the
methylation signal was the strongest. We performed a
correlation analysis between the top 150 DMSs (94
downregulated and 56 upregulated) having the lowest P-value
and the estimated cell proportions from the above-mentioned
deconvolution analysis. We observed that the upregulated CpG
sites were positively correlated with CD4+ T cells, monocytes,
and neutrophils (Figure 4C). Conversely, the downregulated
CpG sites showed a negative correlation with CD4+ T cells,
monocytes, and neutrophils (Figure 4D), suggesting that
majority of the top differentially DNA methylation signatures
in convalescent COVID-19 individuals mainly originated from
monocytes and CD4+ T cells, and somewhat less neutrophils.
These results could be replicated using the top 100 or top 75
DMSs (Figures S6D, E). However, we could not identify
enriched epigenetic changes around the DEGs (+/- 250kb
window) in monocytes observed from the scRNA-seq,
compared to randomly selected CpG sites (Figure S6F).

Differential methylation regions (DMRs) have identified 30
significant DMRs between convalescent COVID-19 individuals
and controls (Table S4). The genes annotated to these DMRs
were enriched in the following biological pathways:
glycosphingolipid biosynthesis, telomere maintenance,
recognition of DNA damage, sialic acid metabolism,
chromosome maintenance and TGF-Ncore.

Cytokine Production Capacity Is Not
Impaired in People Recovered From
COVID-19
Lastly, we measured the cytokine production capacity of PBMCs
upon incubation with different viral, bacterial, and fungal stimuli
to assess whether the differences in transcriptome influence
immune responses upon recovery from COVID-19. PBMCs
were either left unstimulated or stimulated with LPS, S. aureus,
C. albicans, viral RNA mimic R848, and heat-inactivated SARS-
CoV-2 (original Wuhan-Hu1 strain) for 24 hours to measure
TNF-a, IL-6, IL-1b, IFNa and IL-1Ra and seven days to measure
IFN-g. Anti-CD28 agonistic antibodies were combined with
inactivated SARS-CoV-2 to better activate T cell responses,
particularly in convalescent COVID-19 patients. TNF-a and
IL-6 production upon different stimuli were similar between
healthy individuals and convalescent COVID-19 patients
(Figures 5A, B). Another proinflammatory cytokine, IL-1b,
was also produced similarly in healthy and convalescent
individuals upon R848 and S. aureus stimulation (Figure 5C).
Furthermore, R848 and SARS-CoV-2 induced IFNa production
from PBMCs did not differ between the groups (Figure 5D).
Frontiers in Immunology | www.frontiersin.org 10
Intriguingly, baseline IL-1Ra secretion of convalescent COVID-
19 patients was significantly higher than healthy controls,
although IL-1Ra production following R848 or heat-inactivated
SARS-CoV-2 stimulation was similar (Figure 5E). Furthermore,
PBMCs from convalescent individuals produced significantly
more IFN-g without any stimulation (Figure 5F). As expected,
incubation of convalescent COVID-19 patient PBMCs with heat-
inactivated SARS-CoV-2 resulted in higher IFN-g production,
indicating the presence of T cell memory after recovery. Lastly,
IFN-g secretion did not differ between healthy and convalescent
upon incubation with viral RNA mimic R848 (Figure 5F).
DISCUSSION

In the present study we provided a detailed insight into the
immunological and molecular features of immune responses in
the convalescent COVID-19 individuals by integrating multi-
omics data. Furthermore, we assessed whether SARS-CoV-2
infection influences immune functions in terms of in vitro
cytokine production capacity of recovered individuals. We
found only minor differences in the transcriptome and DNA
methylation profiles of immune cells in convalescent COVID-19
individuals, and these differences were consistently more
pronounced in monocytes and CD4+ T cells compared to
other immune cell populations. However, these changes did
not seem to affect the cytokine production capacity of immune
cells, although they were accompanied by a higher homeostatic
release of IL-1Ra and IFN-g.

Results obtained from flow cytometry, scRNA-seq, scATAC-
seq, and DNA methylation analyses consistently revealed that
immune cell proportions were at the normal levels in
convalescent COVID-19 individuals within one-week to 6-
month timeframe. One earlier study reported a higher
percentage of CD4+ T cells and DCs and lower numbers of
NKT-like cells in patients two months after COVID-19 recovery
compared to uninfected controls, while other cell types remained
similar between groups (39). We observed no major difference in
cell populations, only slightly higher levels of regulatory T cells
(Tregs) in convalescent individuals. Tregs play a critical role
in the maintenance of self-tolerance and immunological
homeostasis by negatively regulating the activation,
proliferation, and effector functions of a wide variety of
immune cells (6). They can also prevent cytokine storm (40)
and repress the formation of lung inflammatory disorders (41,
42). Although there are conflicting reports, most studies report
decreased circulating Treg levels, especially in severe COVID-19
cases (42). Thus, the comparable numbers of Tregs as well as
other immune cell subsets between healthy and recovered
COVID-19 individuals in our study suggest that the immune
cells go back to the level of healthy individuals after recovery. We
also found that naive/TEMRA cell subset was somewhat more
abundant in convalescent patients, although not statistically
significant. TEMRA cells are known to expand following
pathogens, such as the Dengue virus, and play a protective role
during infections (43). Increased ratio of CD4+ TEMRA cells in
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moderate and severe COVID-19 was previously reported (44).
The same study also showed that CD4+ TEMRA population
stayed higher even after patients’ recovery, however, sampling
time after recovery was not indicated.

Transcriptomic analysis revealed that most of the DEGs were
detected in classical monocytes. Although the differences
between convalescent individuals and controls were modest,
and we did not find a distinct expression in the surface HLA-
DR expression of monocytes and CD4+ T cells, the
Frontiers in Immunology | www.frontiersin.org 11
downregulation of the HLA class II pathway in convalescent
COVID-19 patients is important to be noted. Broad MHC II
downregulation during COVID-19 infection was also reported in
previous studies (45). Our findings suggest that the attenuated
immune function via MHC II downregulation during viral
infection is still present at the transcriptomic level after
recovery, and that may influence the capacity of myeloid cells
to respond during infections a long time after SARS-CoV-2 was
eliminated. Moreover, sub-clustering revealed upregulated MHC
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FIGURE 5 | Cytokine production capacity is intact in people recovered from COVID-19. The concentrations of (A) TNF-a and (B) IL-6 after stimulation of PBMCs
with LPS, C. albicans, S. aureus, R848, and heat-inactivated SARS-CoV-2. (C) IL-1b production following S. aureus and R848 stimulation. (D) IFNa levels after
incubation with R848 and heat-inactivated SARS-CoV-2. (E) IL-1Ra and (F) IFN-g at the baseline (RPMI condition) and stimulation with R848 and SARS-CoV-2.
TNF-a, IL-6, IL-1b, IFNa and IL-1Ra productions were measured after 24 hours, while IFN-g was measured after 7 days of incubation. Stimulations with R848 and
SARS-CoV-2 were performed later with cryopreserved cells, while the rest of the stimulations were done with freshly isolated PBMCs. Mann-Whitney test was used
to analyze the differences between controls and convalescent patients (*P value < 0.05, **P value < 0.001).
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class I-dependent antigen processing and presentation pathways
and downregulated interferon pathway in classical monocytes.
However, the baseline expression of interferon pathway genes
was not significantly different in the entire PBMC population, as
evident from RT-qPCR, pseudo-bulk RNA, and pseudo-bulk
ATAC sequencing analyses. Thus, these two pathways seem to be
differentially regulated only in monocytes of convalescent
COVID-19 individuals and neither represent the changes in
the PBMC population nor translate into impaired in vitro
response to IFNs. Notably, type I IFNs led to a significant
increase in IRF3, ISG15, and IFI6 expressions in convalescent
COVID-19 patients compared to healthy controls, suggesting a
higher degree of activation. On the other hand, stimulation with
different antigens did not result in significantly different cytokine
production, showing that changes in interferon pathway related-
gene activation do not influence cytokine production capacity,
including IFNa, in recovered COVID-19 individuals.

A recent study reported important epigenetic and functional
changes in monocytes isolated from convalescent COVID-19
patients, especially in the IL-1 pathway and chemokines,
suggesting a trained immunity phenotype (16). We did not
identify similar changes in our individuals, suggesting potential
heterogeneity between different populations, disease severity, or
sampling timepoints. Similarly, we did not find significant
changes in CD8+ T cell transcriptome in convalescent
COVID-19 individuals compared to healthy controls, although
such changes were reported during disease course, including
upregulated CD8 expression, and an hyperactivated and
exhausted phenotype (46, 47). However, since CD8+ T cells
are a major source of IFN-g production (48), higher IFN-g
production of non-stimulated PBMCs in convalescent COVID-
19 patients might indicate that this hyperactive state of CD8+ T
cells could persist during the convalescent phase of the disease.
In our study, the main changes in transcriptome are the
decreased expression of MHC class II and type I interferon
pathways in monocytes, but these were not associated with
functional defects. In contrast, immune cells from convalescent
individuals released more IFN-g and IL-1Ra compared to healthy
controls. The release of IFN-g in individuals recovering from
COVID-19 may reduce the susceptibility of host cells to
secondary infections (49), while IL-1Ra might have an
important role in the rebalancing of inflammatory responses.
The discrepancy between transcriptomic and functional data
may denote that we did not capture the entire functional
spectrum of immune cells in our study, but may also underline
the fact that cell function is likely regulated at multiple additional
levels after gene transcription such as translation, processing,
and post-transcriptional modifications (glycosylation, etc).

EWAS analysis reveals that, though not genome-wide
significant, there is a preponderance of hypermethylated sites and
down-regulated methylation in convalescent COVID-19 patients,
explicitly originating from monocytes and CD4+ T cells. DNA
methylation changes around DEGs in monocytes from scRNA-seq
was not significantly different from the random set. This is likely due
to the fact that the methylation was measured in the whole blood,
which limits the power to detect the difference present in e.g.
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monocytes. In the future, further investigation focusing on
monocytes may provide monocytes specific epigenetic change in
convalescent individuals. Earlier studies have shown the incidence
of hyper and demethylated CpG sites within COVID-19 patients:
significant hypermethylation in regulatory regions of the genes
related to the type I interferon response and first-line antiviral
defense genes, like ISG20 and IFITM1, are associated with disease
severity in COVID-19 patients (14). Another study observed that
systemic lupus erythematosus (SLE) patients are more likely to
develop SARS-CoV-2 symptoms, not because of a weakened
immune system, but because of overexpression of ACE2 in the
lung, and hypomethylation of the ACE2 gene, as well as a high level
of demethylation of interferon genes (50). Retrotransposon
upregulation, which is commonly experienced after coronavirus
infection, is also reported to be possibly due to increased global
DNA demethylation activity (51). These suggested that SARS-CoV-
2 infection may have long-term effects, including irreversible
genome modification among patients with prolonged recovery.
Thus, genome-wide DNA methylation profiles of convalescent
COVID-19 individuals are different from controls, which may be
associated with clinical complication experienced by convalescent
COVID-19 patients.

However, there are several limitations of this study to
consider. Firstly, it is essential to note that the participants
included in the study had no symptoms and they did not
develop symptoms associated with the long term COVID-19
syndrome. Therefore, we could not associate the epigenetic and
transcriptional signatures retained in convalescent patients with
lingering symptoms, and these changes may not mirror
functional effects. A recent study reported that 31 people with
long COVID-19 symptoms exhibited less naïve T and B cells and
higher plasma type I and type III interferons, even 8 months after
the infection (52). Nevertheless, larger studies should explore
whether these changes can be identified in larger populations and
assess their clinical relevance. Our cohort mainly consisted of
recovered COVID-19 patients from mild/moderate disease. The
immunological differences we reported could be more apparent
in the patients recovered from severe COVID-19. We have only
one individual recovered from severe infection, however, we did
not find differences compared with other participants in both
transcriptome and methylome level (Figures S7A–B).
Furthermore, this study was performed during the first wave of
the pandemic, during which the original virus strain dominated
the infections. Therefore, how the new variants affect the
immune system after recovery remains elusive and must
be investigated.

In summary, a comprehensive epigenetic, transcriptional and
functional assessment shows that the immune responses of
patients recovering from mild-to-moderate COVID-19 largely
return to normal a few weeks to months after recovery. However,
minor differences persist at the transcriptomic and epigenetic
levels, especially in classical monocytes. Although MHC class II
gene expressions and IFN response pathway were downregulated
in monocytes of convalescent patients, those changes were not
reflected in basal expressions of interferon-stimulated genes and
cytokine production capacity of PBMCs. Therefore, our study
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shows that the immune system of patients who recover from
mild/moderate COVID-19 largely return to normal, but future
studies should investigate potential disturbances in individuals
infected with different SARS-CoV-2 variants and patients
suffering from long term COVID-19.
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et al. A Single-Cell Atlas of the Peripheral Immune Response in Patients With
Severe COVID-19. Nat Med (2020) 26(7):1070–6. doi: 10.1038/s41591-020-
0944-y

46. Chen Z, John Wherry E. T Cell Responses in Patients With COVID-19. Nat
Rev Immunol (2020) 20(9):529–36. doi: 10.1038/s41577-020-0402-6

47. Ganji A, Farahani I, Khansarinejad B, Ghazavi A, Mosayebi G. Increased
Expression of CD8 Marker on T-Cells in COVID-19 Patients. Blood Cells Mol
Dis (2020) 83:102437. doi: 10.1016/j.bcmd.2020.102437

48. Bhat P, Leggatt G, Waterhouse N, Frazer IH. Interferon-g Derived From
Cytotoxic Lymphocytes Directly Enhances Their Motility and Cytotoxicity.
Cell Death Dis (2017) 8(6):e2836–6. doi: 10.1038/cddis.2017.67

49. Kang S, Brown HM, Hwang S. Direct Antiviral Mechanisms of Interferon-
Gamma. Immune Netw (2018) 18(5):e33. doi: 10.4110/in.2018.18.e33

50. Sawalha AH, Zhao M, Coit P, Lu Q. Epigenetic Dysregulation of ACE2 and
Interferon-Regulated Genes Might Suggest Increased COVID-19
Susceptibility and Severity in Lupus Patients. Clin Immunol (2020)
215:108410. doi: 10.1016/j.clim.2020.108410
April 2022 | Volume 13 | Article 838132

https://doi.org/10.1002/JLB.5HI0720-466R
https://doi.org/10.1016/j.ebiom.2021.103339
https://doi.org/10.1016/j.ebiom.2021.103339
https://doi.org/10.1038/s41556-021-00690-1
https://doi.org/10.1101/2020.11.10.20229203
https://doi.org/10.1101/2020.11.10.20229203
https://doi.org/10.1016/j.celrep.2016.10.053
https://doi.org/10.3389/fimmu.2021.627036
https://doi.org/10.3389/fimmu.2021.627036
https://doi.org/10.1038/s41592-020-0820-1
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1101/2021.06.07.447388
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1186/gb-2008-9-9-r137
https://doi.org/10.1093/bioinformatics/btu049
https://doi.org/10.1186/s13059-016-1066-1
https://doi.org/10.2217/epi.12.21
https://doi.org/10.1186/s13059-018-1448-7
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/bioinformatics/bts545
https://doi.org/10.1093/bioinformatics/bts545
https://doi.org/10.15252/embj.2020106230
https://doi.org/10.15252/embj.2020106230
https://doi.org/10.1016/j.chom.2020.05.008
https://doi.org/10.1186/1471-2105-13-86
https://doi.org/10.1186/1471-2105-13-86
https://doi.org/10.1186/s12859-016-0943-7
https://doi.org/10.1186/s12859-016-0943-7
https://doi.org/10.1128/mBio.00085-21
https://doi.org/10.1128/mBio.00085-21
https://doi.org/10.1371/journal.pone.0004643
https://doi.org/10.1371/journal.pone.0004643
https://doi.org/10.4049/jimmunol.177.9.6215
https://doi.org/10.4049/jimmunol.177.9.6215
https://doi.org/10.1002/jmv.26891
https://doi.org/10.1038/s41467-017-01728-5
https://doi.org/10.1038/s41467-017-01728-5
https://doi.org/10.1016/j.ebiom.2020.102885
https://doi.org/10.1038/s41591-020-0944-y
https://doi.org/10.1038/s41591-020-0944-y
https://doi.org/10.1038/s41577-020-0402-6
https://doi.org/10.1016/j.bcmd.2020.102437
https://doi.org/10.1038/cddis.2017.67
https://doi.org/10.4110/in.2018.18.e33
https://doi.org/10.1016/j.clim.2020.108410
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. COVID-19 Immune Sequelae
51. Yin Y, Liu X, He X, Zhou L. Exogenous Coronavirus Interacts With
Endogenous Retrotransposon in Human Cells. Front Cell Infect Microbiol
(2021) 11:609160. doi: 10.3389/fcimb.2021.609160

52. Phetsouphanh C, Darley DR, Wilson DB, Howe A, Munier CML, Patel SK,
et al. Immunological Dysfunction Persists for 8 Months Following Initial
Mild-to-Moderate SARS-CoV-2 Infection. Nat Immunol (2022) 23(2):210–6.
doi: 10.1038/s41590-021-01113-x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
Frontiers in Immunology | www.frontiersin.org 15
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Liu, Kilic, Li, Bulut, Gupta, Zhang, Qi, Peng, Tsay, Soon,
Mekonnen, Ferreira, van der Made, van Cranenbroek, Koenen, Simonetti,
Diavatopoulos, de Jonge, Müller, Schaal, Ostermann, Cornberg, Eiz-Vesper, van de
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