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PCOS (Poly-Cystic Ovary Syndrome) is a multifaceted disorder that often affects the ovarian 
morphology of women of their reproductive age, resulting in the development of numerous cysts 
on the ovaries. Ultrasound imaging typically diagnoses PCOS, which helps clinicians assess the 
size, shape, and existence of cysts in the ovaries. Nevertheless, manual ultrasound image analysis 
is often challenging and time-consuming, resulting in inter-observer variability. To effectively treat 
PCOS and prevent its long-term effects, prompt and accurate diagnosis is crucial. In such cases, a 
prediction model based on deep learning can help physicians by streamlining the diagnosis procedure, 
reducing time and potential errors. This article proposes a novel integrated approach, QEI-SAM 
(Quality Enhanced Image – Segment Anything Model), for enhancing image quality and ovarian cyst 
segmentation for accurate prediction. GAN (Generative Adversarial Networks) and CNN (Convolutional 
Neural Networks) are the most recent cutting-edge innovations that have supported the system 
in attaining the expected result. The proposed QEI-SAM model used Enhanced Super Resolution 
Generative Adversarial Networks (ESRGAN) for image enhancement to increase the resolution, 
sharpening the edges and restoring the finer structure of the ultrasound ovary images and achieved 
a better SSIM of 0.938, PSNR value of 38.60 and LPIPS value of 0.0859. Then, it incorporates the 
Segment Anything Model (SAM) to segment ovarian cysts and achieve the highest Dice coefficient 
of 0.9501 and IoU score of 0.9050. Furthermore, Convolutional Neural Network – ResNet 50, ResNet 
101, VGG 16, VGG 19, AlexNet and Inception v3 have been implemented to diagnose PCOS promptly. 
Finally, VGG 19 has achieved the highest accuracy of 99.31%.
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Poly-Cystic Ovarian Syndrome (PCOS) is one of the most frequent endocrine illnesses affecting reproductive-
aged women globally, with a frequency ranging from 8 to 13% depending on diagnostic criteria and demographic 
investigated1. PCOS is a disorder marked by irregular menstruation, hyperandrogenism, and poly-cystic ovarian 
morphology, as seen on ultrasound imaging2. Ovarian enlargement and the development of several tiny cysts 
inside the ovaries or on the surface of the eggs are the symptoms associated with this illness. The immature eggs 
inside the cysts are not released during ovulation. In addition, Women with PCOS have aberrant hormonal 
and metabolic conditions, which may increase their risk of getting cancer. Prolonged hormone stimulation can 
cause women to develop breast, ovarian, and endometrial cancers. Figure 1 shows the long-term consequences 
of PCOS.

Ultrasound imaging is the primary technique for evaluating ovarian morphology, which is essential for 
diagnosing and treating PCOS. According to the Rotterdam ESHRE/ASRM-Sponsored PCOS consensus 
workshop group (2004), the 2003 criteria define PCOS as the presence of 12 or more follicles in each ovary, 
measuring 2–9 mm in diameter and/or an elevation in ovarian volume (> 10 mL). Also, the presence of two of 
the three features: poly-cystic ovaries on ultrasound, clinical and/or biochemical signs of hyperandrogenism, and 
anovulation3. Ovarian morphology is the most commonly identifiable feature of ultrasonography among these 
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criteria, and it is frequently used in clinical practice to diagnose PCOS. Although ultrasonography is widely used 
to diagnose PCOS, the manual interpretation of ovarian morphology poses some challenges. Numerous factors, 
including the quality of the equipment, inter-operator variability, and the parameters used for image acquisition, 
can affect the detection of cysts and follicles on ultrasound images.

Numerous approaches to image preprocessing, including CLAHE (Contrast Limited Adaptive Histogram 
Equalization)13 and deep learning techniques such as (SRCNN) Super-Resolution Convolutional Neural 
Network19, have been used and produced noticeable results in medical imaging. CLAHE is a conventional 
method that increases the contrast in images by redistributing pixel intensities according to the image’s histogram. 
It independently adjusts the contrast of local image regions. Another technique, SRCNN, is a deep learning 
model focusing on single-image super-resolutions. It uses convolutional neural networks to learn an end-to-end 
mapping between low-resolution and high-resolution images. Various techniques have encouraged prospects 
for enhancing the reliability of PCOS identification from ultrasonography ovary images4,5,21–26,31. Whilst many 
solutions have been presented for PCOS detection with ultrasound imaging, specific issues often limit their 
performance. This work finds and fixes the following gaps based on recent research on PCOS identification. 
Preprocessing is crucial in medical image analysis to improve image quality, eliminate noise, and increase model 
accuracy.

Nevertheless, less focus has been given to resolution enhancement14,23,25, which is essential for improving 
feature extraction by fine-tuning image details. Enhancing resolution can greatly help identify subtle patterns 
in ultrasound pictures, increasing the accuracy of PCOS prediction. Additionally, the segmentation process is 
necessary for precise feature extraction to detect important markers like follicle count, ovarian volume, cystic 
structures and diagnosis. Using deep learning techniques for the segmentation process in PCOS prediction has 
contributed less5,14,20,25,26.

To address these issues, the PCOS detection model requires automatic image enhancement such as contrast 
enhancement, noise reduction and sharpening to improve the quality and clarity of ultrasound images, making 
them more suitable for accurate analysis. Furthermore, segmentation models precisely define ovarian structures 
and identify certain regions of interest, making it easier to perform quantitative analysis to detect abnormalities 
associated with PCOS. These methods aim to reduce inter-operator variability, streamline PCOS diagnosis, and 
improve clinical workflow efficiency. Following is the key contribution of this article:

	1.	 Ultrasound images exhibit poor quality; thus, preprocessing is required to increase their effectiveness. In this 
article, ESRGAN is employed to increase the resolution, sharpen the edges, and restore the finer structure of 
the ultrasound ovary images.

	2.	 We believe this is the first adaptation of SAM (Segment Anything Model) in ultrasound ovary image segmen-
tation to identify the cyst’s existence in PCOS detection.

	3.	 An in-depth evaluation and comparative analysis of the image enhancement model (ESRGAN) and segmen-
tation model (SAM) using various performance metrics.

	4.	 The Application of Convolutional Neural Network architectures such as ResNet 50, ResNet 101, AlexNet, 
VGG 16, VGG 19, and the Inception v3 model to predict PCOS using an enhanced ultrasound image pro-
duced by ESRGAN and a mask generated by SAM.

This article is organised as follows. “Related works” section presents the existing works on image preprocessing, 
segmentation and classification related to PCOS detection. “Methods and materials” section explains the 
methods and methodologies used in this research work. The proposed model is illustrated in “Proposed model”. 
Dataset description and implementation details are described in “Experiments” section. The result of the 
proposed model is discussed in “Results and discussion” section, and the conclusion of the research work is 
presented in “Conclusions”.

Fig. 1.  Long-term complications of PCOS.
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Related works
Preprocessing and segmentation background
Preprocessing and segmentation are essential to properly analyse, interpret, and make clinical decisions using 
medical image data. By improving image quality, standardising datasets and extracting relevant characteristics, 
these techniques enhance medical imaging research and improve patient care. Preprocessing and segmenting 
medical image datasets using deep learning has emerged as a promising approach. It enhances the precision 
and efficiency of preprocessing and segmentation operations by automating the extraction of significant 
features from unstructured medical data using neural networks. Egger et al. provide a review of deep learning 
techniques in medical applications. Various methods and challenges are discussed, including data scarcity, 
time/cost investment in feature extraction, and disease diagnosis with numerous datasets6. Akkus et al., The 
author provides an overview of deep learning-based ultrasonic applications that enhance clinical workflow 
by enhancing ultrasound image acquisition, real-time image quality evaluation, object detection and disease 
diagnosis7. The two-dimensional Fractional Fourier Transform (2D-FrFT) derived a denoising filter to eliminate 
distortions from PCOS ultrasound images in the time-frequency domain. To analyse the optimal fractional 
operator parameter of the 2D-FrFT, the VGG-16 deep learning model is used. Metrics like PSNR, SSIM, and 
RMSE are used to evaluate the improved image quality8.

Chandrasiri et al. Utilise ESRGAN to convert low-resolution images into high-resolution images. The 
generator in this model uses two different channel attentions (SENet and ECA-Net) to increase the output image 
resolution. NIQE and LPIPS metrics are used to evaluate the quality level of the generated images9. SAM-IE 
(Segment Anything Model for Image Enhancement) was used by C. Wang et al. to improve medical images. 
Their method entailed generating attention maps by merging the original image with binary and contour masks 
produced by SAM to enhance the performance of the diagnostic model. The authors tested four sets of medical 
picture data to verify the SAM-IE model’s efficiency10. C. Wang et al. presented a framework for medical image 
annotation using SAM. This framework comprises two sub-modules to generate annotations automatically 
and assists with manual annotation of medical images11. Three stages of an integrated MP-YOLO architecture 
for segmenting and visualising ultrasonic images were proposed by Wang et al. The YOLO method is used 
to identify the follicular region and extract the salient features. The authors have contrasted the outcomes of 
automated ROI generated by integrated MP-YOLO with expert-annotated ROI.

With an IoU (Intersection over Union) score of 94.63%, the outcome shows that automated ROI has obtained 
the highest results12. Alwakid et al. used an Enhanced Super-Resolution Generative Adversarial Network 
(ESRGAN) and Contrast-Limited Adaptive Histogram Equalization (CLAHE) to improve the model’s learning 
capacity. The authors experimented on the Asia Pacific Tele Ophthalmology Society (APTOS) dataset; the 
Inception v3 model achieved 98.7% accuracy compared to other models13. Nazarudin et al. proposed a hybrid 
segmentation technique (Otsu’s thresholding and Chan–Vese method) for identifying follicles in the ultrasound 
ovary images. Otsu thresholding is used to create a binary mask and boundary of the follicle using the Chan-Vese 
method. The performance of the proposed hybrid model is compared with the traditional Chan-Vese method. 
The results showed a significant improvement in Dice score, Jaccard Index and sensitivity14.

Marinov et al. presented the various challenges of medical image segmentation, such as the time-intensive 
nature of manual annotation, which requires expert knowledge. Also, noise and artefacts in the data, variations 
in scanner types, and variations in population demographics are additional obstacles to obtaining reliable and 
accurate segmentation15. Xiao et al. reviewed transformer-based segmentation models such as U-Net, Swin 
transformer and vision transformer (ViT). After analysing the numerous research works, it is summarised that 
the U-net-based transformer model has achieved remarkable results with various medical datasets16.

Kirillov et al., SAM (Segment Anything Model) was introduced to improve the segmentation performance 
by generating high-quality masks. The authors used SAM to generate 1 billion masks on 11 M licensed images17. 
Qian et al. proposed a hybrid NAS (Neural Architecture Search) for ultrasound ovary image segmentation. 
Transfer learning is applied by incorporating the pre-trained architecture instead of starting from scratch 
and developing the high-performance model. The authors have experimented on two large ultrasound image 
datasets, echinococcosis with 9-class and ovary datasets for segmentation18.

Sawant et al. proposed a hybrid filter combining the Wiener, Median, Noise adaptive Fuzzy switching median 
filter and Adaptive median filter for image denoising. Then, denoised images are passed to a super-resolution 
convolutional Neural Network (SRCNN) to enhance the image quality. The performance of the proposed model 
has been evaluated using performance metrics like PSNR, SSIM, and Universal Quality Index (UQI), and a 
significant improvement in PSNR value was observed from 40 to 50%19. Gopalakrishnan et al., Various filters 
were applied to reduce speckle noise in ultrasound images, such as the Lee filter, Kuan filter, Frost filter, Median 
filter, Gaussian filter, and Wiener filter. The performance of the denoised image was evaluated using various 
performance metrics, and it was observed that the Frost filter outperformed the other filters well. The result 
obtained from modified Otsu thresholding was considered as an initial mask. A combination of Modified Otsu 
with active contour has been employed to detect the exact number of follicles from PCOS ultrasound ovary 
image20.

Classification model
Bedi et al. used adaptive bilateral filtering for image denoising and proposed AResUNet (Attension-based 
Residual Unet) for segmentation. They have experimented with 2D and multi-modal ultrasound images 
and achieved 98% accuracy21. Reka et al. used ultrasound images and Hormonal datasets as input for PCOS 
prediction. A Generative Adversarial Network (GAN) is employed to increase the dataset size. The authors 
experimented with ultrasound ovary images using the Residual and Inception network, and various machine-
learning approaches were implemented to classify PCOS using hormonal data. The performance of the proposed 
model is evaluated using accuracy, precision, recall and F1 Score22. Alamoudi et al. employed AHE - Adaptive 
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Histogram Equalization for image enhancement. The authors have used learning models such as MobileNet, 
DenseNet 121, DenseNet 201, VGG 16, VGG 19, and Inception v3 to extract the important features and classify 
the PCOS data23.

Chitra et al. developed a hybrid CNN model – a combination of ResNet, Alexnet, VGG 16 and Inception v3 
for classifying PCOS ultrasound images. They achieved the highest accuracy of 95% than individual models24. 
Salman Hosain et al. proposed a PCONet - PCOS detection model using the transfer learning method and 
fine-tuned pre-trained Inception V3 model. Experimentation was conducted on ultrasound images, and 
98.12% of the results were achieved with the proposed PCONet model compared to fine-tuned Inception v325. 
Gopalakrishnan et al. used Gaussian low pass filter for image preprocessing and multilevel thresholding for 
image segmentation. The authors used a supervised machine learning model for classification and presented the 
Multifactor Dimensional Reduction (MDR) technique for feature extraction. Support Vector Machine (SVM) 
outperformed with an accuracy of 93.82% compared to other tested classifiers, including Random Forest, Naïve 
Bayes, and Linear Discriminant26.

Classical image enhancement and segmentation techniques have been the main focus of PCOS detection 
in previous research works5,14,20,23 to improve classifier model performance. Hitherto, the focus has been on 
metabolic markers instead of using ovarian ultrasound images to determine PCOS. Ultrasound ovary images 
provide more precise and accurate diagnostic results than metabolic indications, a numerical value that might 
not always provide exact solutions. PCOS diagnosis requires visual information from ultrasound imaging, which 
shows crucial ovarian characteristics such as the size and existence of cysts. There is also a dearth of research on 
the segmentation of ultrasound ovary images. These deficiencies highlight the need for additional research to 
solve these issues and improve methods for PCOS diagnosis.

This research aims to address these gaps with ultrasonography ovarian imaging by providing a reliable and 
timely diagnosis of Poly-Cystic Ovarian Syndrome. The suggested approach uses ESRGAN for ultrasound ovarian 
image enhancement and comparison analysis. Additionally, SAM (Segment Anything Model) is employed for 
cyst segmentation. Finally, Convolutional Neural Networks such as ResNet 50, ResNet 101, VGG 16, VGG 19, 
Alexnet, and Inception v3 have been implemented to diagnose PCOS.

Methods and materials
Ultrasound ovary image enhancement using ESRGAN
ESRGAN (Enhanced Super-Resolution Generative Adversarial Networks) is essential for improving ultrasound 
ovarian image quality to predict PCOS. By producing high-fidelity images that preserve precise information, it 
successfully handles issues related to ultrasonography. With a generator and a discriminator, ESRGAN uses a 
dual-network design.

From a low-resolution input image, z , the generator network aims to produce a high-resolution image, G (z). 
A function can represent it G : R → X , where X , is the space of high-resolution images and R is the space 
of low-resolution images. Decreasing a reconstruction loss, often determined by comparing the output image 
pixel-by-pixel to ground truth high-resolution images, can map input images z to high-resolution images G (z).

The discriminator network aims to distinguish between the produced high-resolution images G (z) and the 
real high-resolution images. A function D : X → [0, 1] is often used to represent the discriminator, where 
D (x) represents a probability that the image x is real. It is designed to maximise the probability of assigning 
low scores to newly generated images and high scores to real ones. To enhance the quality of generated images, 
ESRGAN uses an adversarial training technique in which the discriminator and generator networks dynamically 
interact. The adversarial training process is represented in Eqs. (1),

	
min
G

max
D Ex∼P data(x) [logD (x)] + Ez∼P data(z) [log (1 − D (G (z))) ]� (1)

Where G (z) indicates generated high-resolution images, P data (x) denotes real high-resolution image 
distribution and P data (z) represents the low-resolution input image distribution.

Segmentation using SAM (Segment anything Model)
Segmentation masks for medical images can be generated using pre-trained SAM. It creates segmentation 
masks for each discernible region in a medical image and organises them into a comprehensive list10. This 
article uses SAM to identify the cyst region and extract the most pertinent features. SAM is designed for flexible 
segmentation and works well in identifying cyst regions without requiring explicit instance segmentation, 
making it well-suited for medical imaging tasks. Also, unlike models like UNet, which require extensive training 
on domain-specific datasets, SAM can be used directly without pre-training. The important problem in medical 
datasets, especially in cyst detection, can be biased due to demographic factors, age, community, and dietary 
habits. Traditional models like UNet might struggle to generalise across different datasets, while SAM, being 
foundation-model-based, is designed to work across diverse data distributions. Unlike traditional segmentation 
models requiring retraining for each dataset, SAM can segment cysts effectively across different datasets without 
requiring extensive fine-tuning. It consists of three components: an image encoder, a prompt encoder, and a 
mask decoder.

Image Encoder: SAM takes advantage of the scalability and powerful pre-training approaches using a Masked 
Auto Encoder (MAE) pre-trained Vision Transformer (ViT), finely intended to handle high-resolution inputs 
with few modifications. An image encoder is used before prompting the model, and each image is processed 
only once.
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Prompt Encoder: SAM utilises two types of prompts: dense (masks) and sparse (points, boxes). It represents 
points and boxes by combining positional encodings with learnt embeddings for each prompt type. Convolutions 
are used to embed dense prompts (masks), combined element-wise with image embedding.

Mask Decoder: The prompt embedding, output, and picture embedding are effectively mapped to a mask 
using a mask decoder. A dynamic mask prediction block is used with a modified Transformer decoder block. To 
update all embeddings, the redesigned decoder block of SAM employs prompt self-attention and cross-attention 
in two directions: prompt-to-image embedding and image embedding to prompt. The image embedding is 
upsampled by SAM and mapped to a dynamic linear classifier through a multilayer perceptron. After executing 
two blocks, the classifier computes the mask foreground probability at each image point.

Classification model using convolutional neural network
A popular deep learning model for image classification tasks is the convolutional neural network (CNN). CNN is 
built to automatically and adaptably identify feature spatial hierarchies from raw image data. It consists of several 
layers, including fully connected, pooling, and convolutional. In this article, ResNet 50, ResNet 101, Alexnet, 
Inception v3, VGG 16 and VGG 19 models are considered for classifying PCOS and Non-PCOS images.

Proposed model
Multiple ovarian cysts, irregular menstrual cycles, increased testosterone levels and insulin intolerance 
characterise Poly-cystic Ovary Syndrome (PCOS). Its exact origin is still elusive. Many ailments, such as 
infertility, obesity, diabetes, and cardiovascular disease, are associated with PCOS23,25. Early PCOS diagnosis 
is crucial for better results and prevention of difficulties. To help physicians identify PCOS, leveraging deep 
learning models can be highly beneficial in the diagnostic process using ultrasound ovary images21,23,24. The 
proposed work has been divided into three major parts to develop an effective treatment strategy (Fig. 2).

	1.	 Image Enhancement using ESRGAN (Enhanced Super-Resolution Generative Adversarial Network).
	2.	 Segment Anything Model (SAM) to obtain Region of Interest (RoI).

Fig. 2.  Proposed architecture of early diagnosis of PCOS.

 

Scientific Reports |        (2025) 15:16832 5| https://doi.org/10.1038/s41598-025-01744-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	3.	 Classification Model.

Preprocessing and image enhancement using ESRGAN (enhanced super-resolution 
generative adversarial network)
Preprocessing ultrasound ovary images is crucial for promptly identifying Poly-cystic Ovary Syndrome (PCOS). 
In this article, CLAHE13 has been used as a preprocessing technique by enhancing local contrast in ultrasound 
ovary images, preventing noise amplification and improving the ability to discern important ovarian structures 
like follicles. It efficiently manages uneven illumination and enhances image clarity to improve segmentation and 
feature extraction. In addition, strengthening the ultrasound ovary image can highlight significant details and 
structures and increase the visibility of anomalies linked to PCOS. These techniques help identify cysts, follicular 
changes and other PCOS indicators early by increasing contrast, reducing artifacts, and highlighting the pertinent 
region of interest. This article uses ESRGAN (Enhanced Super-Resolution Generative Adversarial Network)27 to 
enhance the ultrasound ovary image by increasing the resolution. This network uses the generator to produce 
high-resolution images by converting the low-resolution input images and discriminator to differentiate the 
high-resolution images made by the generator from the original images.

Figure 3 illustrate the architecture of ESRGAN. It comprises several convolutional filters, residual-in-residual 
blocks (RRDB), and an upsample activation map. To identify the low-level features such as edges, textures, 
corners and intensity gradients, a convolutional layer with 3 × 3 convolution operation is applied. These inputs 
are passed to the RRDB block to extract the most pertinent features. Figure 4  depicts the architecture of Residual 
in Residual Dense Block (RRDB). The RRDB contains three instances of the dense_block to extract hierarchical 
features, residual connections to enhance feature reuse by stabilising the model training and skip connection, 
which passes the important information directly. Each dense block consists of five convolutional filters, for 
instance, a normalisation function with two parameters, Alpha and Beta, to scale and shift the normalised 
output followed by an activation function (Leaky ReLU) to avoid dead neurons. Each convolutional layer in the 
dense_block function uses 64 filters. The alpha and Beta parameters are set to 0.2. The upscaling factor of 4 is 
used to scale the low-resolution images, and the residual scalar value is set at zero. The upsampling preserves an 
ultrasound ovary image’s fine textures and features. Finally, 3 × 3 convolutions are applied to convert the upscaled 
features to RGB images, which uses Tanh activation to limit pixel values between − 1 and 1. The operation of each 
specific layer in dense_block is represented in Eqs. (2),

	 YHR_image = β · IN
(
conv

(
XLR_input

))
+ α� (2)

where, conv
(
XLR_input

)
 represents the convolution operation on a low-resolution image XLR_input, IN  

indicates the Instance Normalization and α , β  represents the parameters used to scale and shift the normalised 
output.

Instance Normalisation (IN) of an input feature map XLR_input is given by,

	
Xnorm =

XLR_input − µ
√
σ2 + ∈

� (3)

Fig. 4.  Residual in residual dense block (RRDB).

 

Fig. 3.  ESRGAN architecture.
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where µ  and σ indicate each feature map’s mean and standard deviation, ∈ is the value for stabilising the 
normalisation process.

The scale and shift parameters α  and β  are applied to the normalised output. Xnorm, which is represented 
in Eqs. (4),

	 Y = α Xnorm + β � (4)

Three different approaches are being used to improve the quality of the images: CLAHE13, SRCNN19 and 
ESRGAN9,13. Metrics such as Learned Perceptual Image Patch Similarity (LPIPS), Structural Similarity Index 
(SSIM), and Peak Signal-to-Noise Ratio (PSNR) are used to identify which of these three models performs 
effectively. Algorithm 1 shows the process of the image enhancement technique.

Algorithm 1.  Enhancing low resolution ultrasound ovary image.

SAM (segment anything model) for segmentation
For the early diagnosis of PCOS, segmentation of ultrasonography ovary images is crucial. Accurate 
segmentation allows for early diagnosis, minimises diagnostic errors, and enhances treatment outcomes. In this 
article, the Segment Anything Model generates automatic annotation and segments ovarian cysts by developing 
an automated mask. The Segment Anything Model (SAM) performed well and provides significant benefits 
in ultrasound image segmentation28, such as automated segmentation, improved accuracy and generalisation 
to new tasks, reduced task-specific expertise, and the ability to handle speckle noise. Figure  5 depicts the 
architecture of the Segment Anything Model. The enhanced high-resolution images obtained from ESRGAN are 
used as an input to segment the ovarian cysts. The image encoder and prompt encoder represent the input and 
prompt image features. The model decoder combines the image results and the prompt encoder to create the 
mask. The performance of the generated mask is evaluated using IoU (Intersection over Union) and Dice score. 
Algorithm 2 explains the process of automated mask generation using SAM.
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Algorithm 2.   Automated mask generation using segment anything model.

Classification using ESRGAN and SAM results
In this article, a novel integrated approach (QEI-SAM) for the classification of Poly-Cystic Ovarian Syndrome 
(PCOS) using several prominent Convolutional Neural Network (CNN) classifiers, such as AlexNet, ResNet 
50, ResNet 101, VGG 16, VGG 19 and Inception v3 is proposed. With their deep residual learning and skip 
connections, ResNet-50 and ResNet-101 effectively capture hierarchical information while avoiding vanishing 
gradients, which makes them appropriate for classifying and segmenting numerous cystic follicles and enlarged 
ovaries. However, deeper models such as ResNet-101 need a high-dimensional dataset to prevent overfitting. 
Inception v3 is used due to its factorised convolutions and multi-scale feature extraction, effectively capturing 
follicular variations at various scales. VGG-16 and VGG-19, recognised for their stacked 3 × 3 convolutions, 
excel at detecting fine-grained textures such as small follicular cysts, making them helpful for segmentation-
based PCOS identification. The lightweight AlexNet model lacks the depth required to identify complex ovarian 
anomalies used for comparison. The performance of the proposed model is evaluated using various performance 
metrics, including accuracy, precision, recall, F1 score and AUC score. Algorithm 3 presents the steps involved 
in the classification of PCOS.

Fig. 5.  Automated mask generation using segment anything model.
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Algorithm 3.   PCOS classification model.

Experiments
Dataset
This research conducted experiments on a publicly available dataset32: ultrasound ovarian images with and 
without PCOS from the Kaggle repository to determine the efficiency of the proposed QEI-SAM in improving 
the accuracy of PCOS classification. This dataset contains two subfolders: train and test with two categories: 
infected (781 with PCOS) and non-infected (1143 Healthy ovaries). It consists of 1932 ultrasound ovary images. 
The size of the initial low-resolution image is 300 × 300, and ESRGAN was trained with this low-resolution 
image and produced the high-resolution image of 900 × 900.

Implementation details and performance metrics
The experiments were performed on the DELL Precision 3660, Intel core i5-12500 Processor and 64GB Memory, 
and NVIDIA T1000 4GB Discrete Graphics. All models were implemented using Jupyter Notebook. The 
experimental parameter settings used during implementation are shown in Table 1.

The performance analysis of the classification model with and without ESRGAN and SAM results is evaluated 
using metrics including AUC (Area under Curve), accuracy, precision, recall and F1 score. Additionally, PSNR 
(Peak Signal-to-Noise Ratio), Learned Perceptual Image Patch Similarity (LPIPS) and Structural Similarity 
Index (SSIM) are used to evaluate the quality of enhanced images produced by ESRGAN. Also, to assess the 
segmented region identified by the SAM -Segment Anything Model, the IoU (intersection over union) and Dice 
scores are used.

Results and discussion
ESRGAN and SAM performance on image enhancement and segmentation
In this article, image enhancement and segmentation of ultrasound ovary image is accomplished with the 
support of ESRGAN & SAM, as depicted in Fig. 6. The initial row depicts the sample’s original low-resolution 
image. The enhanced image produced by ESRGAN is presented in the second row. The binary and contour 
masks made by the Segment Anything Model (SAM) for each sample image are displayed in the third row. In this 
paper, CLAHE13, SRCNN19 and ESRGAN9,13 are employed as image enhancement techniques. Enhanced image 
quality is evaluated using performance metrics such as PSNR, SSIM and LPIPS. The results are shown in Table 2. 
From the results, it is clear that the enhanced image produced by ESRGAN achieved the highest PSNR and SSIM 
values of 38.60 and 0.9383 and a low LPIPS value of 0.0859 compared with CLAHE and SRCNN results.

Further, an ANOVA test was carried out to find the statistical difference between ERGAN, SRCNN, and 
CLAHE by comparing the means of the three groups. Subsequently, the post-hoc pairwise test was conducted 
to determine the specific group’s significant difference. With PSNR, the F-statistic is 10920.99, and the p-value 
is 2.07e-11 (< 0.05); for SSIM, it achieves an F-statistic of 840013.40 and a p-value of 4.55e-17 (< 0.05). Further, 
LPIPS obtained 134152.79 of F-statistic and a p-value of 1.11e-14 (< 0.05). Since all metrics’ F-statistic value is 
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higher and the p-value is < 0.05, a significant difference exists between groups in all metrics. Thus, a post-hoc 
pairwise t-test was conducted between three models, CLAHE, SRCNN and ESRGAN, to find which model 
outperforms the others. The results are given in Table 3.

The pairwise test results show that ESRGAN significantly outperformed both CLAHE and SRCNN, while 
CLAHE and SRCNN performed similarly regarding PSNR. Further, with SSIM, ESRGAN significantly works 
better than CLAHE and SRCNN. Additionally, CLAHE also significantly outperforms SRCNN. Regarding LPIPS, 
ESRGAN and CLAHE perform similarly, significantly outperforming SRCNN. Across all metrics, SRCNN is 
consistently outperformed by both ESRGAN and CLAHE. These results statistically confirm that ESRGAN is the 
best-performing model regarding reconstruction quality, structural similarity, and perceptual quality.

To effectively highlight the cysts region and boundaries in an ultrasound ovary image, SAM (Segment 
Anything Model) is used. Performance metrics such as IoU and Dice are used to evaluate the performance of 
SAM segmentation results. A comparative analysis of SAM results with different segmentation models, including 
U-Net, U-Net++, Cascaded U-Net, PSPNet and Deeplab v3, is also conducted. Table 4 depicts the performance 
analysis of various segmentation techniques. The result shows that SAM achieved the highest IoU and Dice 
values of 0.9602 and 0.9501 compared to other models. Further, ANOVA and post-hoc pairwise tests were 
conducted to determine the statistical significance between the models. With the ANOVA test, the F-statistic is 
2525.7, which is higher, and the p-value is extremely small (1.07e-17 < 0.05), far below the significance threshold 
of 0.05. This indicates a statistically significant difference in the performance among the models. Thus, a post-
hoc pairwise test was conducted to find the statistically significant model. The results are presented in Table 5.

It is observed that SAM has significantly outperformed all the other models. While compared with U-Net, it 
achieved the p-value < 0.0001. Even though U-Net + + has produced remarkable results in the medical dataset, 
SAM performs significantly better and obtained a p-value of < 0.0001. Further, the p-values of 0.0002, 0.0001, 
and 0.0005 were obtained by SAM with cascaded PSPnet and Deeplab v3. Thus, SAM consistently performs 
better with statistically significant differences (p-values < 0.05 in all pairwise comparisons) than all other models.

Performance of classifier model
To assess the effectiveness of the proposed QEI-SAM in accurately classifying PCOS ultrasound images. This 
article examines the classification performance on popular classification architectures, including Alexnet, ResNet 
50, ResNet 101, VGG 16, VGG 19, and Inception v3, before and after employing QEI-SAM. The classification 
results of the classifier model without and with QEI-SAM are displayed in Tables 6 and 7.

Table 6 shows the classification result of individual classifiers without using the images produced by QEI-
SAM. It is observed from the results that VGG 19 achieved an accuracy of 85.44%, 88% precision and Recall, 
F1 score of 85% and 82% AUC score, among other models. Additionally, to visually represent the differences 
in classification results without QEI-SAM, the ROC (Receiver Operating Characteristic) curve was plotted, as 
depicted in Fig. 7. It is noticed that the true positive rate of VGG 19 is better than other models. Table 7 illustrates 
that ultrasound ovary images enhanced with QEI-SAM performed significantly better than the original images 
on several classifier models. All classification metrics show notable improvements. The results show that VGG 
19 outperformed other models with 99.31% accuracy, 99% precision, recall, and F1 score, respectively. Figure 8 

Model Key parameters Value

ResNet 50 & 101

Activation function ReLU

Regularisation L1 (0.01)

Optimizer Adam

Learning rate 0.0001

Loss function Sparse categorical crossentropy

VGG 19

Activation function ReLU

Regularisation L1 (0.01)

Optimizer Adam

Learning rate 0.00001

Loss function Sparse categorical crossentropy

Alexnet

Activation function ReLU

Regularisation L1 (0.01)

Optimizer Adam

Learning rate 0.000001

Loss function Sparse categorical crossentropy

Inception v3

Activation function ReLU

Regularisation L1 (0.01)

Optimizer Adam

Learning rate 0.000001

Loss function Sparse categorical crossentropy

Table 1.  Experimental parameter settings.
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Model PSNR SSIM LPIPS

CLAHE 28.09 0.5993 0.0862

SRCNN 28.20 0.1522 0.3586

ESRGAN 38.60 0.9383 0.0859

Table 2.  Performance analysis of image enhancement techniques - CLAHE, SRCNN and ESRGAN.

 

Fig. 6.  Representation of automated mask generation of SAM with enhanced image produced by ESRGAN.
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Model Accuracy Precision Recall F1 score AUC score

ResNet 50 76.08 83 76 73 70

ResNet 101 70.88 80 71 65 63

VGG 16 62.39 77 62 50 53

VGG 19 85.44 88 88 85 82

Alexnet 60.31 36 60 45 50

Inception v3 83.71 83 83 83 83

Table 6.  Performance analysis of individual classifier model without QEI-SAM.

 

Base Model Comparative models t-statistic p-value

U-Net

U-Net++ -2.85 0.0043

Cascaded U-net -2.98 0.0031

PSPnet -3.10 0.0021

Deeplab v3 -3.78 0.0005

SAM -5.25 < 0.0001

U-Net++

Cascaded U-net -1.85 0.0674

PSPnet -2.57 0.0110

Deeplab v3 -2.95 0.0032

SAM -4.75 < 0.0001

Cascaded U-net

PSPnet -1.95 0.0527

Deeplab v3 -2.79 0.0053

SAM -4.10 0.0002

PSPnet
Deeplab v3 -2.31 0.0213

SAM -4.35 0.0001

Deeplab v3 SAM -3.85 0.0005

Table 5.  The post-hoc pairwise statistical analysis of segmentation models.

 

Model IoU Dice

U-Net 0.1756 0.2988

U-Net++ 0.8648 0.9275

Cascaded U-Net 0.5479 0.7079

PSPNet 0.6500 0.7879

Deeplab v3 0.8629 0.8908

SAM 0.9602 0.9501

Table 4.  Performance analysis of segmentation models using an enhanced image produced by ESGAN.

 

Metrics Comparative models p-value

PSNR

CLAHE & SRCNN 0.2878

CLAHE & ESRGAN 2.15e-02 (< 0.05)

SRCNN & ESRGAN 1.98e-02 (< 0.05)

SSIM

CLAHE & SRCNN 3.24e-02 (< 0.05)

CLAHE & ESRGAN 2.87e-02 (< 0.05)

SRCNN & ESRGAN 1.92e-02 (< 0.05)

LPIPS

CLAHE & SRCNN 2.55e-02 (< 0.05)

CLAHE & ESRGAN 0.2302

SRCNN & ESRGAN 2.14e-02 (< 0.05)

Table 3.  The post-hoc pairwise statistical analysis between CLAHE, SRCNN and ESRGAN.
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shows the RoC plot of the proposed QEI-SAM and that the true positive rate of VGG 19 is higher than that of 
other models.

The performance of the proposed work is compared with the existing work, as depicted in Table 8. Moral 
et al.29 utilised various techniques to enhance the image quality and to obtain RoI, including image resizing, 
watershed and multilevel thresholding. CystNet was introduced for feature extraction. The improved images 
with CystNet were considered for model training. The neural network -Dense Layer (FC) and Machine Learning 
models, including KNN, AdaB, NB, and RF, were implemented, and Random Forest obtained the highest 
accuracy of 97.75%. Bernatin et al.24 employed a filter-based univariate attribute selection approach to extract 
pertinent features and normal scaling for preprocessing. Five classifiers were implemented: Alexnet, Inception 
V3, Resnet50, VGG16 and hybrid model. The hybrid model has obtained the highest accuracy of 95% than 
other models. Shanmugavadivel et al.30 used CNN as a feature extraction technique and employed classifiers 

Fig. 8.  ROC plot of an individual model with ESRGAN and SAM.

 

Fig. 7.  ROC curve of individual classifier without QEI-SAM.

 

Model Accuracy Precision Recall F1 score AUC score

ResNet 50 96.36 97 96 96 95

ResNet 101 93.58 94 94 94 93

VGG 16 88.91 91 89 88 86

VGG 19 99.31 99 99 99 99

Alexnet 97.05 97 97 97 98

Inception v3 91.50 92 92 91 91

Table 7.  Performance analysis of classification models with ESRGAN & SAM results.
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including LR, NB, SVM, CNN and VGG 16 to classify PCOS. VGG 16 has achieved a notable accuracy of 
98.29%, outperforming machine learning classifiers. The proposed QEI-SAM incorporates ESRGAN for image 
enhancement and SAM for segmentation. Also, various CNN models such as VGG 16, VGG 19, Alexnet, ResNet 
50, ResNet 101 and Inception v3 were implemented, and the model’s performance was evaluated. VGG 19 
surpassed other models and achieved 99.31% accuracy, higher than the existing results.

Ablation experiments
This article describes three different ablation experiments to evaluate the proposed model’s performance in each 
stage.

•	 Performance analysis of the classifier model without preprocessing and segmentation is displayed in Table 6. 
Due to noise in ultrasound images and inadequate preprocessing, the model has produced less accuracy of 
85.44%.

•	 Further, to improve the performance of the model, CLAHE (only contrast enhancement, fails to increase 
resolution), SRCNN (obtained finer details, confine to identifying specific patterns from the image), whereas 
ERGAN effectively preserves anatomical structures and produces edges and textures that are more realistic 
than SRCNN. The performance analysis of these methods is given in Table 2. Since ESRGAN outperformed 
the other two methods, classifier models were trained with high-resolution images produced with ESRGAN, 
which provides a better accuracy of 90.81% with the VGG 19 model, as depicted in Table 9. However, captur-
ing the complicated correlations between features in enhanced ultrasound images produced by ESRGAN is 
challenging for the model. Consequently, it is difficult for the model to locate crucial information needed for 
accurate PCOS identification, like cysts boundaries and contour masks.

•	 To further improve the overall accuracy of the PCOS detection model, the Segment Anything Model (SAM) 
is integrated with ESRGAN-enhanced ultrasound image for automatic annotations and mask generation to 
segment ovarian cysts. By focusing solely on the ovary, the model can learn features specific to PCOS, such 
as cysts size, count and distribution, resulting in the highest accuracy of 99.31% compared to other segmen-
tation models, as shown in Table 10.

Conclusions
This article demonstrates data-driven early identification of PCOS in women to treat and manage the illness 
appropriately. The proposed QEI-SAM improves the model’s classification performance by enhancing and 
highlighting the target region and contour in the image. Furthermore, QEI-SAM has identified the precise 
features that will serve as primary indicators for diagnosing PCOS, hence assisting physicians in quickly and 
accurately identifying diseases and being cost-effective for patients who have undergone several tests to diagnose 
their illnesses. In this article, as an initial step, comparative analyses of three image enhancement techniques 
such as CLAHE, SRCNN and ESRGAN, were conducted, and the quality of the enhanced images was evaluated 
using PSNR, SSIM and LPIPS. As a result, the best-enhanced images produced by ESRGAN with the highest 
PSNR value of 38.60, SSIM of 0.938 and LPIPS value of 0.0859 are considered. Subsequently, the Segment 
Anything Model (SAM) was employed to segment ovarian cysts from enhanced images, and their performance 
was evaluated and compared with various segmentation techniques. As a result, SAM achieved the highest IoU 
of 0.9602 and the Dice coefficient of 0.9501, surpassing other models. Finally, Convolutional Neural Network 

Model Accuracy Precision Recall F1 score AUC score

ESRGAN + ResNet 50 90.76 91 91 91 90

ESRGAN + Resnet 101 90.36 91 90 90 89

ESRGAN + VGG 16 68.28 75 68 62 60

ESRGAN + VGG 19 90.81 92 91 91 88

ESRGAN + Alexnet 60.31 36 60 45 50

ESRGAN + Inception v3 86.30 86 86 86 85

Table 9.  Ablation experimentation results of ESRGAN with classifiers.

 

References Model Image enhancement technique
Segmentation model/feature 
extraction

Accuracy 
%

Moral et al.29 Dense Layer (FC),
ML: KNN, AdaB, NB, RF

Image resizing, Normalization, Watershed 
technique, Multilevel thresholding, 
Morphological Processing

CystNet 97.75

Shanmugavadivel et al.30 LR, NB, SVM, CNN, VGG 16 Morphological Processing CNN for feature extraction 98.29

Bernatin et al.24 Alexnet, Inception V3, Resnet50, VGG16 and 
Hybrid Models Image resizing Filtering-based uni variate attribute 

selection 95

Proposed model
(QEI-SAM)

Six CNN models: ResNet 50, ResNet 101, VGG 
16, VGG 19, Alexnet, Inception v3

ESRGAN(Enhanced Super Resolution 
Generative Adversarial Networks) SAM (Segment Anything Model) 99.31

Table 8.  Result comparison of proposed QEI-SAM result vs. existing work.
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models, including ResNet 50, ResNet 101, Alexnet, VGG 16, VGG 19 and Inception v3 have been implemented 
and evaluated using various performance metrics. Table 7 shows that enhanced and segmented images produced 
by the proposed QEI-SAM performed well with VGG 19 and achieved the highest accuracy of 99.31% compared 
to other models. SAM guarantees precise and flexible segmentation of ovarian structures, while ESRGAN 
improves ultrasound image resolution and contrast. This synergy provides generalizability without requiring 
much retraining and increases diagnostic accuracy for PCOS identification. To enhance the clinical applicability, 
future work will concentrate on making the approach more efficient, enhancing structural consistency, and 
validating it on larger and more diverse datasets.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author upon reasonable request.
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