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Abstract 

Animals flexibly adjust posture and movement in response to vibrational sensory input to extract 

information from dynamic environments. While sensorimotor transformations have been extensively 

studied in visual and somatosensory systems, their structure remains poorly understood in substrate-borne 

vibration sensing. Here, we combine high-resolution web vibration recordings with fine-scale behavioral 

tracking in the orb-weaving spider Uloborus diversus to dissect the sensorimotor basis of prey capture. 

Using unsupervised modeling, we identified discrete behavioral states that structure spider 

capture sequences, achieving over 83% classification accuracy. We then developed a predictive 

framework combining a linear-filtered generalized linear model (GLM) with a hidden Markov model 

(HMM) that robustly forecasts behavioral transitions across diverse prey vibration contexts. Notably, 

spiders exhibit context-dependent motor transitions—such as crouching and shaking—following 

decreases in prey vibrational power, consistent with active sensing behaviors that enhance signal 

detection. Furthermore, spiders reliably turn toward the web radius exhibiting the highest vibration 

amplitude during prey localization, demonstrating that amplitude alone predicts turning direction. 

These findings reveal a structured, predictive sensorimotor transformation linking external 

vibration cues to internal behavioral states. Our results highlight general principles of active sensing and 

closed-loop control in non-visual invertebrate systems, with broader implications for sensorimotor 

integration across species. 

 

Introduction 

Animals continuously acquire information from their environment through sensory systems to 

guide context-dependent behaviors such as foraging 1,2 and courtship3,4. However, sensory input is often 

noisy or transient, particularly during rapid or dynamic interactions such as prey capture. To overcome 

this, many species employ active sensing strategies5,6—coordinated motor actions that enhance the 
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acquisition of behaviorally relevant stimuli. Active sensing has evolved across a wide range of sensory 

modalities. It is observed in vision7,8 (e.g., saccades in primates, head and body movements in flies), 

audition9–11 (e.g., echolocation in bats and whales), olfaction12 (e.g., sniffing in rodents), 

electrosensation13,14 (e.g., tail movements in electric fish), and mechanosensation15–19 (e.g., whisking in 

rodents or antennal scanning in insects).  

A central theme in active sensing is the closed-loop nature of sensorimotor control: organisms do 

not merely react to sensory input but shape it through structured motor output. This continuous feedback 

loop improves signal detection, resolves sensory ambiguity, and enables flexible behavioral adaptation to 

dynamic environments. Despite its broad significance, the underlying structure and function of these 

sensorimotor loops remain incompletely understood, particularly in multimodal naturalistic contexts and 

vibration-based modalities such as substrate-borne signals.  

The orb-weaving spider, Uloborus diversus, offers a powerful model to study vibration-based 

sensorimotor strategies. Unlike many animals that rely on vision or audition, spiders primarily sense their 

environment through substrate-borne vibrations. Their legs are equipped with highly sensitive slit 

sensilla—mechanoreceptors embedded at leg joints—which enable the detection of nanometer-scale 

displacements at frequencies up to 5,000 Hz20,21. Importantly, the spider web functions not only as a 

sensory substrate that transmits external vibratory cues but also as an actuator that is continuously 

reshaped by the spider’s own movements. This dual role makes the spider-web system an ideal substrate 

to dissect how animals actively modulate the sensory landscape and how those modulations, in turn, 

influence behavior. Spiders exhibit prey capture behavior that involves active movements in a naturalistic, 

context-dependent setting. Previous work 22 has described stereotyped movements—such as crouching, 

turning, and shaking—during prey capture in response to vibratory stimuli. However, these descriptions 

have largely remained qualitative, leaving open key questions about the functional role of these actions in 

shaping sensory input and how the resulting feedback influences subsequent motor decisions. 
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To address these questions, we investigated whether specific behaviors in the orb-weaving spider 

U. diversus—particularly crouching and shaking—amplify prey-induced vibratory signals, consistent 

with a role in active sensing. We first quantified the vibratory stimulus landscape spiders encounter using 

high-resolution web recordings. Next, we used unsupervised modeling to define a set of discrete 

behavioral states from leg kinematics, establishing a quantitative framework for decoding the spider’s 

behavioral repertoire. To investigate the sensorimotor relationship between stimulus and action, we built a 

predictive model linking sensory input to behavioral state transitions by combining Generalized Linear 

Models (GLM) with Hidden Markov Models (HMM). Spectral analyses revealed that crouching and 

shaking actively increase the vibratory power of subsequent prey-generated signals on the web. We 

further show that the structure of incoming vibratory input predicts future behavioral states, 

demonstrating a context-dependent, closed-loop dynamic. Finally, we explored how spiders localize prey 

through these interactions, shedding light on spatial computation and closed-loop control in a non-model 

organism. 

Together, our findings reveal a dynamic, bidirectional sensorimotor loop in U. diversus that 

embodies core principles of active sensing, stimulus-guided behavior, and adaptive sampling. We present 

the first quantitative model linking substrate vibrations to discrete, predictive behavioral states in spiders 

during prey capture, offering a generalizable framework for understanding active sensing across diverse 

systems. These insights raise broader questions about the evolutionary convergence of sensorimotor 

strategies across diverse sensory modalities and species. 

 

Results 

Drosophila melanogaster and Drosophila virilis produce low-frequency vibration of 2-50 Hz on the 

web 
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To investigate the spider’s vibration-based sensorimotor transformation, we first defined the 

stimulus landscape that drives prey capture behavior. We developed a custom behavioral recording system 

that simultaneously captured web vibrations using a top-view high-speed camera (1,000 Hz) and spider 

behavior using a side-view camera (100 Hz) (Fig. 1a). The top-view recordings resolved frequency 

components up to 500 Hz over 8.734-second sessions, with a ring of white LEDs providing illumination 

to enhance silk contrast. Web geometry was annotated using a custom vision-based tracking algorithm 

(Fig. 1b), and a U-Net model23 trained on 91 manually labeled webs was used to predict web structure 

across additional recordings. Vibratory activity was quantified by measuring pixel intensity fluctuations 

along silk threads and applying Fast Fourier Transform (FFT) analysis, enabling non-contact, high-

resolution mapping of the full web’s vibratory landscape with fine spatial and temporal precision. 

We first recorded a baseline control for each web in the absence of any stimulus, followed by an 

experimental condition in which a Drosophila melanogaster was placed on the web. A representative 

example is shown in Fig. 1c, where D. melanogaster generates broad-band, low-frequency vibrations 

between 2-50 Hz. To further verify that these vibrations originated from the fly's movements, we 

calculated the area under the Fourier transform curve (AUC) along each silk thread. We observed that 

AUC values peaked around the fly’s location, indicating that these signals primarily arise from D. 

melanogaster activity rather than background noise (Fig. 1d). We also computed the short-time Fourier 

transform (STFT) to examine the temporal patterns of prey signals, which exhibited irregular fluctuations 

(Supplementary Video 1). Next, we compared vibratory responses across 12 webs by computing the 

signal-to-noise ratio (SNR) as the ratio of the Fourier power spectrum in the experimental condition to 

that in the control (Fig. 1e). We found that D. melanogaster consistently produced broadband low-

frequency signals in the 2-50 Hz range.  

It is worth noting that in a subset of recordings, we detected narrowband noise peaks in both 

control and experimental conditions (bracket in Fig. 1c). Since these peaks were also present in the 

control and exhibited relatively low power (<600), we interpret them as likely artifacts, possibly arising 

from environmental or mechanical sources, rather than biologically relevant signals. Indeed, when we 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2025. ; https://doi.org/10.1101/2025.06.08.658484doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.08.658484
http://creativecommons.org/licenses/by-nc/4.0/


plotted the AUC map between 270–300 Hz, it revealed uniformly distributed power across the entire web 

(Supplementary Fig. 1a). The corresponding STFT further confirmed that this artifact persisted 

throughout the recording (Supplementary Fig. 1b), in contrast to the localized and irregular patterns 

characteristic of prey-induced vibrations. 

To assess species-specific differences in vibratory signaling, we repeated the experiment using 

Drosophila virilis, a larger species of Drosophila24 (Supplementary Fig. 1c). Despite exhibiting a similar 

spectral range (Supplementary Fig. 1d–f), D. virilis generated substantially greater vibratory power on the 

web (Supplementary Fig. 1j). These findings indicate that species differences in web-borne signals arise 

primarily from vibratory intensity rather than frequency composition. 

 

Spiders actively produce harmonic vibrations on webs in response to D. melanogaster-generated 

cues  

To determine whether spiders actively modulate web-borne vibrations in response to prey, we 

placed both D. melanogaster and U. diversus on the web. As a baseline, we first recorded vibratory 

activity with a stationary U. diversus in the absence of prey. Under these conditions, no significant 

vibrations were detected, indicating minimal background activity from the spider or ambient air currents 

(Fig. 1f). Upon the introduction of D. melanogaster, however, spiders actively generated vibrations by 

crouching or shaking webs, suggesting an active sensing mechanism triggered by the presence of prey. 

The AUC map reveals widespread vibration power across the entire web during active sensing (Fig. 1g, 

Supplementary Video 2).  Interestingly, spider’s movements induce resonance on webs with 10-hertz 

fundamental frequency. These harmonic vibrations were consistently observed in 11 out of 12 recordings 

(Fig. 1h).  

To probe whether this response depends on prey signal strength, we repeated the experiment with 

D. virilis, which generates higher-amplitude vibrations (Supplementary Fig. 1j). As predicted, spiders 

responded more rapidly to D. virilis than to D. melanogaster (Supplementary Fig. 1l). Notably, unlike the 
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consistent harmonics observed with D. melanogaster, harmonic peaks at 25, 50, and 75�Hz were 

detected in only one of 12 trials with D. virilis (Supplementary Fig. 1g-i, k). 

Together, these findings suggest that U. diversus produces harmonic vibrations in response to 

weak vibratory cues, potentially to enhance signal detectability via resonance. In contrast, when 

interacting with prey that already produces strong vibratory signals (D. virilis), the spider does not 

generate additional harmonics and reaches the prey faster. 

Unsupervised modeling reveals structured state transitions and timing modulation in spider prey 

capture across species  

To observe how the spider dynamically vibrated the web, we tracked and quantified spider leg 

movement by using a side camera recording at 100 Hz (Figure 1a). We used DeepLabCut25 to track five 

joints on each of the two anterior and two posterior legs (20 joints total). Wavelet analysis26 was then 

applied to quantify the spiders' limb movements (Fig. 2a). From the joint wavelet spectrum, 3 behavioral 

states were observed, which we named static state, crouching state, and high-frequency state. The static 

state was defined by low power in the spectrum due to very little limb movement (Supplementary Video 

3). When the spider crouched, the joints moved in the 3-10 Hz frequency range. During high-frequency 

shaking states, the joint wavelet spectrum exhibited a prominent peak at 10 Hz—closely matching the 

resonance frequency identified in top-view recordings. This state could occur while the spider remained 

in one location on the web, or during walking or turning. 

To automatically classify these states, we developed an unsupervised modeling pipeline 

combining dimensionality reduction, clustering, and Hidden Markov modeling (HMM) to predict a 

spider’s behavioral states based on joint wavelets. As the four legs exhibit similar wavelet patterns during 

prey capture (Supplementary Fig. 2a) and the spider’s primary motor output is driven by the anterior legs, 

we performed UMAP27 dimensionality reduction on five joints of the left anterior leg across 30 spiders to 

capture representative motor dynamics, yielding a five-dimensional embedding. Then, we applied 

unsupervised K-means clustering to the UMAP space, identifying three clusters to extract the probability 

distribution of three states. A Hidden Markov Model (HMM) was constructed using the five-dimensional 
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UMAP embeddings as observables, with the emission probability distribution determined by K-means 

clustering28.  

This unsupervised HMM enabled moment-to-moment behavior prediction, achieving 83.4% 

accuracy across 10 manually annotated trials out of 30 recordings with D. melanogaster interactions. Our 

HMM revealed a high probability of self-transitions within each behavioral state during prey-capture 

dynamics (Supplementary Fig. 2b). To better visualize the transitions between distinct states, we excluded 

self-transitions and normalized the remaining state-to-state transition probabilities (Fig. 2b). Notably, the 

model predicted all high-frequency states are followed by crouching states, likely reflecting 

biomechanical constraints that prevent abrupt cessation of movement. Overall, model performance 

declines during state transitions, but achieves 70–100% accuracy during non-transition periods (Fig. 2c). 

To validate the number of behavioral states, we evaluated model performance using the Bayesian 

Information Criterion (BIC). BIC values dropped sharply between one and three states, followed by a 

plateau, indicating minimal improvement with additional states (Fig. 2d). We further quantified BIC 

changes relative to both the preceding state model and the best-fitting model per sequence 

(Supplementary Fig. 2c-d). In both cases, the greatest improvement occurred at three states, with marginal 

gains thereafter. Together, these findings support a three-state model underlying spider prey capture 

dynamics. 

To test the generalizability of this three-state classification pipeline, we applied it to recordings of 

spiders interacting with a second prey species, D. virilis, which produces comparable vibratory 

frequencies (Supplementary Fig. 1j). Joint wavelet data from 12 D. virilis trials were projected onto the D. 

melanogaster-derived UMAP embedding (Supplementary Fig. 2e), and a new HMM was trained within 

this shared low-dimensional space. Using four manually labeled sequences for validation, the D. virilis 

model achieved 83.9% accuracy, comparable to that of the D. melanogaster-trained model. Importantly, 

transition dynamics were also qualitatively similar across prey types (Supplementary Fig. 2f), suggesting 

conserved underlying sensorimotor structure and supporting the robustness of the modeling framework.  
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Given that U. diversus responds more rapidly to D. virilis (Supplementary Fig. 1l), we 

hypothesized that this behavioral efficiency might arise from reduced engagement in crouching or 

shaking, or from shorter durations within each behavioral state. While the number of static, crouching, 

and shaking events did not differ significantly between prey types (Supplementary Fig. 2g), state 

durations were significantly shorter during D. virilis interactions (Supplementary Fig. 2h). In particular, 

crouching dwell times were reduced (Supplementary Fig. 2i), suggesting faster behavioral transitions and 

a larger decay constant. Together, these results demonstrate that U. diversus exhibits structured and 

stereotyped motor dynamics during prey capture that are robust across prey types, yet flexibly modulated 

in timing by sensory input intensity. 

 

Spiders’ crouching and shaking increase sensory stimulus power from Drosophila melanogaster 

To uncover the functional role of crouching and high-frequency shaking during prey capture, we 

examined how these motor states influence vibratory signals from prey. As previously described, D. 

melanogaster produces relatively low-amplitude vibrations on the web (Supplementary Fig. 1j), and 

spider exhibits significantly longer state durations during interactions with this prey compared to D. virilis 

(Supplementary Fig. 2h-i). We hypothesized that crouching and high-frequency shaking behaviors may 

actively modulate prey signals to enhance sensory gain. 

Because spider movement itself induces substantial web vibrations (Fig. 1f–h), we sought to 

isolate prey-induced signals from those driven by the spider. To achieve this, we extracted pixel intensity 

fluctuations from silk threads in a region of interest (ROI) centered on the D. melanogaster and 

normalized these values by fluctuations in a surrounding peripheral area (Fig. 3a). This normalization 

yielded a “pure” fly signal from top-view recordings, isolating prey-specific motion independent of 

spider-induced noise. 

Short time Fourier Transform (STFT) was then applied to the pure fly signal to investigate 

temporal dynamics of fly movements. We manually annotated spider’s behavioral states in the top-view 

data because state predictions from the HMM were based on lower frame rate side-view recordings at 100 
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Hz. During large spider movements in high-frequency state, such as turning, the raw fly signal displayed 

large power (Fig. 3b, Supplementary video 4), whereas pure fly signal exhibited low power (Fig. 3c), 

indicating that the fly moved passively with the vibrating web. By contrast, crouching behavior induced 

greater pure fly signal power compared to high-frequency state. Strikingly, upon cessation of crouching, 

fly power further increased—exceeding levels observed during crouching—suggesting that the crouching 

behavior itself may trigger fly movement and enhance the resulting sensory signal from Drosophila 

melanogaster. 

To quantify these effects across multiple D. melanogaster trials, we averaged STFT power over 

time from 12 top-view video recordings. In the pre-capture static state, fly-induced vibrations were 

predominantly low-frequency (<30 Hz; Fig. 3d, cyan). When the spider was crouching, the pure fly signal 

showed a spectral peak at 12 Hz (Fig. 3d, yellow). Notably, power in the subsequent static state increased 

further, peaking at 12 Hz and 33 Hz (Fig. 3d, purple). Shaking behavior typically elicited broadband fly 

signals spanning 0–500 Hz, with shaking preceding crouching (Fig. 3d, orange) exhibiting higher power 

than shaking followed by a return to static (Fig. 3d, light green). Static states following crouching (purple) 

or shaking (dark green) consistently exhibited increased vibratory power relative to the prior state, 

suggesting that these behaviors enhance transmission of fly-induced signals across the web. 

To examine whether sensory gain from pure fly signals in static states consistently increased 

following crouching throughout the entire prey capture sequence, we analyzed behavioral state transitions 

predicted by the HMM using extended-duration side-view recordings. We applied the same ROI-based 

analysis to quantify fly signals; however, due to limited visibility of silk threads in the side view, we 

defined the normalized fly signal directly from pixel intensity of the fly itself, rather than silk fluctuations. 

By averaging STFT power within the 0–30 Hz frequency band, we observed a robust increase in 

pure fly signal during static states that followed spider crouching (Fig. 3e–f, Supplementary video 5). 

Although the HMM did not predict any transitions from shaking to static states, we found that high-

frequency shaking movements were consistently followed by elevated sensory signals during the 
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subsequent crouching state (Fig. 3g), further supporting the role of both crouching and shaking in 

amplifying prey-derived vibratory input. 

 

Fly-induced sensory cues predict spider behavioral states 

If spider behavior functions to enhance sensory gain, we next asked whether prey-induced 

sensory cues could, in turn, predict the spider’s behavioral responses. To test this hypothesis, we 

developed a hybrid sensorimotor model combining generalized linear models (GLMs) with hidden 

Markov models (HMMs) (Fig. 4a), allowing us to capture both stimulus-dependent dynamics and 

temporal structure in behavior. 

We analyzed 16 side-view recordings of spider–prey interactions and trained a multinomial GLM 

to classify spider behavior into three discrete states—static, crouching, and high-frequency movement—

based on two sensory features from Drosophila melanogaster: the pure fly STFT power and fly vertical 

velocity. To examine how sensory input shapes behavioral transitions, we estimated linear filters —

behavior-triggered averages (BTAs)—by aligning stimulus features over a 100-ms window preceding the 

onset of each behavioral state.  Importantly, these linear filters revealed that fly vibratory power increased 

prior to transitions into the static state but decreased before the onset of crouching and high-frequency 

movements (Fig. 4b). Additionally, transitions into crouching were preceded by reductions in fly vertical 

velocity. Together, these results suggest that specific changes in prey-induced signals influence the 

probability of entering distinct behavioral states. More generally, spiders tend to pause their movements 

when the fly is moving, and crouch when the fly decreases its movement on the web. 

We then used the filtered sensory signals—obtained by taking the inner product of the raw input 

and BTA filters—as input to a multinomial logistic function to predict behavioral state. Using 25% held-

out data and 250 bootstrap iterations (n = 1000), the two-feature GLM significantly outperformed models 

using only STFT power (p�<�10-307) or substituting horizontal for vertical velocity (p�<�10-307), and 

performed comparably to the three-feature model (p�=�0.683; Supplementary Fig. 3a). A 100-ms BTA 

window yielded optimal classification accuracy, with shorter (50 ms) and longer (250 ms, 500 ms) 
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durations showing no improvement (Supplementary Fig. 3b). Also, filters estimated with alternative 

window lengths showed similar trends to those obtained with the 100-ms window (Supplementary Fig. 

3c), indicating robustness of the derived sensory-behavior mappings. 

Although the GLM successfully captured stimulus–response relationships, it lacked a mechanism 

for modeling temporal continuity between behavioral states. To address this limitation, we extended the 

model by incorporating a hidden Markov model (HMM), which jointly inferred both stimulus-driven 

behavioral outputs and state transitions. While the GLM and GLM-HMM exhibited similar prediction 

accuracies (Fig. 4c–d), the GLM-HMM yielded smoother behavioral sequences by integrating both 

instantaneous sensory inputs and state transition dynamics. The resulting GLM-HMM achieved 75.3% 

prediction accuracy across the 16 datasets compared to a wavelet-based HMM (Fig. 4e), providing 

interpretable insights into how specific vibratory features of prey stimuli govern behavioral state 

transitions in the spider. 

Spatial structure of vibratory input predicts orienting behavior 

Finally, we examined whether spatial patterns of vibratory input guide the spider’s orienting 

behavior. Using top-view recordings, we quantified vibratory signals by measuring pixel intensity 

changes along individual radial threads preceding each turning event (Fig. 5a, Supplementary video 6), 

assessing whether localized variations in signal amplitude across the spider’s peripheral sensory field 

could predict turning direction on a trial-by-trial basis. 

For each turning event, we identified the radial thread exhibiting the greatest vibratory amplitude 

in static state prior to movement onset and compared its spatial position to the spider’s turning angle. This 

analysis revealed a consistent correspondence: the location of peak vibration reliably predicted the 

direction of turning (Fig. 5b). In nearly all cases, the spider turned toward the radial thread carrying the 

strongest vibratory signal. 

These results indicate that spatially localized vibratory cues serve as directional guides during 

prey capture, suggesting that spiders extract positional information from the vibratory landscape of the 
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web. This spatial encoding of sensory input provides additional evidence for a dynamic sensorimotor loop, 

in which environmental signals not only elicit behavior but are actively interpreted through structured 

motor responses. Our findings underscore the importance of peripheral sensory dynamics in guiding 

closed-loop prey localization. 

Discussion 

Our study reveals that spiders implement predictive sensorimotor strategies during prey capture, 

relying on active sensing of web vibrations. By employing an unsupervised modeling approach, we were 

able to objectively identify discrete behavioral states within a continuous, wavelet-based behavioral space, 

achieving an impressive 83.4% accuracy when compared with human annotations. This level of fine-scale, 

10-millisecond resolution behavior is typically prone to biases introduced by subjective human labeling. 

While previous studies have proposed data-driven methods to identify behavioral motifs in animals—

such as stereotyped movements in flies26 and web-making behavior in spiders29, and hunting sequences in 

zebrafish30 —we extend these efforts by investigating a finer-timescale, continuous, vibration-evoked 

active sensing behavior. In addition, wavelet transforms captures temporal dynamics across multiple 

frequencies, offering a richer and more comprehensive representation of movement variability than 

postural space. 

Beyond behavioral identification, we introduced a novel sensorimotor transformation model that 

combines a Linear Filter Generalized Linear Model (GLM) with a Hidden Markov Model (HMM), 

enabling us to predict moment-to-moment behavior based solely on sensory input. This model 

demonstrated that features of fly-induced web-borne vibrations and fly velocities alone are sufficient to 

predict spider behavior, suggesting a strong coupling between environmental feedback and motor control. 

Notably, we simplified the elegant GLM-HMM framework developed by Calhoun et al.31 by estimating 

filters using a linear behavior-triggered average, along with an uncoupled GLM-HMM framework. Our 

linear filters show that spiders initiate crouching and shaking behavior when the vibrational power from 

prey, D. melanogaster, decreases. This approach offers several advantages, including simplicity, 
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computational efficiency, and ease of biological interpretation. Importantly, unlike more complex 

methods, this non-parametric approach avoids the issue of getting stuck in local optima, making it a 

robust and reliable solution.  

This dual-framework approach—first uncovering the structure of behavior, then linking it to 

sensory input—reveals that spiders encode and respond to vibratory cues in a temporally structured and 

context-dependent manner. We further demonstrate that spider’s crouching and shaking enhance sensory 

gain during the subsequent static phase, suggesting an active sampling strategy during prey capture. Our 

findings highlight a dynamic interplay between sensing and behavior, where spiders modulate their own 

movements to better interpret complex, fluctuating vibrational inputs. Future work may explore how 

spider sensory neurons encode different vibrational frequencies and amplitudes, and how these signals 

modulate downstream behavioral responses. 

A critical aspect of the spider’s sensory system lies in its ability to define web-borne prey signals. 

Previous studies have shown that prey signals typically span a broad frequency spectrum from 5 to 1000 

Hz. However, these investigations have primarily focused on airborne vibrations 20,32 or vibrations 

transmitted through rigid substrates, such as banana plants 33.  In contrast, entrapped insects in spider 

webs have been reported to produce low-frequency vibrations, typically in the range of 5–50 Hz 20,34. 

Most of this research has focused on vertical orb webs, such as those built by Nephila clavipes, by using 

laser Doppler vibometry —a technique that measures vibration at a single point. In our study, we use 

high-speed camera recording at 1000Hz with vision-based technique to measure both temporal and spatial 

vibration profile of entire web. Our results show that prey captured in the horizontal orb web of U. 

diversus also generated vibrations in the 2–50 Hz range. Importantly, by leveraging the high 

spatiotemporal resolution of our method, we found that radii with the greatest vibration amplitude is 

sufficient to predict spider’s orientation during prey localization. This finding extends our understanding 

of web-borne prey signals from the more commonly studied vertical orb webs to horizontal orb webs, and 

shed light on the underlying mechanisms of spider prey localization. 
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Our findings offer valuable biological insights into the spider's active vibration sensing during 

prey capture, while also providing computational models for behavioral discovery and sensorimotor 

transformations. These results draw parallels to active sensing strategies observed in animals such as 

bats35,36, rodents37, and weakly electric fish 38. They highlight the broader principle that robust behavioral 

sequences can be understood and predicted through an analysis of the sensorimotor loop, even in non-

model invertebrate systems. Overall, this work advances our understanding of the complex, adaptive 

nature of behavior in response to sensory inputs, with implications for both fundamental science and the 

development of robotics and artificial intelligence. 

 

Methods 

Animals 

Uloborus diversus were housed in an on-campus greenhouse at Johns Hopkins University. All 

animals were transferred to custom indoor habitats and kept on a 12 hr:12 hr light-dark cycle (15-30°C, 

50%–70% RH) at least a week before being used for behavioral experiments. Spiders were fed 

Drosophila melanogaster or Drosophila virilis once a week. Only adult females were used in this study as 

adult males do not build orb webs. 

Behavioral assay 

Adult females were placed in an arena with a 10 cm x 10 cm perimeter, coated with paper at the 

edges to encourage web-building. We used a ring of white light LED (Lite-On Inc., LTW-2S3D8) to 

illuminate spider silk. To increase imaging contrast, a high-absorption background material was placed 

below the behavioral arena (Acktar, Spectral Black Foil, SB-20x030-1-010). A Photron FASTCAM Mini 

UX100 high speed camera was set up on the top with a 16 mm fixed-focal length lens (Edmund Optics, 

#85-865) to record web vibration at 1000 Hz (1280 x 1024 pixel resolution). A side camera (BFS-U3-

16S2M-CS USB 3.1 Blackfly, 1440 x 1080 pixel resolution) with a 12 mm fixed-focal length lens 
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(Edmund Optics, #86-570) simultaneously recorded spider’s movements at 100 Hz. PFV (ver.3610) and 

SpinView (1.27.0.48) software were used to store the recordings in AVI format. 

Each web had two recordings: one control and one experimental. In the Drosophila vibration 

experiment, the control condition included an empty web, allowing us to measure baseline vibrations 

caused by air and terrestrial vibrations. The experimental condition included placing either Drosophila 

melanogaster or Drosophila virilis on the web to measure vibrations generated by prey movement. In the 

spider prey capture experiment, the control condition was of a live Uloborus diversus on the web without 

any perturbation. In the experimental condition, either D. melanogaster or D. virilis was introduced onto 

the web in the presence of the spider to record its behavioral response. 

 

Web annotation 

We manually annotate 91 spider webs with previously developed an in-house web-tracking 

Graphical User Interface (GUI)29. 80% of the web data was used for training, 15% for validation, and 5% 

for testing. For each web, we computationally deleted parts of spider web and repeated this process 30 

times, helping us to expand our dataset from 91 webs to 2821 webs (= 91 x 31). We train a U-Net26 to 

predict web structure with loss equal to 0.0475 and accuracy equal to 0.9821. 

 

Web vibration analysis 

To extract the frequency profile of the web, Fast Fourier transform (FFT) analysis was applied on 

pixel intensities along silk lines. The FFT, of a time series with length �, was defined as  

������  �  	 
������
�

���

�	


���� 

, where ���� is the discrete-time signal and � is the frequency bin index. The mean of FFT along all silk 

lines was computed to investigate whole web vibration.  
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To compare vibration patterns across all webs, we used signal-to-noise ratio (SNR) defined as 

�� �  ������������

��������
 

We also performed short-time Fourier Transform to investigate the temporal profile of web 

vibration. It was defined as  

�����, ��  �  	 
������
�

���

�	


��� � ��� · ���� 

, where ���� is the window function of length 400 samples, � is the frame index, and R=20 is the hop 

size (i.e., the step between adjacent frames).  

 

Prey regions of interest (ROIs) analysis 

To extract prey vibration on the web, we selected regions of interest around Drosophila. The 

prey's peripheral field radius was twice the radius of the ROI, excluding the central ROI. Both FFT and 

STFT along silk lines were calculated within ROIs and peripheral field for top camera recordings. For the 

side camera, FFT and STFT were computed based on the pixel intensities of the fly and silk within the 

ROIs and the peripheral field, respectively. 

Normalized STFT prey signal was defined as STFT within ROIs normalized by prey peripheral 

STFT. 

 

U. diversus’ joint wavelet analysis 

We used DeepLabCut25 to track 20 joints on spider’s anterior and posterior legs: body-coxa, coxa-

femur, femur-tibia, and tibia-metatarsus joints, as well as the tip of the tarsus. Since spiders primarily 

move along the horizontal plane, all horizontal coordinates were centered by subtracting each spider's 

centroid. Meanwhile, vertical coordinates were normalized by subtracting their mean value over time.  
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After centering joint coordinates, we then applied the Morlet continuous wavelet transform39 to 

capture spider movements.  

The wavelet transforms described by Berman et. al.39 was defined as follows: 

��,�������  �  1
√� � �������� � �

� �  �
�

��
, 

with 

��!�  �  "��/�
����
��/��� , 
where ���� is spider’s postural time series, �
 � 5 is a non-dimensional parameter, � is a point in time, 

and � is the time scale of interest as a function of frequency $: 

��$�  �  �
 �  %2 � �

�

4"$ . 

The power spectrum is: 

��, $;  ��  �  1
*���$�� +��� !,��������+ 

with the scalar function  

*���  �  "��/�

√2� 
�/����� #�$ ��
�!� . 

 

Finally, the frequency range used was between $��� � 0.1  and the Nyquist frequency ($��� �
50 Hz), with 50 frequencies space as follows: 

$� � $��� · 2� ���
���� %&'�

 ���
 ���   

 

Wavelet analysis was applied on 20 joints in 4 legs for each side camera recordings. The wavelet 

spectrum was therefore had a dimension of 20 joints - 50 frequencies - 2 coordinates (vertical and 

horizontal movements) for each video. 
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Stereotyped prey capture behavior motifs 

We observed strong correlations among the wavelet representations of all four legs, as well as 

significant dependence between vertical and horizontal components. Additionally, low-frequency 

wavelets were primarily associated with noise, such as air current perturbations on the web. To reduce 

dataset complexity, we focused our analysis on five joint wavelets in the vertical coordinate from the 

spider’s left anterior leg, using 25 frequencies ranging from 2.38 to 50 Hz. This resulted in a wavelet 

spectrum of dimensions 5 joints - 25 frequencies - 1 coordinate - 21 recordings. 

To identify stereotyped movements during prey-capture, we applied a Uniform Manifold 

Approximation and Projection (UMAP)27 for dimensionality reduction to five components, using 100 

neighbors. From the wavelet spectrum, we observed 3 different motifs: no movement (static), middle 

frequency movement (2.38-10 Hz; crouching), and high frequency movement (10-50 Hz). Therefore, - 

means clustering28 with 3 clusters was applied on UMAP to identify 3 different behavioral motifs. 

 

Unsupervised Hidden Markov Model  

To characterize spider prey-capture dynamics, we constructed a Hidden Markov Model with three hidden 

states, initializing the emission probabilities as multivariate Gaussian distributions based on the three 

motifs identified by K-means clustering. The transition matrix was randomly initialized. The model was 

then trained using the Baum-Welch algorithm, with a minimum of 50 and a maximum of 500 iterations. 

Note that true state labels were never used to train HMM. Therefore, the model is unsupervised.  

 

GLM-HMM 

The GLM–HMM framework was originally proposed by Calhoun et al.31. We introduced two key 

simplifications: First, the filters were estimated using a linear behavior-triggered average. Second, the 

HMM transition probabilities were fixed so the GLM component was fully independent of the HMM. 
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The inputs to the GLM were two sensory signals from Drosophila: the normalized short-time Fourier 

transform (STFT) of fly, and the fly’s vertical velocity. The STFT power was Z-scored to account for 

variation in lighting angles across flies, which can influence light intensity and STFT power. The vertical 

velocity signal was low-pass filtered using a 25 Hz Butterworth filter to reduce high-frequency noise. 

 

Instead of using an expectation-maximization algorithm to estimate sensory filters, we adapted the spike-

triggered average (STA) from the linear-nonlinear (LN) model to a behavior-triggered average (BTA), 

which provides a more simple, computationally efficient, and non-parametric method to estimate 

stimulus-response mappings for each state. The spider’s behavioral states were predicted using a joint 

wavelet Hidden Markov Model (HMM). The BTA was defined as the average of sensory inputs during the 

100-milisecond window preceding each behavioral state. Then, we took inner product of raw sensory 

inputs with linear filters from BTA and fit a logistic regression to estimate probability of each state.  

 

Finally, we simply took the state with largest probability from the GLM as the input to HMM. The HMM 

structure was the same as what we describe in the previous section. We estimated the initial emission 

probability based on GLM prediction and randomly initialized the transition probability. The model was 

then trained using the Baum-Welch algorithm, with a minimum of 50 and a maximum of 500 iterations. 

 

Reference 

1. Jakobsen, L., Olsen, M. N. & Surlykke, A. Dynamics of the echolocation beam during prey pursuit 

in aerial hawking bats. Proc Natl Acad Sci U S A 112, 8118–8123 (2015). 

2. Patterson, B. W., Abraham, A. O., MacIver, M. A. & McLean, D. L. Visually guided gradation of 

prey capture movements in larval zebrafish. J Exp Biol 216, 3071 (2013). 

3. Roemschied, F. A. et al. Flexible circuit mechanisms for context-dependent song sequencing. 

Nature 622, 794–801 (2023). 

4. Hindmarsh Sten, T., Li, R., Otopalik, A. & Ruta, V. Sexual arousal gates visual processing during 

Drosophila courtship. Nature 595, 549–553 (2021). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2025. ; https://doi.org/10.1101/2025.06.08.658484doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.08.658484
http://creativecommons.org/licenses/by-nc/4.0/


5. Schroeder, C. E., Wilson, D. A., Radman, T., Scharfman, H. & Lakatos, P. Dynamics of Active 

Sensing and perceptual selection. Curr Opin Neurobiol 20, 172–176 (2010). 

6. Nelson, M. E. & MacIver, M. A. Sensory acquisition in active sensing systems. J Comp Physiol A 

Neuroethol Sens Neural Behav Physiol 192, 573–586 (2006). 

7. Cellini, B. & Mongeau, J. M. Active vision shapes and coordinates flight motor responses in flies. 

Proc Natl Acad Sci U S A 117, 23085–23095 (2020). 

8. Rucci, M., Iovin, R., Poletti, M. & Santini, F. Miniature eye movements enhance fine spatial detail. 

Nature 447, 851–854 (2007). 

9. Johnson, M., Madsen, P. T., Zimmer, W. M. X., Aguilar De Soto, N. & Tyack, P. L. Beaked whales 

echolocate on prey. Proceedings of the Royal Society B: Biological Sciences 271, 383–386 (2004). 

10. Amichai, E., Blumrosen, G. & Yovel, Y. Calling louder and longer: How bats use biosonar under 

severe acoustic interference from other bats. Proceedings of the Royal Society B: Biological 

Sciences 282, (2015). 

11. Schnitzler, H. U., Moss, C. F. & Denzinger, A. From spatial orientation to food acquisition in 

echolocating bats. Trends Ecol Evol 18, 386–394 (2003). 

12. Wachowiak, M. All in a Sniff: Olfaction as a Model for Active Sensing. Neuron 71, 962–973 (2011). 

13. Stamper, S. A., Roth, E., Cowan, N. J. & Fortune, E. S. Active sensing via movement shapes 

spatiotemporal patterns of sensory feedback. Journal of Experimental Biology 215, 1567–1574 

(2012). 

14. Von der Emde, G. & Schwarz, S. Imaging of Objects through active electrolocation in 

Gnathonemus petersii. Journal of Physiology-Paris 96, 431–444 (2002). 

15. Deora, T., Ahmed, M. A., Daniel, T. L. & Brunton, B. W. Tactile active sensing in an insect plant 

pollinator. Journal of Experimental Biology 224, (2021). 

16. Prescott, T. J., Diamond, M. E. & Wing, A. M. Active touch sensing. Philosophical Transactions of 

the Royal Society B: Biological Sciences 366, 2989–2995 (2011). 

17. Staudacher, E. M., Gebhardt, M. & Dürr, V. Antennal Movements and Mechanoreception: 

Neurobiology of Active Tactile Sensors. Advances in Insect Physiology vol. 32 (2005). 

18. Arkley, K., Grant, R. A., Mitchinson, B. & Prescott, T. J. Strategy change in vibrissal active sensing 

during rat locomotion. Current Biology 24, 1507–1512 (2014). 

19. Possomato-Vieira, José S. and Khalil, R. A. K. & Modeling, O. 2. 0: E. S. E. and S. Whisking 

mechanics and active sensing. Physiol Behav 176, 139–148 (2017). 

20. Mortimer, B. A spider’s vibration landscape: Adaptations to promote vibrational information 

transfer in orb webs. Integr Comp Biol 59, 1636–1645 (2019). 

21. Barth, F. G. & Geethabali. Spider vibration receptors: Threshold curves of individual slits in the 

metatarsal lyriform organ. Journal of Comparative Physiology ( A 148, 175–185 (1982). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2025. ; https://doi.org/10.1101/2025.06.08.658484doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.08.658484
http://creativecommons.org/licenses/by-nc/4.0/


22. Klärner, D. & Barth, F. G. Vibratory signals and prey capture in orb-weaving spiders (Zygiella x-

notata, Nephila clavipes; Araneidae). Journal of Comparative Physiology ( A 148, 445–455 (1982). 

23. Corver, A. Sensorimotor dynamics of the web-making behavior of the spider Uloborus diversus. 

Preprint at https://jscholarship.library.jhu.edu/handle/1774.2/69441 (2024). 

24. Markow, T. A. & O’Grady, P. M. Drosophila Biology in the Genomic Age. Genetics 177, 1269–1276 

(2007). 

25. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep 

learning. Nat Neurosci 21, 1281–1289 (2018). 

26. Berman, G. J., Choi, D. M., Bialek, W. & Shaevitz, J. W. Mapping the stereotyped behaviour of 

freely moving fruit flies. J R Soc Interface 11, (2014). 

27. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for 

Dimension Reduction. (2018). 

28. Hartigan, J. A. & Wong, M. A. Algorithm AS 136: A K-Means Clustering Algorithm. Appl Stat 28, 

100 (1979). 

29. Corver, A., Wilkerson, N., Miller, J. & Gordus, A. Distinct movement patterns generate stages of 

spider web building. Current Biology 31, 4983-4997.e5 (2021). 

30. Mearns, D. S., Donovan, J. C., Fernandes, A. M., Semmelhack, J. L. & Baier, H. Deconstructing 

Hunting Behavior Reveals a Tightly Coupled Stimulus-Response Loop. Current Biology 30, 54-

69.e9 (2020). 

31. Calhoun, A. J., Pillow, J. W. & Murthy, M. Unsupervised identification of the internal states that 

shape natural behavior. Nat Neurosci 22, 2040–2049 (2019). 

32. Masters, W. M. Vibrations in the orbwebs of Nuctenea sclopetaria (Araneidae) - I. Transmission 

through the web. Behav Ecol Sociobiol 15, 207–215 (1984). 

33. Barth, F. G. A Spider’s World: Senses and Behavior. Springer, Berlin (2002). 

34. Landolfa, M. A. & Barth, F. G. Vibrations in the orb web of the spider Nephila clavipes: Cues for 

discrimination and orientation. J Comp Physiol A 179, 493–508 (1996). 

35. Jones, T. K., Allen, K. M. & Moss, C. F. Communication with self, friends and foes in active-sensing 

animals. Journal of Experimental Biology 224, (2021). 

36. Beleyur, T. & Goerlitz, H. R. Modeling active sensing reveals echo detection even in large groups 

of bats. Proc Natl Acad Sci U S A 116, 26662–26668 (2019). 

37. Mitchinson, B. et al. Active vibrissal sensing in rodents and marsupials. Philosophical Transactions 

of the Royal Society B: Biological Sciences 366, 3037–3048 (2011). 

38. Wallach, A. & Sawtell, N. B. An internal model for canceling self-generated sensory input in freely 

behaving electric fish. Neuron 111, 2570-2582.e5 (2023). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2025. ; https://doi.org/10.1101/2025.06.08.658484doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.08.658484
http://creativecommons.org/licenses/by-nc/4.0/


39. Berman, G. J., Choi, D. M., Bialek, W. & Shaevitz, J. W. Mapping the stereotyped behaviour of 

freely moving fruit flies. J R Soc Interface 11, (2014). 

  

 Acknowledgements 

We thank C. Li and E. Lin for helpful discussions and feedback. We are also grateful to A. Rabinovich, S. 

Gafrey, and T. Kolawole for their assistance in annotating spider joints. A.G. discloses support for the 

research of this work from NIH [R35GM124883], and NSF [2310707]. H.H. discloses support from The 

Ministry of Education (MOE) Taiwan Scholarship Program. 

Author Contributions 

H.H. and A.G. conceived and designed the research strategy. A.C. designed the experimental apparatus 

and wrote the web-annotation software. H.H. built the experimental apparatus and optimized the web-

annotation software. H.H. performed all experiments. H.H. and A.G. analyzed the data and prepared the 

manuscript. 

Data Availability 

All software written for this study can be found at 

https://github.com/GordusLab/spider_prey_capture_paper. 

 

Figure 1 | Web-borne vibrations induced by Drosophila melanogaster and Uloborus diversus. 

a, Schematic of the experimental setup for simultaneous recording of spider behavior and web 

perturbations. A ring of white LEDs illuminates the silk, while a high-speed top-view camera (1000 Hz) 

captures web vibrations and a side-view camera (100 Hz) records spider behavior. 

b, Example image showing annotated web architecture (green lines) used for vibration quantification. 

Scale bar = 1 cm. 
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c, Representative fast Fourier Transform traces of vibrations induced by D. melanogaster (magenta) and 

in the absence of the fly (control, black), revealing broadband low-frequency activity with power 

concentrated between 2–50 Hz. Bracket region denotes narrowband noise frequencies. 

d, Area under the curve (AUC) map demonstrates that vibratory signals are spatially localized around the 

position of D. melanogaster. 

e, Signal-to-noise ratio (SNR), calculated as the ratio of Fourier power in the experimental versus control 

conditions, across 12 independent webs, confirms consistent D. melanogaster-induced 2-50 Hz vibration. 

f, U. diversus actively generates web vibrations during prey capture, producing resonance with a 

fundamental frequency at 10 Hz. 

g, AUC maps during spider-induced vibrations reveal widespread vibratory activity across the entire web. 

h, SNR analysis of spider-generated vibrations shows consistent harmonic peaks across 12 independent 

webs, highlighting the structured and resonant nature of self-generated signals. 

Figure 2 | Unsupervised identification of spider prey capture dynamics during interactions with D. 

melanogaster using behavioral state modeling 

a, Overview of the behavioral analysis pipeline. (1) Side-view recordings were analyzed with 

DeepLabCut to track 20 leg joints. Diagram denotes the joints tracked. (2) Wavelet spectrograms were 

computed from five joints on the left anterior leg (left), with a magnified view of the red-highlighted 

segment (right). Ethogram above the spectrogram denotes behavioral states. (3) UMAP was applied to 

reduce the joint dynamics to five dimensions across 30 recordings (UMAP dimensions 1 & 2 are shown). 

(4) Unsupervised K-means clustering in the UMAP space identified three distinct behavioral clusters. (5) 

A Hidden Markov Model (HMM) was then trained using the cluster-derived probability distribution to 

model the emission probabilities. (6) The HMM predicted behavioral states across all 30 videos, 
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achieving 83.4% accuracy on 10 manually annotated sessions. Anatomical diagram: Co: Coxa, Tr: 

Trochanter, Fe: Femur, Pa: Patella, Ti: Tibia, Me: Metatarsus, Ta: Tarsus. 

b, HMM-inferred state transition probability matrix after removing self-transition. 

c, Time-normalized prediction accuracy of each state. Decreased accuracy is observed near state 

transitions, reflecting increased temporal uncertainty during behavioral switching. 

d, Bayesian Information Criterion (BIC) for HMMs with increasing numbers of hidden states. A sharp 

decrease from one to three states is observed, after which improvements plateau, supporting the selection 

of a three-state model. Dark grey circles represent individual sequences (30 videos). Data are presented as 

mean�±�s.d. (filled circles and bars). 

 

Figure 3 | Spider crouching and high frequency movements increase sensory stimuli power from 

Drosophila melanogaster. 

a, Schematic illustrating regions of interest (ROIs) used to extract vibratory signals from the 1000 Hz top-

view camera and behavioral states from the 100 Hz side-view camera. Area within the cyan circle was 

used to quantify the raw fly signal, which was normalized to signal between the magenta and cyan circles. 

b, Short-time Fourier Transform (STFT) power spectrum of the raw fly signal shows large amplitude 

fluctuations during spider movement, reflecting spider-induced web motion. 

c, STFT spectrum of the pure fly signal from the same recording as in b shows minimal power during 

spider turning, indicating passive fly movement. By contrast, crouching and static states are associated 

with elevated spectral power, suggesting active fly movement. 

d, Average short-time Fourier transform (STFT) power of pure fly signal across 12 top-view recordings 

reveals distinct spectral profiles across behavioral states.  

e, Example trace showing average raw and pure fly signal STFT power (0–30 Hz) from extended side-

view recordings. Pure fly signal power increases during static periods following crouching. 
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f, Quantification across 16 side-view recordings confirms consistent enhancement of low-frequency (0–30 

Hz) normalized pure fly signal power during static states following crouching. Shaded areas represent 

95% confidence intervals. 

g, Similar enhancement is observed during transitions from shaking to crouching, as predicted by the 

HMM. Shaded areas represent 95% confidence intervals. 

 

Fig. 4 | A sensorimotor model predicts spider behavioral states from prey-induced vibratory cues. 

a, Schematic of the GLM-HMM framework combining generalized linear models (GLMs) with hidden 

Markov models (HMMs) to predict spider behavior based on D. melanogaster-derived sensory input. The 

model incorporates two features extracted from Drosophila melanogaster: pure fly STFT power (magenta) 

and vertical fly velocity (red). To filter out noise in raw data, we estimate linear filters by using behavior-

trigger average (BTAs). Inner product of raw sensory data with linear filters are passed through a 

nonlinearity logistic regression, providing the probability of each state on a moment-to-moment basis. 

Finally, an HMM is applied to incorporate the history of movement. 

b, Behavior-triggered averages (BTAs) showing sensory input aligned to the onset of spider behavioral 

states (cyan: static, straw: crouching, and orange: high-frequency movement). Static state transitions are 

preceded by an increase in fly vibration amplitude, while crouching and high-frequency movements are 

preceded by decreases in vibratory power. Spider’s crouching were preceded by reductions in fly vertical 

velocity. 

c, Example behavioral state sequences predicted by the wavelet HMM, GLM, and GLM-HMM models. 

The GLM-HMM produced more temporally coherent predictions than the GLM. 
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d, F1 score comparison between GLM and GLM-HMM models across datasets (Mann–Whitney U test, 

p�=�0.5591; filled circles denote mean�±�s.d.), showing no significant difference in predictive 

accuracy. 

e, Time-normalized prediction accuracy of the GLM-HMM versus the wavelet-based HMM across 16 

video recordings. The GLM-HMM achieved 75.3% accuracy while maintaining interpretability of 

stimulus–behavior relationships. 

 

Figure 5 | Spatially localized vibratory cues guide spider orienting behavior. 

a, Schematic of analysis pipeline using top-view recordings to extract vibratory signals from individual 

radial threads prior to spider turning events (left). Pixel intensity changes were quantified to estimate 

vibratory input along each thread within the spider’s peripheral sensory field (right). Bracket indicates 

largest amplitude change in static state prior to turning. Ethogram denotes spider behavioral states. 

b, Across trials, the spider consistently turned toward the radial thread with the highest vibratory 

amplitude (p�=1.027�×�10-4, r�=�0.9289, slope�=�0.8943). A shaded area around the regression 

line represents the 95% confidence interval.  

Supplementary Fig. 1 | Validation of vibration quantification, comparison of prey-induced inputs 

across species, and assessment of spider responses 

a, AUC map of the high-frequency band (270–300 Hz) during a D. melanogaster trial reveals uniformly 

distributed power. 

b, STFT of the same high-frequency range shows temporally persistent, non-localized noise, suggesting 

non-biological origin. 

c, Body mass comparison between U. diversus, D. melanogaster, and D. virilis (n=12 in each group). 

One-way ANOVA reveals a significant main effect (F = 13.256, p < 0.0001). Post hoc Mann–Whitney U 
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tests indicate significant differences between U. diversus and D. melanogaster (p < 0.0001), and between 

D. virilis and D. melanogaster (p < 0.0001), but no difference between U. diversus and D. virilis (p = 

0.2315) or between two U. diversus groups (p = 0.3070). 

d, Representative FFT spectrum from D. virilis, showing broadband low-frequency web vibrations (2–50 

Hz), similar to D. melanogaster. 

e, AUC map along silk threads confirms that D. virilis-induced vibrations are spatially localized around 

the fly’s position. 

f, SNR comparison across 12 webs shows consistent low-frequency vibratory input from D. virilis 

relative to baseline. 

g, Representative FFT traces during U. diversus interaction with D. virilis, illustrating spider-generated 

harmonic vibrations in rare instances. 

h, AUC map from a D. virilis trial with spider-induced vibrations, showing widespread vibratory activity 

across the web. 

i, SNR of spider-generated signals during D. virilis trials, showing that harmonics are largely absent in 11 

of 12 webs. 

j, Quantification of vibratory power reveals that D. virilis generates stronger signals than D. melanogaster, 

despite similar spectral range. The solid line indicates the mean signal-to-noise ratio (SNR) across 12 

recordings; the shaded area represents the standard error of the mean (SEM). 

k, Total vibration power from both fly species in the presence of U. diversus. (Solid line: mean SNR; 

shaded area: SEM.) 

l, Response time of U. diversus when reaching D. melanogaster (28.79�±�4.12�s, mean�±�SEM) 

versus D. virilis (16.20�±�7.11�s, mean�±�SEM). A Mann–Whitney U test reveals a significant 

difference between groups (p = 0.0186). 
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Supplementary Fig. 2 | Joint kinematics and HMM-based behavioral state modeling during prey 

interactions with D. virilis 

a, Wavelet spectrograms from joints across all four legs show consistent dynamic signatures during prey 

capture, justifying the use of the anterior left leg as a representative input for dimensionality reduction 

and modeling. Ethogram above the spectrogram denotes behavioral states. Abbreviations: Co: Coxa, Tr: 

Trochanter, Fe: Femur, Pa: Patella, Ti: Tibia, Me: Metatarsus, Ta: Tarsus. 

b, Full state transition matrix with D. melanogaster interaction from the hidden Markov model (HMM), 

including self-transitions, reveals strong within-state persistence and structured inter-state transitions. 

c, ΔBIC relative to the previous model shows the greatest improvement between 1 and 3 states, with 

diminishing gains thereafter. Data are shown as mean�±�s.d. (filled circles and bars). 

d, ΔBIC from the best-fitting model per sequence shows that 1- and 2-state models perform poorly. ΔBIC 

plateaus beyond 3 states, supporting a three-state model. Dark grey circles represent individual sequences 

(30 videos). Data are shown as mean�±�s.d. (filled circles and bars). 

e, Joint wavelet data from D. virilis interactions projected into the D. melanogaster-derived UMAP 

embedding. 

f, Transition matrix from an HMM trained on D. virilis data within the shared UMAP space, revealing 

comparable transition patterns to the D. melanogaster model. Left: full transition matrix including self-

transitions. Right: normalized matrix with self-transitions excluded. 

g, Total counts of each behavioral state did not differ significantly between interactions with D. 

melanogaster and D. virilis (Mann–Whitney U test: static, p�=�0.3435; crouching, p�=�0.3639; high-

frequency shaking, p�=�0.4837). Data are shown as mean�±�s.e.m. (bars); colored circles represent 

the number of behavioral state occurrences in individual recordings. 
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h, Duration of each behavioral state was significantly shorter during D. virilis interactions (Mann–

Whitney U test: static, p�=�0.0091; crouching, p�=�0.0121; high-frequency shaking, p�=�0.0015). 

Data are shown as mean�±�s.e.m.; colored circles represent individual behavioral events. 

i, Dwell time analysis reveals a significantly shorter crouching state during D. virilis interactions 

(p�=�0.0217), while static and high-frequency shaking states showed no significant difference in decay 

constants between prey types. 

 

Supplementary Fig. 3 | Sensory feature selection and temporal window optimization for GLM-

based behavioral prediction. 

a, Classification performance of GLMs using different combinations of sensory features: (1) fly STFT 

power alone, (2) STFT power with vertical velocity, (3) STFT power with horizontal velocity, and (4) a 

three-feature model combining STFT power with both vertical and horizontal velocity. Performance was 

assessed using 25% held-out data and 250 bootstrap iterations (n = 1,000). Filled circles denote 

mean�±�s.d. A Kruskal–Wallis test revealed a significant difference among models (p�<�10-307). Post 

hoc Mann–Whitney U tests showed that the two-feature model (STFT + vertical velocity) significantly 

outperformed the single-feature model (p�<�10-307) and the horizontal velocity model (p�<�10-307), but 

did not differ significantly from the three-feature model (p�=�0.683). 

b, Classification performance of GLMs using different temporal window lengths for filter construction 

(50 ms, 100 ms, 250 ms, and 500 ms; filled circles denote mean�±�s.d.). Performance was evaluated as 

in (a). A Kruskal–Wallis test indicated significant differences across models (p�=�1.989�×�10-68). Post 

hoc Mann–Whitney U tests revealed that the 100 ms model significantly outperformed both the 50 ms 

(p�=�1.645�×�10-27) and 500 ms (p�=�1.265�×�10-54) models, and showed a modest but significant 

improvement over the 250 ms model (p�=�0.0008). 
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c, BTA filters estimated with alternative window lengths (left: 50�ms; middle: 250�ms; right: 500�ms) 

show similar structure to the 100�ms filter, demonstrating robustness of the sensory-behavior mapping. 
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