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Abstract
Objective
To develop a diagnostic model based on plasma-derived extracellular vesicle (EV) subpopu-
lations in Parkinson disease (PD) and atypical parkinsonism (AP), we applied an innovative
flow cytometric multiplex bead-based platform.

Methods
Plasma-derived EVs were isolated from PD, matched healthy controls, multiple system atrophy
(MSA), and AP with tauopathies (AP-Tau). The expression levels of 37 EV surface markers
were measured by flow cytometry and correlated with clinical scales. A diagnostic model based
on EV surface markers expression was built via supervised machine learning algorithms and
validated in an external cohort.

Results
Distinctive pools of EV surface markers related to inflammatory and immune cells stratified
patients according to the clinical diagnosis. PD and MSA displayed a greater pool of overex-
pressed immune markers, suggesting a different immune dysregulation in PD and MSA vs
AP-Tau. The receiver operating characteristic curve analysis of a compound EVmarker showed
optimal diagnostic performance for PD (area under the curve [AUC] 0.908; sensitivity 96.3%,
specificity 78.9%) and MSA (AUC 0.974; sensitivity 100%, specificity 94.7%) and good ac-
curacy for AP-Tau (AUC 0.718; sensitivity 77.8%, specificity 89.5%). A diagnostic model based
on EV marker expression correctly classified 88.9% of patients with reliable diagnostic per-
formance after internal and external validations.

Conclusions
Immune profiling of plasmatic EVs represents a crucial step toward the identification of bio-
markers of disease for PD and AP.
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To date, an effective causal treatment for Parkinson disease
(PD) is missing, and the diagnosis still relies exclusively on
motor symptoms that appear too late for a disease modifying
intervention.1 Hence, there is urgent need for biomarkers that
can stratify patients with PD for clinical trials. Furthermore,
the differential diagnosis between PD and atypical parkin-
sonisms (APs) like multiple system atrophy (MSA) is chal-
lenging.2 According to the misfolded protein aggregates
present in the brain, PD and MSA are collectively termed as
alpha-synucleinopathies and are distinct from AP with tauo-
pathies (AP-Tau).

Extracellular vesicles (EVs) are a heterogeneous population of
secreted membrane particles involved into physiologic cell-to-
cell communication and transmission of biological signals.
EVs are subdivided based on physical characteristics such as
size, into small (30–150 nm) and large (150–500 nm) vesi-
cles; members of the tetraspanin protein family (CD9, CD63,
and CD81) are considered specific markers of EVs.3 CNS
neurons release EVs4 able to cross the blood-brain barrier and
reach the peripheral blood.5 EVs express surface antigens,
which affect the cellular uptake and allow their tracking to the
cell of origin.6

So far, most of the studies on EVs in neurodegenerative
diseases focused on their possible role on transmission of
pathologic misfolded proteins and fewer on their functions
in cell-to-cell signaling. Indeed, immune system is involved
in PD, as demonstrated by neuroinflammatory changes in
brain histopathology as well as by elevated immune mark-
ers in peripheral blood, suggesting that immune system
may play a primary pathogenic role in PD.7,8 Therefore, we
hypothesized that circulating EVs carry important in-
formation on brain inflammatory immune response and
that their characterization can be exploited for diagnostic
purposes.

Methods
Study design
This was a cross-sectional, case-control study aiming (1) to
characterize distinctive EV subpopulations in plasma of pa-
tients with PD, MSA, and AP-Tau healthy controls (HCs) by
immunophenotyping 37 different membrane proteins using

an innovative flow cytometry multiplex bead-based
platform9,10; (2) to correlate the differential expression of
EV surface antigens to clinical scales of gravity; and (3) to
build diagnostic models based on distinctive EV surface
proteins through supervised machine learning algorithms.
Finally, because EVs are taken up by surrounding and distant
cells, we performed a functional evaluation of their protein
interactors with the purpose to highlight protein targets, bi-
ological pathways, and molecular functions potentially af-
fected in PD, MSA, and AP-Tau.

Subjects
Twenty-seven patients with idiopathic PD, 8 with probable
MSA, 9 with probable AP-Tau, and 19 age-matched HCs for
the PD group were consecutively enrolled from July 2015 to
January 2019. These subjects served as the training cohort for
the diagnostic model.

Patients were recruited from the movement disorders out-
patient clinic at Neurocenter of Southern Switzerland in
Lugano; HCs were recruited among patients’ partners. The
inclusion criteria for PD were (1) a definite clinical diagnosis
according to the UK Parkinson’s Disease Society Brain Bank
criteria for diagnosis1 and (2) no family history and no major
cognitive impairment or major dysautonomic symptoms in
the history. The inclusion criteria for AP were based on
published diagnostic criteria for MSA,11 progressive supra-
nuclear palsy (PSP),12 and corticobasal degeneration
(CBD).13 Each subject underwent blood collection and
clinical evaluation. Disease gravity was assessed by the Hoehn
and Yahr scale (H&Y) and Movement Disorder Society–
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
during the off stage; cognitive profile by the Mini-Mental
State Examination (MMSE) and Montreal Cognitive As-
sessment (MoCA); mood disorder by the Beck Depression
Inventory II (BDI-II) scale; REM sleep behavior disorder
(RBD) by the RBD screening questionnaire; and olfactory
function by Burghart Messtechnik GmbH (olfactory test).
Levodopa equivalent daily dose (LEDD) was calculated for
patients with PD and AP.14

Exclusion criteria were significant comorbidities: diabetes,
renal failure, thyroid pathology, vitamin B12 deficiency, HIV
infection, syphilis, coagulopathy, fever, acute or chronic in-
flammatory diseases, and tumors.

Glossary
AP = atypical parkinsonism; AP-Tau = atypical parkinsonism with tauopathies; AUC = area under the curve; BDI-II = Beck
Depression Inventory II; CBD = corticobasal degeneration; EV = extracellular vesicle; HC = healthy control; H&Y = Hoehn
and Yahr scale; KEGG = Kyoto Encyclopedia of Genes and Genomes; LEDD = levodopa equivalent daily dose; MCSP =
melanoma-associated chondroitin sulfate proteoglycan; MDS-UPDRS = Movement Disorder Society–Unified Parkinson’s
Disease Rating Scale;MFI = median fluorescence intensity;MoCA =Montreal Cognitive Assessment;MSA = multiple system
atrophy; nMFI = normalized median fluorescence intensity; NTA = nanoparticle tracking analysis; PD = Parkinson disease;
PPI = protein-protein interaction; PSP = progressive supranuclear palsy; RF = random forest; ROC = receiver operating
characteristic; TSG101 = tumor susceptibility gene 101.
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A separate cohort of 40 subjects (20 HC, 10 PD, 5MSA, and 5
AP-Tau) served as the validation cohort for the diagnostic
model (see below the paragraph “Diagnostic modeling and
validation in an external cohort”).

Standard protocol approvals, registrations,
and patient consents
Subjects were consecutively included in the NSIPD001 study,
according to the study protocol that was approved by the
Cantonal Ethics Committee. All enrolled subjects gave writ-
ten informed consent to the study in accordance with the
Declaration of Helsinki.

Blood collection and plasma preparation
Ten milliliters of blood were collected into anticoagulant
ethylenediamine tetraacetic acid (EDTA) tubes in the
morning after 4-hour fasting, and the following protocol was
performed to obtain plasma enriched in EVs15: fresh whole
blood was centrifuged for 15 minutes at 1,600g at 10°C to
eliminate cellular components. To further deplete platelets
and cellular debris, the supernatant was centrifuged 15 mi-
nutes at 3,000g at 4°C; then, 2 consecutive centrifuges were
performed at 10,000g for 15 minutes and 20,000g for 30 mi-
nutes at 4°C, allowing the elimination of apoptotic bodies and
larger EVs (figure 1A). The obtained plasma was aliquoted
and stored at −80°C. The storage period varied among sam-
ples according to the consecutive enrollment of subjects in the
study, between July 2015 and January 2019.

Nanoparticle tracking analysis
Nanoparticle concentration and diameter were measured by
NanoSight LM10 (Malvern Instruments, Malvern, UK)
equipped with a 405-nm laser and nanoparticle tracking
analysis (NTA) 2.3 software. One microliter of plasma was
diluted 1:1,000 in particle-free phosphate buffered saline.
Three consequent videos of 60 seconds each were acquired.
Minimum expected particle size, minimum track length, and
blur setting were set to automatic, and the detection threshold
was set to 4 to reveal all particles, as previously described.16

The particle concentration and the distribution graph of the
particle size were determined per each sample by averaging
the results from the analysis of 3 independent videos.

MACSPlex exosome assay and flow
cytometry analysis
The screening approach (MACSPlex Human Exosome Kit;
Miltenyi, Bergisch Gladbach, Germany) was previously
described.9,10 Briefly, it is based on 4.8-μm diameter poly-
styrene beads, labeled with different amounts of 2 dyes (phy-
coerythrin and fluorescein isothiocyanate), to generate 39
different bead subsets discriminable by flow cytometry analysis.
Each bead subset is conjugated with a different capture anti-
body that recognizes EVs carrying the respective antigen (37
EV surface epitopes plus 2 isotype controls). The list of 37
antigens is reported in table e-1 (links.lww.com/NXI/A293).
After beads + sample overnight incubation, EVs bound to beads
are detected by allophycocyanin-conjugated anti-CD9, anti-

CD63, and anti-CD81 antibodies (figure 1A). Plasma samples
(60 μL) diluted 1:2 in buffer solution were analyzed with the
MACSQuant Analyzer-10 flow cytometer (Miltenyi). Triggers
for the side scatter and the forward scatter were selected to
confine the measurement on the multiplex beads. A blank
control composed only by MACSPlex Buffer and incubated
with beads and detection antibodies was used to measure the
background signal. Each EV marker’s median fluorescence in-
tensity (MFI) was normalized to the mean MFI for specific EV
markers (CD9, CD63, and CD81) obtaining normalized MFI
(nMFI). All analyses were based on nMFI values. Samples were
analyzed blindly to the clinical diagnosis.

To test the reliability/specificity of MACSPlex Human Exo-
some Kit for EVs, we compared the procedure described above
with andwithout EV enrichment by ultracentrifugation, and we
found no differences between procedures (figure e-1, links.lww.
com/NXI/A293). Therefore, plasma samples were directly
processed without EV enrichment by ultracentrifugation.

Technical consistency and reproducibility of the assay were
confirmed by analyzing repeatedly the same sample and by
assessing plasma from the same subject at different time
points (figure e-2, links.lww.com/NXI/A293).

Western blot analysis
Western blot analysis was performed on 100 μL of plasma
samples incubated overnight with 5 μL of MACSPlex de-
tection beads at 10°C at 800 rpm. The next day, the un-
bounded fraction was discarded, and samples were lysed with
radioimmunoprecipitation assay buffer. Total proteins were
separated on a gradient sodium dodecyl sulphate-
polyacrylamide gel electrophoresis 4%–12% gel and trans-
ferred onto polyvinylidene difluoride membrane. The blot
was incubated with the following primary antibodies: anti-Alix
(rabbit polyclonal; Abcam, Cambridge UK, 1:1,000); anti–
tumor susceptibility gene 101 (TSG101) (rabbit polyclonal;
Abcam, 1:1,000); anti-CD81 (mouse monoclonal, Thermo
Fisher Scientific, Waltham, MA, 1:300); anti–apolipoprotein
A1 (APOA1) (rabbit polyclonal; Abcam, 1:300); and anti-
GRP94 (rabbit polyclonal; Abcam, 1:500).

Network analysis of EV surface markers’
protein interactors
Protein interactors of differentially expressed EV surface
markers were retrieved by Cytoscape PESCA plugin,17 and a
global Homo sapiens protein-protein interaction (PPI) network
of 1,588 nodes and 36,984 edges was reconstructed. For each
quantitative comparison (PD vs HC, MSA vs HC, AP-Tau vs
HC), a specific PPI subnetwork was built considering the first
neighbors of each EV surface protein. Each subnetwork was
analyzed at a topological level by Cytoscape Centiscape plu-
gin18; to select putative hubs and bottlenecks, we took into
account the network size, and only nodes with all Betweenness,
Bridging, and Centroid values above the average calculated on
the corresponding whole network were retained as previously
reported.19,20 At the same time, nodes belonging to each
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Figure 1 EV enrichment, MACSPlex exosome assay, and EV characterization

(A) Protocol for EV enrichment and MACSPlex exosome assay. Blood collected into anticoagulant EDTA tubes underwent serial centrifugation to eliminate
cellular components and larger EVs. Plasma sampleswere incubated overnight with dye-labeled capture beads coatedwith antibodies against 37 different EV
surface antigens. Detection antibodies against CD9, CD63, and CD81 were then added and incubated for 1 hour. After washing steps, samples were analyzed
by flow cytometry. (B) Nanoparticle concentration (N/mL plasma) by nanoparticle tracking analysis (NTA), stratified for diameter (smaller nanoparticles,
30–150 nm; larger nanoparticles 151–500 nm). (C) Mean median fluorescence intensity (MFI) for CD9, CD63, and CD81 at flow cytometry analysis. (D)
Correlation betweenmeanMFI of CD9−CD63−CD81 andN/mL by NTA: the regression line is reported in red, with 95% CI. (E)Western blot of samples fromHC,
PD, MSA, and AP-Tau subjects after immunocapturing comparedwith whole plasma (dilution 1:100), showing the presence of specific EVmarkers (CD81, Alix,
tumor susceptibility gene 101) and the absence of plasma contaminants (apolipoprotein A1, GRP94). Data are expressed asmedian and interquartile range; p
values < 0.05were considered significant (*p < 0.05, **p < 0.01, ***p < 0.001). AP-Tau = atypical parkinsonismwith tauopathies; EV = extracellular vesicle; HC =
healthy control; MSA = multiple system atrophy; PD = Parkinson disease.
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subnetwork were evaluated at a functional level by DAVID21

and the most enriched Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway databases. Molecular functions were
extracted; specifically,H sapiens set as background, count > 5
and p < 0.001, corrected by the Bonferroni test.

Statistical analysis
Statistical analyses were performed with IBM SPSS Statistics
22.0, PYTHON 2.7, and GraphPad PRISM 7.0a. Variable
distribution was assessed by the Kolmogorov-Smirnov test.
Normally distributed variables (age) were expressed as mean
± SD and analyzed by the 1-way analysis of variance test with
the post hoc Bonferroni test for multiple comparisons. Non-
normally distributed variables (disease duration, H&Y, MDS-
UPDRS, BDI-II, MMSE, MoCA, olfactory test, RBD, LEDD,
NTA, and MACSPlex analysis) were expressed as medians
and interquartile range and analyzed using the Kruskal-Wallis
test. Categorical variables (sex) were expressed as absolute
number and percentage (%) and analyzed by χ2 or Fisher
exact tests. Univariate logistic regression analysis was per-
formed to assess the ORs. Receiver operating characteristic
(ROC) curve analysis was used to evaluate the area under the
curve (AUC) and to compare diagnostic performances of
selected variables. The Youden index (J = Sensitivity +
Specificity − 1) was calculated to determine the cutoffwith the
greater accuracy. Correlations were evaluated by the Pearson
R test and regression curve analysis; correlations were con-
sidered strong for R between |1.0| and |0.5|, moderate be-
tween |0.5| and |0.3|, and weak between |0.3 and |0.1|. A
p value less than 0.05 was considered significant.

Diagnostic modeling and validation
Machine learning supervised algorithms are exploited in clinical
practice to formulate predictions of selected outcomes based
on a given set of labeled paired input-output training sample
data.22,23 The linear discriminant analysis was used to build the
3D canonical plot (figure 2B); canonical components 1, 2, and
3 were calculated from weighted linear combinations of vari-
ables to maximize separation between the 4 groups (HC, PD,
MSA, and AP-Tau); in the plot, each patient is represented by a
point, the center of the spheres indicates the mean of (ca-
nonical 1; canonical 2; canonical 3) for each diagnosis, and
spheres include patients with a linear combination coefficient
that falls within the mean ± SD (canonical 1 ± SD; canonical 2
± SD; canonical 3 ± SD). A diagnostic model was built through
a random forest (RF) classification algorithm on the training
cohort (n = 63); the algorithm created 20 different classifica-
tion trees with a maximumnumber of 8 splits for each tree. The
diagnosis derives from the outcome of each classification tree of
the RF: for example, if at least 11 of 20 trees of the RF predict
PD, the patient will be classified as PD. The model was vali-
dated by a leave-one-out algorithm (internal validation) and in
a different cohort (n = 40) (external validation). The leave-one-
out validation was used to exclude overfitting bias and to
evaluate generalizability of the model; briefly, the algorithm is
trained on n−1 patients (where “n” is the total number of
patients), and the remaining patient is used to test the model.

The test patient is then changed and accordingly the training
subgroup. The process is repeated a total of n times, with the
test patient rotating at each round and the remaining subgroup
used for model training. The external validation was performed
with the same RF model trained on the training cohort.

Data availability
The raw data that support the findings of this article are
available on request to the corresponding author.

Results
Demographic and clinical characteristics of
study groups
Demographic data and clinical assessments for each group are
summarized in table 1. TheMSAgroup included 4MSA-C and 4
MSA-P; the AP-Tau group included 6 patients with probable
PSP and 3 with possible CBD (table e-2, links.lww.com/NXI/
A293). Subjects with AP-Tau were significantly older than HC.
Sex ratio and disease duration did not differ across groups. It is
known that AP is characterized by a more aggressive disease
course than PD; indeed, MSA and AP-Tau had a more severe
disease gravity measured by the H&Y and by theMDS-UPDRS;
in addition, they displayed a higher cognitive impairment mea-
sured by the MMSE and MoCA. Finally, subjects with AP-Tau
resulted more depressed than PD as measured by the BDI-II.
LEDD was not different between groups of patients.

The PD group shows an increased number
of EVs
NTA showed that the PD group had the highest number of
nanoparticles/mL compared with HC and AP-Tau (p =
0.001) not with MSA, whereas no differences in diameter
were found between groups (figure 1B, table e-3, links.lww.
com/NXI/A293). Because NTA is not specific for EVs, we
used the MFI of CD9/CD63/CD81 (specific markers of
EVs) by flow cytometry analysis as a measure of EV con-
centration. MeanMFI of CD9/CD63/CD81 was significantly
higher in PD compared with HC (p = 0.023) and AP-Tau (p =
0.037) not with MSA (figure 1C). Importantly, meanMFI for
CD9/CD63/CD81 correlated with nanoparticle concentra-
tion obtained with NTA analysis (figure 1D).

EVs were furtherly characterized according to current stan-
dard guidelines.3 After EV immunocapture by MACSPlex kit
capture beads, we performed a Western blot analysis showing
the presence of EV-specific luminal markers (TSG101, Alix),
EV-specific tetraspanin (CD81), and the absence of con-
taminants (APOA1 and GPR94) (figure 1E). These results
confirm the presence of EVs and the absence of relevant
contamination in samples analyzed by flow cytometry.

EV surface antigen expression differs
between groups
Among the 37 EV surface markers, 17 resulted differentially
expressed between groups. Sixteen markers differed between
PD and HC: T-cell (CD4), B-cell (CD19), leukocyte (CD45),
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and antigen-presenting cell (CD1c) related markers, 8 involved
in cell adhesion (CD2, CD11c, CD31, CD41, CD42a, CD62,
CD146, and melanoma-associated chondroitin sulfate pro-
teoglycan [MCSP]), 3 in immune cell activation (CD25, CD40,
and CD209), and the molecules of major histocompatibility
complex class I human leukocyte antigen-ABC (HLA-ABC).

Twelve markers were different between MSA and HC: T cell
related (CD4), B cell related (CD19), involved in cell adhesion
(CD29, CD2, CD11c, CD31, CD42a, CD62, CD146, and

CD209), immune cell activation (CD40), and HLA-ABC. The
AP-Tau and HC groups differ for only 4 markers: CD25, CD31,
CD40, and CD42a. No significant difference was found between
the PD and MSA groups, whereas CD2 resulted different be-
tween PD and AP-Tau. CD2 and CD19 discriminated between
patients withMSA andAP-Tau. The nMFI of each EVmarker in
all groups is reported in table e-4 (links.lww.com/NXI/A293).

The heat map (figure 2A) built on the differentially expressed
EV markers highlighted HC as a homogenous group with

Figure 2 Differential expression of extracellular vesicle (EV)-surface markers

Patients’ stratification for diagnosis
and EV surface marker expression
(expressed as normalized median
fluorescence intensity [nMFI]). (A)
Heatmap representation of the 17 EV
surface markers differentially
expressed between patients with PD,
MSA, and AP-Tau and HCs (purple =
low nMFI, yellow = high nMFI). (B)
Canonical plot showing patients
according to the diagnosis: PD, red vs
MSA, orange vs AP-Tau, gray vs HC,
blue; themodel was built considering
the 37 EV surface markers analyzed
by flow cytometry. The axes of the
plot (canonical 1, canonical 2, and
canonical 3) were calculated from
weighted linear combinations of var-
iables to maximize separation be-
tween the 4 groups. Each subject is
represented by a point, and spheres
include patients with a linear combi-
nation coefficient that falls within the
mean ± SD (canonical 1 ± SD; canon-
ical 2 ± SD; canonical ± SD). AP-Tau =
atypical parkinsonism with tauo-
pathies; HC = healthy control; MSA =
multiple system atrophy; PD = Par-
kinson disease.
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Table 1 Demographic data and clinical scores

Variable HC [n = 19] PD [n = 27]

AP

Overall p
value

Pairwise comparisons

MSA [n = 8] AP-Tau [n = 9] HCvs PD
HC vs
MSA

HC vs AP-
Tau

PD vs
MSA

PD vs AP-
Tau

MSA vs AP-
Tau

Age (y) 61 ± 8.2 66 ± 11.8 68 ± 8.6 74 ± 5.2 0.013 0.556 0.729 0.008 1.000 0.184 0.924

Sex (ref. male) 10 (52.6%) 17 (63.0%) 2 (25.0%) 4 (44.4%) 0.279 — — — — — —

Disease duration (y) — 4.0 [2.0–8.0] 5.5 [1.3–7.8] 4.0 [2.5–5.5] 0.863 — — — — — —

H&Y — 2.0 [1.0–3.0] 5.0 [4.0–5.0] 4.0 [3.0–5.5] <0.001 — — — <0.001 0.001 1.000

MDS-UPDRS — 23.0 [13.0–34.5] 42.5 [38.0–43.0] 40.5 [28.8–81.5] 0.043 — — — 0.509 0.277 1.000

BDI-II — 5.0 [3.0–8.5] 8.0 [2.8–15.8] 14.5 [11.8–19.0] 0.008 — — — 1.000 0.012 0.682

MMSE — 30.0 [29.0–30.0] 26.0 [24.0–29.0] 26.0 [22.0–28.0] <0.001 — — — 0.049 0.002 1.000

MoCA — 27.0 [23.8–29.0] 24.5 [17.3–27.0] 20.0 [14.5–23.0] 0.016 — — — 0.955 0.041 1.000

Olfactory test — 7.0 [4.0–9.0] 9.0 [7.5–10.3] 7.0 [4.8–8.8] 0.131 — — — — — —

RBD — 3.0 [1.8–5.0] 3.0 [1.0–5.8] 3.0 [0.5–4.5] 0.875 — — — — — —

LEDD — 562.5
[202.5–737.5]

375.0
[108.0–375.0]

250.0
[100.0–452.0]

0.448 — — — — — —

Abbreviations: AP = atypical parkinsonism; AP-Tau = atypical parkinsonism with tauopathies; BDI-II = Beck Depression Inventory II; HC = healthy control; H&Y = Hoehn and Yahr scale; LEDD = levodopa equivalent daily dose;
MDS-UPDRS =Movement Disorder Society–Unified Parkinson’s Disease Rating Scale; MMSE =Mini-Mental State Examination; MoCA =Montreal Cognitive Assessment; MSA =multiple system atrophy; PD = Parkinson disease;
RBD = REM sleep behavior disorder screening questionnaire.
Clinical characteristics of patients with PD, MSA, and AP-Tau compared with HCs. p Values <0.05 were considered significant and shown in bold.
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relatively low expression of EV markers, in analogy to the AP-
Tau group, whereas PD and MSA were characterized by
higher levels of expression.

Furthermore, a linear discriminant analysis model based on
differential expression of all EV markers allowed the separa-
tion of subjects according to their diagnosis, as shown in the
canonical plot (figure 2B).

Protein network hubs and functional pathway
analysis of EV surface antigens
The most relevant interactors of differentially expressed EV
markers were selected by PPI network topological analysis in
terms of hubs. Hubs refer to proteins with the greater number
of connections within the cell or occupying crucial network
positions, suggesting therefore a critical role on the control of
information flow over the network.20,24 Analysis of hubs takes
account of networks size and only nodes with values above the
average normalization for the level of connections in the total
network are selected.19,20 Hubs for PD vs HC andMSA vs HC
comparisons were coincident (SP1, MSN, ITGB2, EZR,
C1QBP, and CARL), whereas the network on AP-Tau vs HC
showed a different set of proteins (FLNA, FN1, GP1BB,
HSPA4, NFKB1, STAT3, VIM, VWF, and YWHAZ) (figure 3,
A–C, table e-5, links.lww.com/NXI/A293). Similarities be-
tween PD and MSA were observed also in terms of pathways
and molecular functions (figure 3D, table e-6). Most repre-
sented KEGG categories included immune system, signal
transduction, endocrine system, and signaling molecules and
interaction. Except for the endocrine system, they were more
enriched in PD and MSA, suggesting potential stronger acti-
vation of immune response in these groups. Of note, FoxO
signaling pathway was higher in AP-Tau.

EV surface antigens correlate with cognitive
impairment and disease gravity in PD andMSA
In PD there was a negative correlation between CD25 and
MMSE and MoCa scores, a negative correlation between
CD146 and MMSE score, whereas CD62P directly correlated
with the BDI-II (figure 4, A–D). No significant correlations
were found between EV antigen’s expression and LEDD in
the PD and AP groups (table e-7, links.lww.com/NXI/A293).
In the MSA group, mean MFI for CD9, CD63, and CD81
inversely correlated with the MoCA, whereas nanoparticle
concentration directly correlated with the disease duration
and CD31 inversely correlated with the H&Y (figure 4, E–G).
No correlations were observed in the AP-Tau group
(table e-7).

Differential EV surface antigen expression and
diagnostic outcome
Univariate logistic regression analysis, allowing the assess-
ment of associations between each EV marker and the di-
agnosis, confirmed 11 EV surface antigens as potential
discriminants for PD diagnosis, 6 for MSA, and 3 for AP-Tau
(figure e-3, links.lww.com/NXI/A293). Among markers sig-
nificantly associated with the different diagnoses, CD1c,

CD11c, CD19, CD41b, CD45, and CD146 were exclusive of
the PD group; CD29 was exclusive for the MSA group. CD2
displayed the strongest association with the diagnosis of PD
(OR = 1.191) and MSA (OR = 1.256), whereas CD40 with
AP-Tau (OR = 1.131).

ROC curve analysis of EV surface antigens
shows best performance for MSA and PD
ROC curve analysis for all pathologic groups (PD, MSA, and
AP-Tau) vs HC confirmed a reliable diagnostic performance
of each single differentially expressed EV markers (figure 5,
table e-8, links.lww.com/NXI/A293). The linear weighted
combination of the 3 markers with the highest AUC showed
better diagnostic performance respect to single markers in all
groups. The combination of all EV surface markers in 1 single
compound marker showed a further diagnostic improvement
in the PD and MSA groups.

Random forest model discriminates the
different groups
An RF diagnostic model was built using the 17 surface anti-
gens differentially expressed in plasma-derived EVs. The
forest was composed by 20 different classification trees (a
representative tree is reported in figure 6A). The model dis-
criminated patients of the 4 different groups (HC, PD, MSA,
and AP-Tau) with high accuracy (88.9%): all subjects with PD
were correctly diagnosed, and 1 MSA and 1 HC were, re-
spectively, misdiagnosed as HC and PD, whereas among 9
patients with AP-Tau, 2 were predicted as HC and 3 as PD
(figure 6B). Subsequently, pairwise comparisons were per-
formed (figure 6, C–H). The RF model was validated by the
leave-one-out algorithm, which confirmed the generalizability
of the model and excluded overfitting bias (accuracy of in-
ternal validation 63.8%, with a 72.2%–91.5% range for pair-
wise comparisons). Finally, we validated our model in an
external cohort of 40 subjects: the overall accuracy was 77.5%,
resulting in the correct diagnosis of 31 of 40 subjects (figure 6,
I and J). The accuracy after external validation was consistent
with the one resulting from the internal validation, supporting
the reliability of the diagnostic model. Demographic data of
the external cohort were similar to those of the training cohort
and are shown in table e-9 (links.lww.com/NXI/A293).

Discussion
The major finding of this study consists in the setup of a
diagnostic model for the stratification of patients with PD and
AP, based on immunologic profiling of plasmatic EV subpop-
ulations, obtained from minimally invasive peripheral blood
sampling. We systematically evaluated the diagnostic perfor-
mance of differentially expressed EV antigens, and a diagnostic
model was built using supervised machine learning algorithms.
The model showed an overall reliable accuracy, correctly pre-
dicting patient diagnosis, with the best performance for the
diagnosis of PD (97.8%) and MSA (100%) vs HC. These
results were supported by ROC curve analysis on the com-
poundmarker, originated from the linear combination of all the
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Figure 3 Extracellular vesicle (EV) surface proteins upregulated in PD, MSA, and AP-Tau and functional evaluation of their
protein interactors

PPI network showing the first neighbors of each differentially expressed EV surfacemarker in (A) PD, (B) MSA, and (C) AP-Tau vs HC. (D) Kyoto Encyclopedia of
Genes and Genomes pathways enriched by considering the first neighbors of each EV surface protein in PD, MSA, and AP-Tau vs HC; DAVID database
background: Homo sapiens, gene count >5 and p < 0.001. AP-Tau = atypical parkinsonism with tauopathies; HC = healthy control; MSA = multiple system
atrophy; PD = Parkinson disease; PPI = protein-protein interaction.
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differentially expressed EV markers, showing very high sensi-
tivity and specificity for PD and MSA (AUC 0.908 and 0.974,
respectively). Previous works have explored the utility of EVs as
biomarkers for PD by quantifying brain-derived exosomes
(AUC 0.75–0.82)25 or by measuring specific target proteins
like alpha-synuclein (αSyn) orDJ-1 in plasma neuronal-derived
exosomes (AUC 0.654, 0.724).26 The combination of multiple
markers improved the diagnostic accuracy of neuronal-derived
exosomes as shown by a recent work on quantification of both
αSyn and clusterin differentiating PD from other proteino-
pathies and fromMSAwith high accuracy (AUC 0.98 and 0.94,
respectively).27

This analysis of multiple immune surface markers of circu-
lating EVs in PD and AP shows a high diagnostic perfor-
mance, likely due to the advantage of simultaneously profiling
several EV subpopulations. First of all, we demonstrated that
plasma EV concentration was higher in patients with PD.
Previous reports have shown that the total number and size of
EVs were not augmented in serum of PD,28 whereas a more
recent study demonstrated an increased number of plasmatic
brain-derived EVs in PD.25 Methodological factors such as
isolation/extraction and quantification of EVs explain these
differences. However, at the molecular level, it is recognized
that endosome/lysosome pathway is a common defective
pathway in sporadic and genetic PD,29 and EVs are generated
and secreted by the endosomal compartment called multi-
vesicular bodies by fusion with plasma membrane. The pro-
cess of EV secretion may be enhanced when there is an

inhibition of fusion of multivesicular bodies with lysosomes,
as expected in PD,30 so that an increased production of EVs in
PD is likely.

It is difficult to track the origin of EVs because the majority of
markers are shared by several cell types and virtually any cell can
release EVs in blood. In blood normally, a large number of EVs
arises from platelets, erythrocytes, however leucocytes, endo-
thelial cells, monocytes, neutrophils and lymphocytes may re-
lease EVs.31 The flow cytometry analysis demonstrated that 16
and 12 EV markers, related to immune cells, were upregulated
respectively in PD and MSA, only 4 in AP-Tau compared with
healthy condition. In particular, PD and MSA shared 11 EV
surface markers. Considering functions and roles of EV surface
markers analyzed in this study, this result favors the hypothesis
of a major, or at least different, immune dysregulation in PD and
MSA vs AP-Tau. Despite sharing several overlapping clinical
features, synucleinopathies and tauopathies are distinguished by
distinctive neuropathologic hallmarks: deposits of aggregated
αSyn (Lewy bodies) in neurons and in glial cells in the former
group and neurofibrillary tangles of Tau in the latter as shown
by immunohistological studies.32 Although inflammatory fea-
tures have been described in patients with both synucleino-
pathies and tauopathies, by PET studies,33–36 the pathways
activated are probably different. Animal studies have shown that
the neurotoxic effects of beta-amyloid aggregates in a model of
tauopathy (Alzheimer disease) are mediated via Toll-like re-
ceptor 4–dependent glial cell activation, while αSyn aggregates
in a model of PD, activated Toll-like receptor 2 independently

Figure 4 Correlations between clinical scales and extracellular vesicle (EV) surface marker expression

Correlations between EV surface markers normalized MFI, nanoparticle concentration (N/mL plasma), and clinical parameters in patients with Parkinson
disease (circles; A-D) and multiple system atrophy (triangles; E-G). The regression line is reported together with its 95% CI (dashed line). BDI-II = Beck
Depression Inventory II; H&Y = Hoehn and Yahr scale; MFI = median fluorescence intensity; MMSE = Mini-Mental State Examination; MoCA = Montreal
Cognitive Assessment; RBD = REM sleep behavior disorder screening questionnaire.
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Figure 5 Receiver operating characteristic (ROC) curve analysis of extracellular vesicle (EV)-surface markers

ROC curves identifying the best cutoff for each EV surfacemarker, discriminating pathologic groups fromHC. The referral line is reported in gray. (A) PD vs HC;
(B) MSA vs HC; (C) AP-Tau vs HC. In each plot, ROC curves for the combination of the 3 EV surface markers with the highest AUCs and for a compound EV
marker (linearweighted combination of all EV surfacemarkers differentially expressed for each comparison) are shown (black and red lines, respectively). The
tables provide asymptotic significance AUCwith 95% CI, sensitivity, and specificity on the compound EVmarkers. p Values < 0.05 were considered significant.
AP-Tau = atypical parkinsonismwith tauopathies; AUC = area under the curve; HC = healthy control; MSA =multiple system atrophy; PD = Parkinson disease.
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from Toll-like receptor 4.37,38 Moreover a recent multicenter
study has shown higher levels of CSF inflammatory biomarkers
in PDwith dementia andMSA compared with controls and not

in AP-Tau vs controls, plus thosemarkers correlated withmotor
and cognitive impairment.39 Likewise, our analysis showed a
moderate correlation between CD25, CD146, and cognitive

Figure 6 Random forest (RF) modeling to predict diagnosis and its validation in an external cohort of subjects

RFmodeling to diagnose patients based on the combination of the 17 differentially expressed extracellular vesicle surfacemarkers. (A) Representation of 1 of
the 20 different classification trees created by the algorithm to predict the diagnosis PD vs MSA vs AP-Tau vs HC (B–H). Confusion matrix reporting real and
predicted diagnosis, accuracy, sensitivity, specificity, and internal validation by the leave-one-out algorithm for each comparison (see Methods). (I) External
validation of the RF model; 40 patients were included in the analysis (20 HC, blue; 10 PD, red; 5 MSA, orange; 5 AP-Tau, gray). AP-Tau = atypical parkinsonism
with tauopathies; HC = healthy control; MSA = multiple system atrophy; PD = Parkinson disease.
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impairment in PD suggesting a link between inflammation and a
major cognitive decline: CD25 is a costimulatory molecule
supporting immune cell activation,40 and CD146 acts as an
essential regulator of pericyte–endothelial cell communication
in the blood-brain barrier and it has been identified as a potential
key therapeutic target for cerebrovascular disorders.41 In MSA,
the concentration of EVsmeasured byNTA and flow cytometry
analysis correlated with disease duration and cognitive impair-
ment. These findings favor the hypothesis of a perpetuation of
toxic effects by circulating EVs due to chronic immune activa-
tion, even if a compensatory/neuroprotective role of EVs
in response to the progressive neurodegeneration cannot be
excluded.

Among EV markers differentially expressed in PD, CD146
and MCSP are of interest because they have been associated
with melanoma and used for detection of circulating tumor
cells.42 Consistently, a link between PD and melanoma
has been supported by many epidemiologic studies, show-
ing that patients with PD have a higher incidence of this
tumor, even if the underlying pathogenic mechanisms are
unknown.43

The network analysis of potential interactors of EV surface
markers demonstrated that functional pathways and net-
work hubs in PD and MSA were coincident and different
from those of AP-Tau. Of interest, among hubs shared by PD
and MSA, we found SP1, a transcription factor playing a key
role in regulating neuroinflammation in MS.44 The most
represented KEGG pathways were immune system, signal
transduction, signaling molecules and folding, sorting and
degradation in alpha-synucleinopathies, whereas FoxO sig-
naling pathway and some pathways of the endocrine system
were higher in AP-Tau, matching with the relation that has
been found by many authors between endocrine signaling,
tauopathies, and FoxO.45,46 However, this exploratory net-
work analysis should be interpreted with caution because
AP-Tau had less differentially expressed EV markers, con-
sequently the smaller network was a limiting factor to re-
cover potential pathways and functions in tauopathies.
Anyhow, among the identified hubs, it has been encouraging
to find some of them described in the literature: cytoplasmic
protein NCK2 was recently described as a PD-associated
gene.47 Tyrosine-protein kinase Lyn (LYN), a specific hub of
MSA, was related to enhanced microglial migration by
αSyn.48 Of note, signal transducer and activator of tran-
scription 3 (STAT3), a specific hub of AP-Tau, has been
found to be a direct target of C3 and C3a receptor signaling
that functionally mediates Tau pathogenesis.49 However,
these network analyses are hypothetical, and further vali-
dation studies are required to assess their possible roles in
causing PD and AP.

Limitations of this study are the relatively low number of
subjects, especially in AP groups, and the inclusion of patients
only with long duration of disease: larger studies and inclusion
of different cohorts of patients, especially at early stages of

disease, are strongly recommended. Moreover, a customized
panel of EV surface proteins including CNS and microglia
markers would probably increase the diagnostic model. Fi-
nally, this is an antemortem study, and it lacks the diagnostic
confirmation of postmortem brain histopathologic analysis.

In conclusion, we systematically characterized circulating EVs
in plasma of patients with PD or AP. Several EV surface
antigens were differentially expressed and correlated with
disease gravity and cognitive impairment, suggesting EVs as
potential biomarkers of disease, also in clinical trials for
disease-modifying drugs. We propose a diagnostic model built
through supervised machine learning algorithms, based on
EV-specific signature, which was able to discriminate patients
with PD and MSA with high accuracy. Finally, we provided
internal and external validations of our model, confirming
reliable diagnostic performance.

This is a highly relevant result with a potential impact on
clinical practice, allowing with a noninvasive, low-cost blood
test to identify patients with PD and MSA. Furthermore, cir-
culating EV surface protein analysis can shed light on the dif-
ferential inflammation/immunity pathways involved in
protein aggregation–related neurodegenerative disease, to be
confirmed by functional analysis in experimental models of
diseases.
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