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Abstract

Visual acuity and contrast sensitivity progressively diminish with increasing viewing eccentricity. Here we evaluated how
visual enumeration is affected by visual eccentricity, and whether subitizing capacity, the accurate enumeration of a small
number (,3) of items, decreases with more eccentric viewing. Participants enumerated gratings whose (1) stimulus size was
constant across eccentricity, and (2) whose stimulus size scaled by a cortical magnification factor across eccentricity. While
we found that enumeration accuracy and precision decreased with increasing eccentricity, cortical magnification scaling of
size neutralized the deleterious effects of increasing eccentricity. We found that size scaling did not affect subitizing
capacities, which were nearly constant across all eccentricities. We also found that size scaling modulated the variation
coefficients, a normalized metric of enumeration precision, defined as the standard deviation divided by the mean response.
Our results show that the inaccuracy and imprecision associated with increasing viewing eccentricity is due to limitations in
spatial resolution. Moreover, our results also support the notion that the precise number system is restricted to small
numerosities (represented by the subitizing limit), while the approximate number system extends across both small and
large numerosities (indexed by variation coefficients) at large eccentricities.
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Introduction

Our visual abilities depend on viewing eccentricity. Visual

resolution is high for objects shown at the fovea, but falls

progressively in the periphery [1,2]. Notably, viewing eccentricity

effects are task-dependent. For example, motion detection [3,4]

and detection of closed contours [5], can be as good in the

periphery as in the fovea, but discrimination of phase ([6]; see also

[7]), mirror-symmetric objects [8] and position [9] declines

precipitously. Visual crowding (e.g., [10]) and slower reading

speed [11,12,13] in the periphery suggest that processing of

multiple elements might be particularly poor with eccentric

viewing. In the current study, we investigated how the apprehen-

sion of multiple elements via visual enumeration changes in

viewing eccentricity. We specifically evaluated whether viewing

eccentricity changes ‘‘subitization’’, the rapid apprehension of

small number up to 4 items [14].

Many studies have shown that quick enumeration of items is fast

and accurate for small numbers [15], but slow and inaccurate for

large numbers [16,17,18,19,20]. Subitization has been thought to

be the embodiment of the precise number system, which has

special status within small numerosities. The precise system is

thought to be distinct from the approximate number system,

which is often associated with large numerosities [21]. There have

been several theories of subitization, including the use of indexes

(in FINST) [19,20], polygon formation [18], memory capacity

[22] spatial frequency limits [16] and spatial similarities [23].

However, the idea that two separate cognitive mechanisms

underlie subitization and estimation is still debated [24,25]. Some

evidence suggests that the approximate number system operates

continuously across small and large numerosities in addition to the

precise number system that only operates across small numer-

osities (4 or fewer) [26]. Enumeration within and beyond the

subitizing limit is modulated by attention [26,27,28,29,30] and is

susceptible to the effects of adaptation [31]. Moreover for low

contrast stimuli, enumeration functions do not show a disconti-

nuity in accuracy [32]. Together, these results show large

attentional loads and high perceptual difficulty modulate that

subitization.

Here, we characterized enumeration functions for constant

sized stimuli (Experiment 1) and for stimuli that scaled with

viewing eccentricity (Experiment 2). Does subitizing capacity and

enumeration variability change with viewing eccentricity? Does

changing the stimulus size in proportion to viewing eccentricity

eliminate the enumeration inaccuracies and imprecision with

more peripheral viewing? If simple size scaling restores enumer-

ation functions to match data at near-fovea levels, then it would

suggest that decrements in enumeration performance with

eccentric viewing is due to insufficient resolution to detect

individual elements. Alternatively, if size scaling does not reduce

enumeration errors to near-fovea levels, then it would suggest that

in addition to poor spatial resolution, peripheral vision has unique

limitations in processing multiple elements. This study has

implications for visual disorders such as strabismus, a misalign-

ment of the eyes, which has been proposed to result in central

vision to be functionally similar to normal peripheral vision [33],

and macular degeneration, in which the visual periphery is used to

see due to a central scotoma.

We aim to extend a study by Parth and Renschler [34], which

used briefly presented dots organized in a linear array. In the
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current study, we displayed our elements along a circular path at a

single eccentricity to remove a confounding cue of length

differences. We also controlled for changes in brightness in our

display by using grating stimuli rather than dots at a single

luminance value.

Methods

Ethics Statement
The protocol for this study was approved by the Institutional

Review Board (IRB) at the University of South Carolina.

Participants signed an IRB-approved informed consent form

before experiments were conducted. Participation was voluntary;

course credit was given for participation.

Participants
Thirty-four undergraduates with normal or corrected to normal

vision were recruited via the psychology study participant pool at

the University of South Carolina. Nineteen students participated

in Experiment 1 and fifteen in Experiment 2.

Stimuli, Apparatus and Procedure
The stimuli were presented on a 210 Elo Touchscreen, using an

Apple MacMini desktop computer with Matlab software featuring

the Psychophysics Toolbox [35]. The stimuli were sinusoidal

gratings presented along 12 possible positions on a virtual circle at

viewing eccentricities of 2.25, 4.5, 6.75, 9, and 11.25 degrees on a

gray background (,42 cd/m2). The minimum distance, target-

center to target-center, between gratings at each eccentricity was

1.18, 2.36, 3.54, 4.71, and 5.89 deg respectively (Figure 1). The

minimum inter-target distance is sufficiently large to be outside of

spatial extent of visual crowding, which is about half of viewing

eccentricity [10]. In Experiment 1, the stimuli were 2 c/deg

gratings with a 0.5 deg Gaussian envelope. In Experiment 2, the

spatial frequencies of the gratings were 2.00, 0.86, 0.68, 0.55 and

0.47 c/deg, which corresponded to 0.50, 1.15, 1.48, 1.80 and 2.14

deg in size, the 1/e radius of the circular Gaussian envelope. The

stimuli scaled with viewing eccentricity using a magnification

factor, M [34]

M~M0(1z0:29Ez0:000012E3) ð1Þ

E represents eccentricity and M0 represents the size of the stimuli

at the smallest eccentricity used, 2.25 deg in this case. Although we

presented our stimuli along a circular array, we used a cortical

magnification estimate for the temporal visual field for simplicity.

In both experiments, the gratings were randomly oriented at 245

or +45 deg and had a Michelson contrast of 54%. Observers sat

57 cm away from the screen and binocularly viewed the stimuli for

50 ms. The task was to enumerate the gratings that were presented

on the screen: 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9. Responses were typed on

the keyboard. Correct answers were rewarded with a short beep.

Because of a response bias in which observers disproportionately

choose ordinal extremes, only data for 1–8 gratings were analyzed.

For Experiments 1–2, each observer was given 750 trials (50 trials

per block, 3 blocks per eccentricity, 5 eccentricities). Observers

performed 10 practice trials at 3.75 deg of viewing eccentricity at

200 ms presentation before the actual trials.

Results

To assess the effects of viewing eccentricity in enumeration, we

evaluated accuracy and variance of enumeration. In Experiment

1, element size did not vary with eccentricity, and in Experiment

2, element size scaled with eccentricity. For stimuli with constant

size in Experiment 1, the data show that enumeration becomes

more error prone with increasing eccentricity. However, a

subitizing capacity of about 2–4 items was generally preserved.

For stimuli that were scaled in size in Experiment 2, enumeration

functions were nearly identical across eccentricities, suggesting that

visual enumeration in the periphery is principally limited by spatial

resolution.

Overall performance
Proportion correct was plotted (Figure 2) as a function of

eccentricity. For each experiment, we conducted simple planned

comparisons of proportion correct at each number to the

proportion correct at 1 grating. Subitizing capacity was defined

to be the largest element number at which proportions correct did

not significantly deviate from the proportions correct at 1 element.

We noted subitizing capacities across viewing eccentricity to

determine whether the index of the precise number system is

mutable.

In Experiment 1, planned comparisons indicate that subitizing

capacities were, 3, 3, 3, 4 and 2 elements at 2.25, 4.50, 6.75, 9.00

Figure 1. Example stimuli. Fixate on the white square and enumerate the number of gratings in the periphery. Small gratings are harder to
enumerate than large gratings. Sizes were not scaled in Experiment 1 (left) but were scaled in Experiment 2 (right) according to a cortical
magnification factor. There are 8 gratings in both of these panels.
doi:10.1371/journal.pone.0020779.g001

Eccentric Enumeration
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and 11.25 deg eccentricities, respectively. Proportions correct at 1

element were significantly different from proportions correct at 4

elements at eccentricities of 2.25, 4.50 and 6.75 deg (p-

values,0.01), while proportions correct at 5 and 3 elements were

significantly different at 9.00 and 11.25 deg, respectively. We also

carried out an 8 (number) by 5 (eccentricity) within-subjects

ANOVAs. There were significant main effects of number, F(7,

126) = 104.216, p,0.001, and eccentricity, F(4, 72) = 66.127,

p,0.001, and interaction between them, F(28, 504) = 3.870,

p,0.001. These results suggest that the subitizing capacity

hovered around 3 elements across all eccentricities, but that

increasing viewing eccentricity decreased enumeration accuracies.

In Experiment 2, subitizing capacities were 4, 3, 2, 4, 3 elements

at 2.25, 4.50, 6.75, 9.00 and 11.25 deg eccentricities, respectively.

An 8 (number) by 5 (eccentricity) within-subjects ANOVAs show

no significant main effects of number, F(7,98) = 152.31, p,0.001.

However, there was neither a main effect of eccentricity, F(4,

56) = 0.899, p = 0.471, nor interaction between them, F(28,

392) = 0.884, p = 0.639. These findings indicate that scaling the

size of elements with eccentricity collapses the data into a single

enumeration function. Together, results from Experiments 1–2

show that the subitizing capacities are robust between 2 and 4

elements across viewing eccentricities (Figure 3). Moreover they

show that numerosity judgments in eccentric vision are limited by

spatial resolution.

Mean responses
To see how enumeration accuracy, precision and variability

changes with contrast, we also evaluated the mean and standard

deviation of the responses as a function of number of gratings for

each observer. We plotted mean responses as a function of

number across five eccentricities (Figure 4) for the two

Experiments.

In Experiment 1, mean responses generally followed element

numerosity, and slopes were close to the unit slope of 1 (from

0.92 to 0.67 in log-log coordinates). These responses showed

systematic deviations, decreasing in slope with increasing

eccentricity. We also plotted responses against element number

as a normalized ratio (response/element number) for transpar-

ency (Figure 5). If the mean response were equivalent to the

actual element number, there would be ratio of 1 (dashed line).

Above 1 represents overestimation, while below 1 represents

underestimation. We conducted an 8 (number) by 5 (eccentricity

within subjects ANOVA on log normalized responses. There

were significant main effects of number, F(7, 126) = 11.796,

p,0.001, and eccentricity, F(4,72) = 8.351, p,0.001, and

interaction between them, F(28, 504) = 3.256, p,0.001. With

increasing viewing eccentricity, observers tended to overesti-

mate numerosities below 2 and underestimate numerosities

above 2.

In Experiment 2, we conducted the same analyses. Responses as

a function of element number had slopes that ranged from 0.98 to

0.94 in log-log coordinates. An 8 (number) by 5 (eccentricity)

within subjects ANOVA on log normalized responses showed that

there were significant main effects of number, F(7, 98) = 13.921,

p = ,0.001, but no effect of eccentricity, F(4, 56) = 0.987,

p = 0.422, or interaction between them, F(28, 392) = 1.024,

p = 0.434. Normalized responses (Figure 5) exhibited tendencies

to overestimate numerosities at 1 element and underestimate

numerosities at 8 elements.

Figure 2. Proportion correct as a function of element number for stimuli with unscaled (Experiment 1) and scaled (Experiment 2)
sizes. Enumeration errors increased as viewing eccentricity increased in Experiment 1, but not in Experiment 2.
doi:10.1371/journal.pone.0020779.g002

Figure 3. Subitizing capacities as a function of viewing
eccentricity were generally flat for unscaled (Experiment 1)
and scaled (Experiment 2) stimulus sizes.
doi:10.1371/journal.pone.0020779.g003

Eccentric Enumeration
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The pattern of underestimation and overestimation across both

experiments echo the results from a previous study on the effects of

luminance contrast and enumeration [32], in which observers’

responses tended to peak between 2 or 3 gratings in the low

contrast conditions. The trend is similar in the current study. The

mean of the response distribution is 4.45, 4.40, 4.24, 3.98 and 3.65

in Expt. 1 and 4.47, 4,44, 4,42, 4,36 and 4,42 in Expt. 2 at 2.25,

4.50, 6.75, 9.00 and 11.25 deg eccentricities, respectively. These

data suggest that decreasing spatial resolution of the stimuli

decreased the central tendency of observer responses from the

veridical mean of 4.5 elements.

Notably, mean responses at 0 elements in Expt. 1 (not shown in

Figure 5) were, 0.20, 0.19, 0.43, 0.66 and 0.92 at 2.25, 4.50, 6.75,

9.00 and 11.25 deg eccentricities, respectively. Thus, responses at

0 elements also exhibited an overestimation that increased with

eccentricity: However accuracies were generally high: 0.94, 0.94,

0.88, 0.82 and 0.74 proportions correct at 2.25, 4.50, 6.75, 9.00

and 11.25 deg eccentricities, respectively. This trend suggests that

the overestimation at low numerosities was not due to a perception

of more numerous items, per se, but due to a few responses that

land on high numerosities.

Response variability
Variability is a metric that can assess the characteristics of the

approximate number system, and has been shown to follow the

rules of detection probability. Specifically, as more elements are

presented, response variability is predicted to decrease as a

function of the square root of the number of presented elements

[32,36].

Standard deviations of the responses were calculated for each

observer and the average standard deviation was plotted against

the number of gratings (Figure 6). The ratio of the standard

deviation and mean of the responses, the coefficient of variation,

was computed to determine whether variability scales with the

represented numerosity (Figures 7–8) [32,36]. If judging numer-

osity followed the predictions of feature detection and probability

summation, which is hypothesized to be linked to the approximate

number system, the coefficient of variation plotted as a function of

Figure 4. Mean response as a function of element number for stimuli with unscaled (Experiment 1) and scaled (Experiment 2) sizes.
Response accuracy decreased as viewing eccentricity increased in Experiment 1, but not in Experiment 2. Response accuracy also decreased with
increasing element number.
doi:10.1371/journal.pone.0020779.g004

Figure 5. Mean normalized response (mean response/element number) as a function of element number for stimuli with unscaled
(Experiment 1) and scaled (Experiment 2) sizes. Deviation from 1 (dashed line) represents inaccurate responses. Above 1 represents
overestimation while below 1 represents underestimation.
doi:10.1371/journal.pone.0020779.g005

Eccentric Enumeration
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element number would approach a log-log slope of 20.5 following

the properties of a binomial distribution [32].

In Experiment 1, variation coefficients were modulated by

viewing eccentricity in two ways. They increased in magnitude

and increased in slope as a function of element number (Figure 7).

Log-log slopes were 20.26, 20.39, 20.48, 20.44 and 20.54 at

2.25, 4.50, 6.75, 9.00 and 11.25 deg eccentricities, respectively.

These data show that with increasing eccentricity, variation

coefficients approached 20.5, the predicted slope from probability

summation, a feature of the approximate number system [32].

In Experiment 2, variation coefficients had log-log slopes of

20.09, 20.04, 20.09, 20.02 and 20.15 as a function of element

number at 2.25, 4.50, 6.75, 9.00 and 11.25 deg eccentricities,

respectively. These slopes were much shallower, and show less

modulation by viewing eccentricity than those from Experiment 1

(Figure 7). The shallow slopes of these variation coefficients were

similar to slopes obtained for high visible gratings [32]. Notably,

the magnitudes of the variation coefficient also did not vary with

viewing eccentricity.

Discussion

Collectively, these data suggest that (1) subitizing capacity is

robust to the effects of viewing eccentricity, and (2) increasing

eccentricity decreases enumeration accuracy and precision, but

that (3) scaling stimulus size with eccentricity recovers the loss in

enumeration performance.

Enumeration processes
Notably, the effects of viewing eccentricity on enumeration

functions of unscaled stimuli were very similar to the effects of

luminance contrast [32]. As was previously found, key character-

istics of enumeration functions were largely independent of

contrast: subitizing capacities were between 3–4 items, while the

log-log slopes of variation coefficients were negative, near 20.5.

Because we detected empirical discontinuities in accuracies

between small and large numbers, our results are consistent with

the dichotomy between the precise and approximate number

systems in enumeration functions. In contradistinction, negative

Figure 6. Mean standard deviation as a function of element number for stimuli with unscaled (Experiment 1) and scaled
(Experiment 2) sizes. Response precision decreased as viewing eccentricity increased in Experiment 1, but not in Experiment 2. Response precision
also decreased with increasing element number.
doi:10.1371/journal.pone.0020779.g006

Figure 7. Mean variation coefficients (standard deviation/response) as a function of element number for stimuli with unscaled
(Experiment 1) and scaled (Experiment 2) sizes. Variation coefficients increased as viewing eccentricity increased in Experiment 1, but not in
Experiment 2.
doi:10.1371/journal.pone.0020779.g007
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slopes that become steeper with viewing eccentricity in the

variation coefficients indicates that enumeration functions fol-

lowed the predictions of probability summation (see Appendix B,

[32]), and consistent with the idea that enumeration of small and

large numerosities follow a continuous function. Together, the

seemingly contradictory results from the analyses from the same

data set suggest that the precise representation of numerosity

supplements the approximate representation of numerosity:

Precise number system operate over small numerosities, while

the approximate number system operates spans both small and

large numerosities [21,32,37]. The layered relationship between

precise and approximate number systems is parsimonious with the

recent evidence that attention modulates numerosity judgments

within the subitizing range [26,27,28,29,30,31]. Large attentional

loads and high perceptual difficulty [32] reveal the extent of the

approximate number system to small numerosities in typical

adults.

Human neuroimaging work using fMRI and electrophysiolog-

ical data in non-human primates has also suggested overlapping

cortical mechanisms for enumerating small and large numbers.

Attentional load has been found to modulate the cortical activity to

small numbers in the right temporoparietal junction (rTPJ) [38].

In non-human primates, similar variability signatures for discrim-

inating small and large numerosities have been reported in single-

cell recordings in monkey prefrontal cortex and the intraparietal

sulcus [39], which is consistent with monkey behavior [40].

Other tasks and eccentricity
While this study is the first to have a comprehensive evaluation

of subitizing capacity, response accuracy and response precision in

visual enumeration as a function of eccentricity, our results match

the conclusions of Parth and Rentschler [34], which had used

briefly presented linear arrays of dots. They reported that a size

scaling using a cortical magnification factor accounts for

enumeration errors in the periphery when a length cue is available

to observers, but not when it is unavailable from flanking bars. In

the current study, we did not use distractors in order to control for

confounding cues from luminance and length, but we used grating

stimuli arranged in a circular array. Thus together with Parth and

Rentschler’s data [34], our results suggest that presence of

distractors disrupts size scaling in the periphery, not the absence

of length cues per se.

Along with other studies, we show that processing of multiple

elements in the visual periphery is not qualitatively different from

the visual fovea, with proper scaling of size and separation.

Reading, the ultimate functional demonstration of integration of

multiple elements, has been shown to be at a constant rate with

eccentricity when the span of visual crowding was taken into

account [13]; see also [11]. With cortical magnification scaling, the

eccentricity effect in visual search has also been reported to

disappear [41].

Relationship to atypical vision
While the current study characterizes enumeration in the

normal periphery, our results indicate that enumeration functions

strabismic vision may qualitatively differ [42]. In Experiment 1, we

show that the proportion correct at 1 element decreased as a

function of eccentricity (Figure 2), but subitizing capacity was

unaffected by eccentricity. However in strabismics, proportion

correct at 1 elements was reported to be unaffected by strabismus,

while subitization capacity decreases with strabismus (see Figure 2

in [42]). It remains to be tested whether the qualitative differences

between the enumeration functions under conditions of normal

eccentric viewing and strabismic vision are due to differences in

stimulus configuration (i.e. grid [42] vs. ring [32]). Amblyopia

associated with strabismus mainly affects foveal vision [43] and

seems to be an unlikely candidate for this difference. Rather, these

differences in enumeration functions might be due to cortical

abnormalities that developmentally arise from atypical visuospatial

experience in strabismic observers. It would be interesting to

evaluate visual enumeration abilities in age-related macular

degeneration, to determine how adult-onset retinal damage (and

plasticity involved in the development of a preferred retinal locus)

might affect apprehension of multiple elements. It is possible that

the perception of numerosity, particularly subitization, might be

compromised in atypical vision.

In summary, the objective of this study was to assess how

parametrically varying viewing eccentricity affects visual enumer-

ation. We found that subitizing capacity was generally unaffected

viewing eccentricity while variation coefficients had steeper

negative slopes with increasing viewing eccentricity. These results

confirm the separate representation of precise and approximate

number systems. However, they also support the notion that while

the precise number system is restricted to small numerosities

(represented by the subitizing limit) the approximate number

system extends across both small and large numerosities (indexed

by coefficients of variation) at large eccentricities. We also found

that scaling the size of the targets neutralized the inaccuracies and

imprecision associated with viewing eccentricity, suggesting that

spatial resolution is the limiting factor in enumeration in the

periphery.
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