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Training based on muscle-oriented repetitive movements has been shown to be beneficial for the improvement of movement
abilities in human limbs in relation to fitness, athletic training, and rehabilitation training. In this paper, a muscle-specific
rehabilitation training method based on the optimal load orientation concept (OLOC) was proposed for patients whose motor
neurons are injured, but whose muscles and tendons are intact, to implement high-efficiency resistance training for the
shoulder muscles, which is one of the most complex joints in the human body. A three-dimensional musculoskeletal model of
the human shoulder was used to predict muscle forces experienced during shoulder movements, in which muscles that
contributed to shoulder motion were divided into 31 muscle bundles, and the Hill model was used to characterize the force-
length properties of the muscle. According to the musculoskeletal model, muscle activation was calculated to represent the
muscle force. Thus, training based on OLOC was proposed by maximizing the activation of a specific muscle under each
posture of the training process. The analysis indicated that the muscle-specific rehabilitation training method based on the
OLOC significantly improved the training efficiency for specific muscles. The method could also be used for trajectory
planning, load magnitude planning, and evaluation of training effects.

1. Introduction

Rehabilitation robots that provide rehabilitation therapy
following neurological injuries, such as stroke and spinal
cord injury, have received increasing interest [1]. The
shoulder complex is one of the most complicated joints
in the human body, as it directly affects the performance
of the whole upper limb movement, including hand
manipulations. After suffering from a neurological disease,
the motor function of the human shoulder complex can
often face deterioration, and there is an increased risk of
spasticity; thus, a proper approach to motor function
training therapy is necessary. Previous studies have also
indicated that the use of rehabilitation robotics can pro-
vide a high-intensity, task-oriented, and highly repetitive
treatment in the impaired upper limb, which have all been
shown to be beneficial for the restoration of shoulder
function [2–8]. Rehabilitation robots can train patients’

limb movements in several ways by applying turnable
forces to patients. Training with active-resistance mode
rehabilitation robots can actively deliver resistance against
movements executed by the patient. Accurate rehabilita-
tion for human limb motor function has been widely
accepted and has become increasingly popular; accurate
rehabilitation requires both a higher level of control and
smarter robotic designs as well as increasingly accurate
models of the human motor system. However, the rehabil-
itation efficiency of current methods is still controversial
[9–11] because training methods are often based on the
clinical experience of the doctor or therapist who chooses
from standard menus and options rather than making pre-
cise decisions based on the actual situation present in the
patients’ limb [10, 12]. By contrast, most studies of reha-
bilitation robotics are focused on rehabilitating a whole
limb, so loads often cannot be applied to a specific muscle,
which is important in the rehabilitation training process
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because different muscles often have different levels of dam-
age, stiffness, or deterioration. To apply efficient and targeted
training to a specific muscle, Terashima et al. and Itokazu
et al. [13–15] proposed the concept of specific-muscle train-
ing for the upper limbs using optimization control of
patients’ neural network and via EMG feedback control
methods. The results showed that this training method aimed
at specific muscles maximized the training effect in target
muscles and simultaneously weakened the effects on other
muscles. However, their research was limited to cases of
small-scale movements within a single horizontal plane,
and the need for real-time EMG signals as an input value
has limited this method’s practicality.

Compared with most developers of rehabilitation robot-
ics, researchers in biomedical engineering have focused on
studying the physiological musculoskeletal model of the
human shoulder. For shoulder models, the typical represen-
tations of the muscles’ lines of action are the line-segment
model [11, 16–18] and more complex 3D finite element
model [19]. These models were intended to be used for sev-
eral purposes, such as surgical simulation [17], wheelchair
mechanics research [20, 21], neuroprostheses control [22,
23], and other similar applications. Most current studies
using a musculoskeletal model focus on joint-contact forces
and muscle moment arms. The direct purpose of these
studies was to reproduce and simulate the patterns of mus-
cle force generation. However, musculoskeletal models
based on the anatomical structure have not been adequately
or currently applied to rehabilitation robots [10, 24]. There-
fore, in this paper, a three-dimensional mathematical mus-
culoskeletal model [16, 25, 26] of the shoulder complex was
used to represent the relationship of muscles and external
loads. Based on this model, the static forces that acted on
all of the shoulder bones, including the humerus, scapula,
and clavicle as well as the muscles connected to these
bones, were analysed and calculated. Muscle activation
was proposed to measure the force exhibited by a certain
muscle undergoing an isometric contraction. The optimal
load orientation (OLO) for muscle rehabilitation was then
obtained according to the results of the calculated muscle
activation. Finally, a specific muscular rehabilitation train-
ing approach based on the optimal load orientation concept
(OLOC) was proposed.

Rehabilitation robots were controlled to apply forces to
each joint axis separately via intelligent application of the
exoskeleton mechanism. For a given rehabilitation move-
ment trajectory of the shoulder, the optimal load orienta-
tion of a specific muscle of the whole range of motion
(optimal load orientation cluster) was determined by calcu-
lating an inverse dynamic problem. Then, the shoulder
movement trajectory of rehabilitation was designed or
evaluated according to the optimal load orientation cluster
above. The results showed that training based on the OLOC
enhanced the activation of specific muscles and reduced the
activation of other muscles and thus enabled efficient train-
ing of specific muscles.

This paper also assessed the influence of the magnitude of
the external load on the training effects of OLOC training
through simulation testing.

2. Materials and Methods

When implementing active-resisted rehabilitation training for
an impaired shoulder using a robotic device, robots delivered
resistance against activemovements executed by the shoulder.

During shoulder movement, for a specific muscle, a
certain external load with different orientations leads to dif-
ferent muscle forces. Therefore, for a specific muscle, muscle
activation can be designed by controlling the orientation of
the external load.

2.1. Musculoskeletal Model of the Shoulder Complex. A three-
dimensional mathematical musculoskeletal shoulder model
[16, 25, 26] was used, as shown in Figure 1 [27], to repre-
sent the geometric architectural properties of the skeleton
and muscles of the shoulder. The geometric parameters
of the model were developed using CT images of bones
and muscles collected from the Visible Human Project
(VHP) database [25].

2.1.1. Skeleton Model. The shoulder skeletal structure consists
of the following bones: the thorax, clavicle, scapula, and
humerus, and the following joints: the sternoclavicular joint
(SC), acromioclavicular joint (AC), glenohumeral joint
(GH), and scapulothoracic joint (ST).

In this paper, a hybrid mechanism model was used to
simulate the structure of the skeletal system of the shoulder,
as depicted in Figure 2, where “1” represents the clavicle,
“2” represents the scapula, “3” represents the thorax, and

Figure 1: Visual representation of a musculoskeletal model of
the shoulder.
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Figure 2: Schematic diagram of the shoulder mechanism.
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“4” represents the humerus; point a represents the SC articu-
lation; b represents the AC articulation; c and d represent the
upper feature point and lower feature point of the scapula,
respectively; and e represents the midpoint of the EL (lateral
epicondyle) and EM (medial epicondyle) in the humerus.

Considering that translations are negligible compared
with rotations, the SC, AC, and GH joints were assumed to
be ball-and-socket joints. As an exception, the ST joint was
considered to be a joint that allowed the scapula translation
and rotator movement with respect to the thorax due to the
compliance of the surrounding muscles. The thorax was rep-
resented as an ellipsoid, as shown in Figure 2.

To describe and analyse the skeleton model above, every
bone is fixed to a coordinate system, as shown in Table 1. The
ISB standard recommended by Wu et al. [28] is widely used
in the field of biomedical engineering to describe the move-
ments of bones and joints in the human upper limb. The rela-
tionship between each coordinate system described in
Table 1 and its corresponding coordinate system recom-
mended in the ISB standard can be described by a rotation
transformation matrix.

2.1.2. Muscle-Driven Model and Muscle Activation. The eigh-
teen muscle groups associated with shoulder motion were
divided into 31 muscle bundles according to the results of
anatomical measurements of shoulder muscles performed
by Garner and Pandy [26], and these muscle bundles were
numbered from M1 to M31, as shown in Table 2.

To calculate the muscle force, each muscle bundle was
modelled as a 3-element Hill-type model that was widely
applied in muscle-driven simulations [29–32]. Four parame-
ters were used to represent each muscle’s force-generating
properties, including the tendon slack length (LTs ), pennation
angle (β), optimal muscle-fibre length (LMo ), and peak iso-
metric muscle force (FM

o ). The values of the parameters of
each muscle bundle are shown in Table 2 and were deter-
mined from the reports by Garner and Pandy [33] and Yana-
gawa et al. [34].

According to the Hill model, the actual muscle-fibre
length (LM) and isometric muscle force (FM) can be

calculated using the data presented in Table 1, and the total
muscle length L of the muscle bundle was determined in
the musculoskeletal model by the obstacle-set method pro-
posed by Garner and Pandy [26].

During shoulder movements, the muscle length changes
with bonemovements.When the shoulder is in a certain posi-
tion and posture, themuscles can exhibit contractions that are
considered isometric, so the actual muscle force F can change
while the muscle length remains unchanged. Muscle activa-
tion a is defined by the equation below to describe the force
state of a muscle during an isometric contraction:

a = F

FM , 0 ≤ a ≤ 1 1

When the actual force is maximum, F = FM and a = 1;
when the actual force is minimum, F = 0 and a = 0.

2.1.3. Musculoskeletal Model. Inside the human body, mus-
cles are often observed to be bar-like fibres and are con-
nected to the bones via tendons. Muscles will always
bypass some bones, joints, and surrounding tissue that
forms the muscle path that passes the origin, via point,
obstacle, and point of insertion [26]. Based on the skeletal
and muscle models depicted above, the muscle path was
determined using the obstacle-set method proposed by
Garner and Pandy [26]. Here, the data used in the
obstacle-set method, such as the position of the feature
points (origin point or insertion point) and type and size
of the obstacles, were determined from the results reported
by Garner and Pandy [16, 26], and all data were trans-
formed into the coordinate system that is described in
Table 1. Once the path of a muscle bundle was determined,
its total muscle length was determined. The actual muscle-
fibre length (LM) and isometric muscle force (FM) were
then calculated.

2.2. Static Analysis and Prediction of Muscle Activation.Mus-
cle activation a was used to describe the force condition of
the muscle bundles. In this paper, inertial forces were
ignored because the motion of the shoulder is slow; thus,

Table 1: Description of the reference frames of the shoulder.

Reference frame Description

Global coordinate S0
a − x0y0z0

The origin is located at point a on the SC articulation, and the axes x0,y0, and z0 are parallel to the coronal
axis, sagittal axis, and vertical axis of the human body, respectively.

Clavicle coordinate S1
a − x1y1z1

The origin is located at point a on the SC articulation. The z1 axis points to b from a along the clavicle axis,
and the x1 axis is located horizontally and perpendicular to the z1 axis. The y1 axis can be determined by the

right-hand rule.

Scapula coordinate S2
b − x2y2z2

The origin is located at point b on the AC articulation. The z2 axis points to c from b, and the x2 axis
is perpendicular to the z2axis and the scapular plane determined by b, c, and d. The y2 axis can be

determined by the right-hand rule.

Thorax coordinate S3
O − x3y3z3

The origin is located at point O, which is the centre of the thorax ellipse S3∣∣S0.

Humerus coordinate S4
e − x4y4z4

The origin is located at point e, which is the centre of GH articulation. The z4 axis points to e from f along
the humerus axis, and the y4 axis is perpendicular to the z4axis and the plane determined by e, EL, and EM.

The x4 axis can be determined by the right-hand rule.
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the shoulder could be considered to be in a situation of
static balance. Some multisolution static equilibrium prob-
lems were solved to calculate the muscle forces for each
prescribed posture of the shoulder under a certain external
load. Any shoulder bone is simultaneously affected by grav-
ity, joint force, joint torque, and muscle torque. The exerted
torque of a muscle on any shoulder bone could be deter-
mined by static analysis of the bone. Once the muscle tor-
ques were obtained, the static balance equations describing
the muscles were established and the activation of each
muscle bundle was calculated by solving the equations.

2.2.1. Static Analysis of Bones. The gravity of the bones and
muscles of the upper limbs was considered to be one force,
while the mass and centroid position of the upper limbs were
determined based on the results of anthropometrical data
from the study by Shan and Bohn [35]. When the shoulder
is in a certain posture, the static balance equations describing

the humerus, scapula, and clavicle can be established, and
then, the muscle input torques that are needed to drive each
bone can be calculated by solving the equations.

The humerus was analysed as an example. To indicate
the force between two bones, Fij was used to represent
the force that is applied to bone j by bone i (Figure 2).
The free body diagram of the upper limb bones is shown
in Figure 3, where mg is the gravitational force on the
upper limb, Fp is the external load, F24 is the force
applied to the humerus by the scapula, rm is the position
vector of the upper limb centroid, rp is the positioning
vector for the point where the external force is applied,
and Td is the input torque applied to the upper limb
produced by the muscles. Since the GH joint was assumed
to be a ball-and-socket joint, the joint torque applied to
the humerus by the scapula through the GH joint was
described as zero.

Table 2: Assumed musculotendon parameters of all 31 muscle bundles.

Number Muscle bundles Abbr. Vol (cm3) PCSA (cm2) LMo (cm) LTs (cm) FM
o (N) β (deg)

1 Subclavius SBCL 8.80 4.36 2.02 5.07 144.02 0

2 Serratus anterior superior SRAs 92.20 8.12 11.35 0.27 268.05 0

3 Serratus anterior middle SRAm 71.71 4.00 17.91 0.75 132.12 0

4 Serratus anterior inferior SRAi 194.65 8.41 23.15 0.01 277.51 0

5 Trapezius from cervical v1–6 TRPc 116.23 6.24 18.62 0.48 205.95 0

6 Trapezius cervical v7 TRPc7 77.49 3.61 21.44 0.60 119.25 0

7 Trapezius thoracic v1 TRPt1 66.92 3.45 19.37 0.32 114.01 0

8 Trapezius from thoracic v2–7 TRPt 197.25 12.40 15.91 0.42 409.23 0

9 Levator scapulae LVS 71.92 3.78 19.02 0.90 124.78 0

10 Rhomboid minor RMN 117.77 6.71 17.55 0.44 221.51 0

11 Rhomboid major thoracic v1–2 RMJt2 72.27 4.14 17.47 0.67 136.48 0

12 Rhomboid major thoracic v3–4 RMJt3 45.50 2.48 18.33 0.24 81.93 0

13 Pectoralis minor PMN 73.14 4.87 15.03 0.01 160.55 0

14 Pectoralis major clavicular PMJc 235.09 10.38 22.65 0.45 342.46 0

15 Pectoralis major sternal PMJs 243.34 14.68 16.58 9.03 484.35 0

16 Pectoralis major ribs PMJr 197.97 11.14 17.76 9.58 367.78 0

17 Latissimus dorsi thoracic LTDt 183.23 5.26 34.87 14.75 173.43 0

18 Latissimus dorsi lumbar LTDl 197.25 12.40 34.78 19.92 173.87 0

19 Latissimus dorsi iliac LTDi 183.23 3.80 48.17 10.89 125.52 0

20 Deltoid clavicular DLTc 123.48 8.41 14.69 1.64 277.48 0

21 Deltoid acromial DLTa 376.94 56.38 6.69 8.56 1860.52 0

22 Deltoid scapular DLTs 292.45 17.19 17.02 5.93 567.15 0

23 Supraspinatus SUPR 89.23 20.84 8.3 3.1 354.77 0

24 Infraspinatus INFR 225.36 33.32 6.76 5.58 1099.61 0

25 Subscapularis SBSC 318.52 35.69 8.92 4.94 1177.93 0

26 Teres minor TMN 38.70 6.77 5.72 4.55 223.35 0

27 Teres major TMJ 231.40 15.59 14.84 5.79 514.51 0

28 Coracobrachialis CRCB 80.01 4.55 17.60 4.23 150.05 0

29 Triceps brachii long head TRClg 290.67 40.52 15.24 19.05 629.21 15

30 Biceps brachii short head BICs 182.92 13.99 13.07 22.98 461.76 10

31 Biceps brachii long head BICl 182.92 11.91 15.36 22.93 392.91 10
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The value of each vector was determined in the global
coordinate S0. The joint force F24 and the input torque Td
were calculated by solving the static equilibrium equations

F24 + mg + Fp = 0, 2

Td + rm ×mg + rp × Fp = 0 3

Similarly, static analyses of the scapula and the clavicle
were completed using the same methods, which are shown
in Figures 4 and 5.

The static analysis described above gave the input torques
Ta, Tb, Tc, Td , TP, and T31 that were needed to drive the
bones when the shoulder was in a specific position and
posture was under a certain external load, and all of the input
torques were generated by shoulder muscles that are
connected to the bones.

2.2.2. Static Analysis of the Muscles. The input torque was
produced entirely by the muscle bundles attached to the
bones, so nine equations were established based on the
torque balance conditions of all 31 muscle bundles.

The literature shows that only when the real muscle-fibre
length is more than 1.5 times the optimal muscle-fibre length
LMo will the muscle lose its active function of contraction and
begin to generate passive force [33]. In this paper, the mus-
cles were in the normal stretching range and in a state of
active contraction, so the muscle force was always a tensile
force. Since the muscle paths were determined already in
the musculoskeletal model using the obstacle-set method,
the muscle line of action could be determined as well. There-
fore, the direction of the muscle force acting on a bone is
always from the feature point (origin point or insert point)
to the nearest via point.

Figure 6 shows the condition of the muscle forces on the
clavicle. The muscle bundles connected to the clavicle are
M1, M5, M14, and M20; among these, M14 and M20 are
connected to the clavicle at the origin point, while M1 and
M5 are connected to the clavicle at the insertion point. In
Figure 6, ai is the activation of the muscle bundle Mi; Fi

M

is the isometric muscle force of Mi; dpi is the vector from
point a to the origin point of Mi, dsi is the vector from point
a to the insert point of Mi; npi is the muscle force vector when
Mi is connected to the bone by the origin point, nsi is the
muscle force vector when Mi is connected to the bone by
the insert point, and npi and nsi can be determined using
the musculoskeletal model. Therefore, the actual muscle
force of Mi can be represented as aiFi

Mnpi when the feature

point of Mi was the origin point (M14, M20) or aiFi
Mnsi

when the feature point of Mi was the insertion point (M1,
M5). The input torque T31 of the clavicle, which had already
been calculated by the static analysis of the bones, was
entirely produced by the muscle bundles above, so the torque
balance equation could be given as follows:

〠
i=14,20

aiFi
Mdpi × npi + 〠

i=1,5
aiFi

Mdsi × nsi = T31 4

The muscle bundles connected to the scapula could be
analysed through the same process, as shown in Figure 7.
The muscle bundles connected to the origin point were
M21–M31, while the muscle bundles connected to the inser-
tion point were M2, M3, M4, andM6–M13. The input torque
Tp was entirely produced by these muscle bundles, so the tor-
que balance equation could be given as follows:

〠
31

i=21
aiFi

Mdpi × npi + 〠
4

i=2
aiFi

Mdsi × nsi + 〠
13

i=6
aiFi

Mdsi × nsi = TP

5

The muscle bundles M14–M31, which are connected to
the humerus, were analysed, as shown in Figure 8, where Si
was the adjacent feature point connected to the humerus.
All of the feature points of the humerus were at the insertion
point because the humerus is located at the end of the shoul-
der bones. The input torque Td was entirely produced by
these muscle bundles so the torque balance equation of the
muscles could be given as follows:

〠
31

i=14
aiFi

Mdsi × nsi = Td 6

By solving (4)–(6) simultaneously, nine equations were
established to calculate muscle activation ai (i = 1, 2,… , 31)
in all 31 muscle bundles, so these problems had multiple
solutions. According to the studies of Crowninshield and
Brand [36], minimizing the sum of the squares of all muscle
stresses was chosen as the objective function, so the multiso-
lution problem above was transformed into an optimization
problem with certain boundary constraints. The procedure
of the static optimization was implemented using the FMIN-
CON function in Matlab, and the optimal objective function

F12

F32c

Tp = Ta + Tb + Tc

F32d

F42

rs

r3

r1

b

e
c

d

Figure 4: Free body diagrams of the scapula.
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Figure 3: Free body diagrams of the upper limb.
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was given as follows, where PSCAi is the physiological cross-
sectional area of the muscle bundle Mi given in Table 1:

FUN = 〠
31

i=1

aiFi
M

PSCAi

2
7

The real-time physiological cross-sectional area of a mus-
cle bundle always changes during its contraction process,
while the muscle belly volume (Vol) can be considered to
be constant. A more appropriate optimal objective function,
therefore, could be given as follows, where LMi represents
the actual muscle-fibre length:

FUN = 〠
31

i=1

aiFi
MLMi

Voli

2
8

2.3. Algorithm of Optimal Load Orientation (OLO)

2.3.1. Definition of the Optimal External-Load Orientation.
The diagram of the upper limb under an external load FP
is shown in Figure 9. The force coordinate system xFyFzF ,
the origin of which was located at the midpoint of the EL
and EM, was parallel to the humerus’ frame of reference
xHyHzH , which was defined in [25]. The upper arm and
forearm were assumed to be relatively static, and the exter-
nal load that was considered to be a pure force was
assumed to be applied on the origin of the coordinate

system xFyFzF . During shoulder movement, only when
the direction of the external load FP was perpendicular to
the long axis of the humerus would the shoulder muscle
suffer the greatest load effect. Therefore, the external load,
the orientation of which was described by the angle α,
was assumed to be in the normal plane and was considered
to be perpendicular to the long axis of the humerus.

If a shoulder was moving under an external load with a
constant magnitude, the muscle forces would depend on
the posture of the shoulder and the orientation of the exter-
nal load. Therefore, for a specific muscle to be active in a
certain posture of the shoulder under a constant-sized
external load, there would always be a specific external-
load orientation that would lead to maximal muscle activa-
tion. This orientation of the external load was defined as
the optimal external-load orientation (αopt).

The x − α curve shows the relationship between the level
of muscle activation and the orientation of an external load.
For example, the curve of a deltoid acromial activation
(DLTa) with an external-load magnitude of 2.0 kg (approxi-
mately 20N) is depicted in Figure 10 (where an abduction
of 70 deg is performed). The activation plotted with a black
line was the result of low-pass filtering (using a moving aver-
age filter with the span of 15). [α1, α2] was the load orienta-
tion interval that located the activation level in the interval
range from 90% to 100% of its maximum. Thus, the midpoint
of the interval [α1, α2] was defined to be the optimal load ori-
entation of DLTa.

2.3.2. Algorithm Expressing the Optimal External-Load
Orientation. For a certain posture of the shoulder, this calcu-
lation results in αopt that varies with the magnitudes of FP in
several cases. For some shoulder postures, when the assumed

b

F21 r1
T31

F31

a

Figure 5: Free body diagrams of the clavicle.

Pi
aiFi

Mndi

aiFi
Mnsi

dpi

dsi

Si
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b

Figure 6: Free body diagram of the clavicle that considers
muscle forces.
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dpi

dsi

Si

aiFi
Mnsi

aiFi
Mndi

Figure 7: Free body diagram of the scapula that considers
muscle forces.
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Mnsi

Si

dsi

e

Figure 8: Free body diagram of the humerus that considers
muscle forces.
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value of FP was small, the x − α curves of some muscles
would appear to be impulse noise around its maximum.Due
to the small value of activation and narrow bandwidth of αopt,
calculated activations less than 0.02 were considered unreli-
able and discarded. For instance, the activation level of the
triceps brachii long (TRCl) head tended to be very low
(<0.02), with an abduction from 20° to 40°, with an external
load that was less than 2.5 kg (approximately 25N). With
the external load value increased to be greater than 2.5 kg,
the activation of TRCl became significant and an optimal ori-
entation cluster could be determined. Similar patterns hap-
pened with many other muscles, such as the supraspinatus,
teres major, and deltoid scapular. Additionally, when the
load value was assumed to be large, a well-distributed rela-
tively high activation level might appear in the x − α curves,
thus resulting in uncertainties relating to αopt. Different load
magnitudes could result in different distributions of αopt. The
analysis results showed that αopt changed with external-load
magnitude but did not change much in certain intervals of
external-load magnitudes (0.5~6.0 kg in this paper), which
means that the distribution of αopt has significant consistency
over a range of loads. To obtain more complete results, αopt
was calculated under different external loads (FP =0.5 kg,
1.0 kg,… , 6.0 kg), and the least squares-fitting result of αopt
values were calculated as the mean optimal external-load ori-
entation (M − αopt).

The flow chart shown in Figure 11 describes the algo-
rithm used to determine the optimal external-load orien-
tation. The x − α curve of a specific muscle under a
certain magnitude external load for a certain shoulder
posture was obtained through iteration, where the value
of αopt could be simultaneously determined. Another iter-
ation was then performed by changing the load magnitude
from 0.5 kg to 6.0 kg to calculate M − αopt. Finally, another
iteration was completed to obtain all of the values of M
− αopt present in the whole trajectory of a rehabilitation
movement (M − αopt cluster) by changing the shoulder
posture. The M − αopt clusters of all of the muscle could
be similarly determined.

2.3.3. OLOC Training Simulation and Evaluation of the
Training Trajectory. The weight-lifting abduction and
abduction with OLOC under the same magnitude of exter-
nal load were simulated to evaluate the effect of OLOC pre-
sented above to allow the promotion of the training
efficiency. The mean activation over different abduction
angles under a certain magnitude of external load was used
to represent the training efficiency in a specific muscle.

For a given rehabilitation movement trajectory, the train-
ing efficiency differences among different muscles were eval-
uated, and the applicability of the rehabilitation movement
for different muscles was also evaluated.

2.3.4. Influence of the Load Magnitude. Different muscles’
training effects are different in response to different load
magnitudes. To determine the response characteristics of
the external-load magnitude of the shoulder muscles, the
mean activations of each main muscle bundle under different
load magnitudes were calculated and compared.

To obtain the optimal load orientation cluster and
study the influence of the load magnitude, shoulder
abduction was simulated in the coronal plane from 20 to
80° with load magnitudes ranging from 0.5 kg to 6.0 kg,
and the results were analysed.

3. Results

3.1. Optimal External-Load Orientation. Despite different
distributions of αopt due to different load magnitudes for
a specific muscle, the results indicated a significant consis-
tency in the activations calculated under different magni-
tudes of external load. Figure 12(a) shows the αopt of
TRPc, DLTc, and DLTa under a series of load magni-
tudes. The grey circle shows the distributions of αopt,
and the solid line shows the M − αopt curve obtained by
regression fitting. The analysis suggested that within a cer-
tain range of loads, the distribution of αopt in these mus-
cle bundles showed good consistency and the values of
M − αopt were unique. The 3D representation of the M −
αopt results is shown in Figure 12(b), where the coordinate
system used in this figure coincided with the ground
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xH
zH

yH

yF

ZF

xF

Fp
𝛼

Figure 9: Schematic representing an external load applied to
the shoulder.
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reference described in [25]. The GH centre trajectory
(blue line), elbow movement trajectory (pink line), and
virtual long axis of the humerus (black dotted line) are
all vividly shown. The red line and arrow represent the
distribution of M − αopt. The distribution of M − αopt has
good continuity with the path of the elbow in space.

Like the three muscle bundles described above, many
other muscles’ M − αopt are distributed in a single region,

such as PMJs, DLTs, and SUPR. However, except for
scenarios involving a single region, there were also multire-
gion distributions for several muscles, including SRAm,
TRPt1, LTDt, TMJ, and TRClg, among others. Figure 13
shows the optimal load orientations of TMJ, where L1
and L2 were the two optimal orientation paths available
for selection obtained by regression fitting. In this range
of abduction, the muscle activation of TMJ caused by an

Input: musculoskeletal model of shoulder;
target muscle bundle Mi

Certain shoulder posture (abduction)

Certain external load magnitude (0.5~6.0 kg)

Certain load orientation a

Calculate the muscle activation ai

All load orientation a
have been analyzed?

All load magnitude
have been analyzed?

Analyze aopt of differerent
load magnitude by least
squares fitting method

Output 2: mean optimal
external load

orientation (M–aopt)

All shoulder postures
have been analyzed?

Output 3: M–aopt cluster
of Mi

End

no

Assume
next external load

magnitude

Assume next
shoulder
posture

Yes

Yes

no

Output 1: optimal
external load

orientation(aopt)

Assume
next a

no

Figure 11: Flowchart demonstrating the optimal external-load orientation algorithm.
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external load with the same magnitude along L1 or L2 had
no large difference (the difference is less than 10%). More-
over, the activations of TMJ performed uniformly during
an abduction from 20 to 32 degrees (region L3).

3.2. Active-Resisted Abduction with Loads Based on OLOC.
Figure 14 shows a comparison of the mean activations
for the main muscles of the shoulder obtained from a sim-
ulation of abduction with weight lifting of 3.0 kg that
would always apply a vertical force on the humerus and
abduction with OLOC under the same magnitude of load
(FP = 3 0kg). The results suggested that the muscle-
specific rehabilitation training method based on the OLOC
significantly promoted the training efficiency of specific
muscles (the average of the increased proportion of the

mean activation of all muscles was 537%, and the mean
activation of all muscles was promoted by 165%).

There were several muscles whose mean activations
were promoted more significantly, which included the
SRA (from 0.00 to 0.21), LTDc (from 0.02 to 0.26, pro-
mote 1640% relatively), TRP (0.04 to 0.37, 905%), TMJ
(0.11 to 0.67, 532%), LTDi (0.17 to 0.78, 361%), DLTa
(0.13 to 0.57, 325%), and SUPR (0.25 to 0.97, 280%).
There were some muscles whose promotion was only
moderately increased but was kept at a relatively high
level, including the RMN (75%), RMJ (99%), LTDt
(95%), and LTDl (68%). However, there were also
instances of an insignificant promotion of the mean acti-
vation, including the INFR (1.07%) and BICl (5.89%).
The results of this comparison indicated that there were
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Figure 12: Optimal external-load orientation distribution of some muscles.
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differences in the training efficiency among many muscles
for the same rehabilitation movement using the OLOC.

3.3. Evaluation of Rehabilitation Training Movements. In an
OLOC training movement of a certain trajectory, the mean
activations of different muscles were different. The differ-
ences in activation were governed by the movement trajec-
tories used in the shoulder’s rehabilitation. Figure 15 shows
the average activation of different muscles in OLOC train-
ing (abduction from 20 to 80 degree, FP = 3 0kg). The aver-
age activation is calculated by the mean activation and
standard deviation (SD), which is shown as error bars.

On average, there were several muscles whose activa-
tions were relatively high (>0 8), which included the RMN
(SD = 0 04), PMN (SD = 0 01), LTDt (SD = 0 08), LTDl
(SD = 0 03), SUPR (SD = 0 05), and TMN (SD = 0 01). These
muscles’ levels of training were much higher than those of the
others; thus, the results indicate that abduction as a reha-
bilitation movement was beneficial for the training of
these muscles. However, the effects of an abduction in
the coronal plane for the training of some muscles whose
activations were lower than 0.22 were ineffective, including
the SRA, INFR, and BICI, and of these, mostly the INFR
was most noteworthy (x = 0 15). Furthermore, considering
that a small external load is generally used in rehabilita-
tion training, the SRA, INFR, and BICI may not be
efficiently trained.

3.4. Influence of the Load Magnitude on the Effect of OLOC
Training. For the aim of practical applications, an appropri-
ate magnitude of external load must be determined before
planning the rehabilitation. Figure 16 shows the effect of
varying the magnitude of the external load of the mean
activations of the main shoulder muscles involved in
abduction with OLOC, and Figure 17 depicts the impact
of the load magnitudes on the mean activation for some
muscles more intuitively.

There were some muscles whose activations showed a
low level of activation when using a small load but experi-
enced a significant promotion with an increase in load
size, such as the SRA, DLTs, TRP, BICs, and other similar
muscles. For these muscles, a small increase in the load
could lead to a significant promotion in muscle activation.

Some muscles’ activations barely changed with the chang-
ing load magnitudes, such as the PMN, LTD, DLTc, and
DLTa, among others. For these muscles, the training levels
slowly promoted activity; thus, a change in the rehabilita-
tion movement should be considered for these muscles.
Therefore, when determining an external-load plan for
training a specific muscle, an appropriate choice should
be made between increasing the level of training and
reducing the value of the load.

4. Discussion

The overall aim of this study was to propose a muscle-
specific rehabilitation training method for the shoulder
based on the optimal load orientation concept (OLOC).
Biomedical engineering researchers developed human
musculoskeletal movement models to reveal and imitate
the structural characteristics and mechanisms that gener-
ate force in the musculoskeletal system. However, these
results have not currently been fully utilized in the reha-
bilitation robots’ field. Similarly, training strategies and
training trajectories are often based on the clinical experi-
ence of a doctor or therapist rather than making precise
decisions based on existing research results from a mus-
culoskeletal model, so the training effects cannot be guar-
anteed and can be difficult to quantify and evaluate.
Likewise, most of the rehabilitation robots designed to
rehabilitate human limbs are designed to train an entire
malfunctional limb rather than training specific muscles
in it. Different muscles have different situations related
to their damage, stiffness, or degeneration, so uniform
training cannot produce the best training effects. There
have been some studies on specific-muscle training [13–
15], but the current research has great limitations because
of the lack of use of the musculoskeletal movement
mechanism. Therefore, a rehabilitation training method
that is muscle-specific and based on the musculoskeletal
model is proposed in this paper to provide a basis for
the design of rehabilitation robots and further develop-
ment of training strategies. Muscle activation was used
in the musculoskeletal model to describe the force state
on a specific muscle, and the optimal load orientation
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was proposed and calculated to maximize the training
effect in some specific muscles.

The simulation results showed that training based on the
OLOC could significantly improve the training effects in spe-
cific muscles more than simple weightlifting training. This
method could be applied in rehabilitation robots designed
to achieve a specific-muscle training function, which may
significantly improve the practicality of using robots. This
method also provided a method for quantifying the training
effects on specific muscles during a given training process,
which could be used to evaluate training effects and trajectory
planning. For a specific muscle, an optimal rehabilitation
movement may exist and can theoretically be designed to
maximize the mean activation of the muscle.

Different muscles’ training effects were different in
response to different load magnitudes. The training effect
on some muscles increased significantly with an increased
magnitude of the external load, while the training effect in
other muscles was much smaller. Therefore, when designing
a rehabilitation training program for a specific muscle, a rea-
sonable choice should be made between raising the training
effect and reducing the external-load magnitude according
to its characteristics of how the training effect responds to
the external-load magnitude.

Bifurcation may occur to the spatial distribution of some
muscles, which may provide more possibilities for designing
rehabilitation robots and developing training strategies.

This paper focused on the analysis of shoulder muscles,
but the same methods could be used in other joints of the
human body as long as there is enough anatomical data.

Data Availability

Most of the parameters of the shoulder model could be found
in the website https://simtk.org/projects/dsem.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Project nos. 51475322, 51535008,
51775367, 51721003), the Tianjin Science and Technology
Committee Program (Grant no. 17JCZDJC30300), and the

1

0.8

0.6

0.4

M
ea

n 
ac

tiv
at

io
n

0.2

0

SR
A

TR
P

RM
N

RM
J

PM
N

PM
J

LT
D

t
LT

D
l

LT
D

i
D

LT
c

D
LT

a
D

LT
s

SU
PR

IN
FR

TM
N

TM
J

TR
Cl

BI
CS

BI
Cl

Figure 15: Average activations (mean± SD) of the main muscles.

1

0.8

0.6

0.4

M
ea

n 
ac

tiv
at

io
n

0.2

0

SR
A

TR
P

RM
N

RM
J

PM
N

PM
J

LT
D

t
LT

D
l

LT
D

i
D

LT
c

D
LT

a
D

LT
s

SU
PR

IN
FR

TM
N

TM
J

TR
Cl

BI
Cs

BI
Cl

1.0 kg
2.0 kg
3.0 kg

4.0 kg
5.0 kg
6.0 kg

Figure 16: Effect of varying the external-loadmagnitude of themean
activations of the main shoulder muscles (bundles or groups)
involved in abduction with OLOC.

1

SRA
DLTa

0.8

0.6

0.4

M
ea

n 
ac

tiv
at

io
n 

le
ve

l

0.2

0
0 1 2

External load (kg)
3 4 5 6

TMJ

PMN

BICs
TRP

Figure 17: Impact of load magnitudes on the mean activations of
some muscles.

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

SR
A

TR
P

RM
N

RM
J

LT
D

t

LT
D

l

LT
D

i

D
LT

c

D
LT

a

SU
PR

IN
FR TM

J

BI
Cl

M
ea

n 
ac

tiv
at

io
n

Abduction with weight
Abduction with OLOC

Figure 14: Comparison of the mean activations of the main muscles
predicted by simulating weight-lifting abduction (blue) and
abduction with optimal-orientation external load (orange).

11Applied Bionics and Biomechanics

https://simtk.org/projects/dsem


Programme of Introducing Talents of Discipline to Universi-
ties (“111 Program”) under Grant no. B16034.

References

[1] D. K. Zondervan, L. Palafox, J. Hernandez, and D. J. Reinkens-
meyer, “The resonating arm exerciser: design and pilot testing
of a mechanically passive rehabilitation device that mimics
robotic active assistance,” Journal of Neuroengineering and
Rehabilitation, vol. 10, no. 1, p. 39, 2013.

[2] J. Oblak, I. Cikajlo, and Z. Matjacic, “Universal haptic drive: a
robot for arm and wrist rehabilitation,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 18, no. 3,
pp. 293–302, 2010.

[3] S. Barreca, S. L. Wolf, S. Fasoli, and R. Bohannon, “Treatment
interventions for the paretic upper limb of stroke survivors: a
critical review,” Neurorehabilitation and Neural Repair,
vol. 17, no. 4, pp. 220–226, 2003.

[4] H. M. Feys, W. J. de Weerdt, B. E. Selz et al., “Effect of a ther-
apeutic intervention for the hemiplegic upper limb in the acute
phase after stroke: a single-blind, randomized, controlled mul-
ticenter trial,” Stroke, vol. 29, no. 4, pp. 785–792, 1998.

[5] R. Colombo, F. Pisano, S. Micera et al., “Robotic techniques for
upper limb evaluation and rehabilitation of stroke patients,”
IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering, vol. 13, no. 3, pp. 311–324, 2005.

[6] R. Riener, T. Nef, and G. Colombo, “Robot-aided neuroreh-
abilitation of the upper extremities,” Medical & Biological
Engineering & Computing, vol. 43, no. 1, pp. 2–10, 2005.

[7] D. J. Reinkensmeyer, J. L. Emken, and S. C. Cramer, “Robotics,
motor learning, and neurologic recovery,” Annual Review of
Biomedical Engineering, vol. 6, no. 1, pp. 497–525, 2004.

[8] P. S. Lum, C. G. Burgar, P. C. Shor, M. Majmundar, and
M. Van der Loos, “Robot-assisted movement training com-
pared with conventional therapy techniques for the rehabilita-
tion of upper-limb motor function after stroke,” Archives of
Physical Medicine and Rehabilitation, vol. 83, no. 7, pp. 952–
959, 2002.

[9] G. B. Prange, Rehabilitation Robotics: Stimulating Restoration
of Arm Function after Stroke, [Ph.D. Thesis], University of
Twente, Enschede, 2009.

[10] B. J. Fregly, M. L. Boninger, and D. J. Reinkensmeyer, “Person-
alized neuromusculoskeletal modeling to improve treatment
of mobility impairments: a perspective from European
research sites,” Journal of Neuroengineering and Rehabilita-
tion, vol. 9, no. 1, p. 18, 2012.

[11] F. C. T. van der Helm, “A finite element musculoskeletal model
of the shoulder mechanism,” Journal of Biomechanics, vol. 27,
no. 5, pp. 551–569, 1994.

[12] R. J. K. Vegter, J. Hartog, S. de Groot et al., “Early motor learn-
ing changes in upper-limb dynamics and shoulder complex
loading during handrim wheelchair propulsion,” Journal of
Neuroengineering and Rehabilitation, vol. 12, no. 1, p. 26,
2015.

[13] K. Terashima, T. Miyoshi, K. Itokazu, Y. Ueno, and
D. Watanabe, “Modeling and taylormade training method
using neural network for specific muscle of the upper limb,”
in 2014 14th International Conference on Control, Automation
and Systems (ICCAS 2014), pp. 762–767, Seoul, South Korea,
October 2014.

[14] K. Itokazu, T. Miyoshi, and K. Terashima, “Motion path
design for specific muscle training using neural network,”
Journal of Robotics, vol. 2013, Article ID 810909, 10 pages,
2013.

[15] K. Itokazu, T. Miyoshi, and K. Terashima, “Design and evalu-
ation of motion path for specific muscle strengthening using
neural network,” in 2013 9th Asian Control Conference
(ASCC), pp. 1–6, Istanbul, Turkey, June 2013.

[16] B. A. Garner and M. G. Pandy, “Musculoskeletal model of the
upper limb based on the visible human male dataset,”
Computer Methods in Biomechanics and Biomedical Engineer-
ing, vol. 4, no. 2, pp. 93–126, 2001.

[17] K. R. S. Holzbaur, W. M. Murray, and S. L. Delp, “A model of
the upper extremity for simulating musculoskeletal surgery
and analyzing neuromuscular control,” Annals of Biomedical
Engineering, vol. 33, no. 6, pp. 829–840, 2005.

[18] A. A. Nikooyan, H. E. J. Veeger, E. K. J. Chadwick,
M. Praagman, and F. C. T. van der Helm, “Development of a
comprehensive musculoskeletal model of the shoulder and
elbow,” Medical & Biological Engineering & Computing,
vol. 49, no. 12, pp. 1425–1435, 2011.

[19] J. D. Webb, S. S. Blemker, and S. L. Delp, “3D finite element
models of shoulder muscles for computing lines of actions
and moment arms,” Computer Methods in Biomechanics and
Biomedical Engineering, vol. 17, no. 8, pp. 829–837, 2014.

[20] F. C. T. van der Helm and H. E. J. Veeger, “Quasi-static anal-
ysis of muscle forces in the shoulder mechanism during wheel-
chair propulsion,” Journal of Biomechanics, vol. 29, no. 1,
pp. 39–52, 1996.

[21] L. H. V. van der Woude, H. E. J. Veeger, A. J. Dallmeijer, T. W.
J. Janssen, and L. A. Rozendaal, “Biomechanics and physiology
in active manual wheelchair propulsion,”Medical Engineering
& Physics, vol. 23, no. 10, pp. 713–733, 2001.

[22] J. G. Hincapie, D. Blana, E. K. Chadwick, and R. F. Kirsch,
“Musculoskeletal model-guided, customizable selection of
shoulder and elbow muscles for a C5 SCI neuroprosthesis,”
IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 16, no. 3, pp. 255–263, 2008.

[23] D. Blana, R. F. Kirsch, and E. K. Chadwick, “Combined feed-
forward and feedback control of a redundant, nonlinear,
dynamic musculoskeletal system,” Medical & Biological Engi-
neering & Computing, vol. 47, no. 5, pp. 533–542, 2009.

[24] F. Zhang, X. Wang, Y. Fu, and S. K. Agrawal, “A human-robot
interaction modeling approach for hand rehabilitation
exoskeleton using biomechanical technique,” in 2015 IEEE/
RSJ International Conference on Intelligent Robots and Systems
(IROS), Hamburg, Germany, September-October 2015.

[25] B. A. Garner and M. G. Pandy, “A kinematic model of the
upper limb based on the Visible Human Project (VHP) image
dataset,” Computer Methods in Biomechanics and Biomedical
Engineering, vol. 2, no. 2, pp. 107–124, 1999.

[26] B. A. Garner and M. G. Pandy, “The obstacle-set method for
representing muscle paths in musculoskeletal models,”
Computer Methods in Biomechanics and Biomedical Engineer-
ing, vol. 3, no. 1, pp. 1–30, 2000.

[27] E. K. Chadwick, D. Blana, R. F. Kirsch, and A. J. van den
Bogert, “Real-time simulation of three-dimensional shoulder
girdle and arm dynamics,” IEEE Transactions on Biomedical
Engineering, vol. 61, no. 7, pp. 1947–1956, 2014.

[28] G. Wu, F. van der Helm, H. E. Veeger et al., “ISB recommen-
dation on definitions of joint coordinate systems of various

12 Applied Bionics and Biomechanics



joints for the reporting of human joint motion—part II: shoul-
der, elbow, wrist and hand,” Journal of Biomechanics, vol. 38,
no. 5, pp. 981–992, 2005.

[29] F. E. Zajac, “Muscle and tendon: properties, models, scaling,
and application to biomechanics and motor control,” Critical
Reviews in Biomedical Engineering, vol. 17, no. 4, pp. 359–
411, 1989.

[30] B. Whiting, “Theoretical models of skeletal muscle: biological
and mathematical considerations,” Medicine & Science in
Sports & Exercise, vol. 31, no. 7, p. 1084, 1999.

[31] J. M.Winters and L. Stark, “Muscle models: what is gained and
what is lost by varyingmodel complexity,” Biological Cybernet-
ics, vol. 55, no. 6, pp. 403–420, 1987.

[32] M. Millard, T. Uchida, A. Seth, and S. L. Delp, “Flexing
computational muscle: modeling and simulation of musculo-
tendon dynamics,” Journal of Biomechanical Engineering,
vol. 135, no. 2, article 021005, 2013.

[33] B. A. Garner and M. G. Pandy, “Estimation of musculotendon
properties in the human upper limb,” Annals of Biomedical
Engineering, vol. 31, no. 2, pp. 207–220, 2003.

[34] T. Yanagawa, C. J. Goodwin, K. B. Shelburne, J. E. Giphart,
M. R. Torry, and M. G. Pandy, “Contributions of the individ-
ual muscles of the shoulder to glenohumeral joint stability
during abduction,” Journal of Biomechanical Engineering,
vol. 130, no. 2, article 021024, 2008.

[35] G. Shan and C. Bohn, “Anthropometrical data and coefficients
of regression related to gender and race,” Applied Ergonomics,
vol. 34, no. 4, pp. 327–337, 2003.

[36] R. D. Crowninshield and R. A. Brand, “A physiologically based
criterion of muscle force prediction in locomotion,” Journal of
Biomechanics, vol. 14, no. 11, pp. 793–801, 1981.

13Applied Bionics and Biomechanics


	A Muscle-Specific Rehabilitation Training Method Based on Muscle Activation and the Optimal Load Orientation Concept
	1. Introduction
	2. Materials and Methods
	2.1. Musculoskeletal Model of the Shoulder Complex
	2.1.1. Skeleton Model
	2.1.2. Muscle-Driven Model and Muscle Activation
	2.1.3. Musculoskeletal Model

	2.2. Static Analysis and Prediction of Muscle Activation
	2.2.1. Static Analysis of Bones
	2.2.2. Static Analysis of the Muscles

	2.3. Algorithm of Optimal Load Orientation (OLO)
	2.3.1. Definition of the Optimal External-Load Orientation
	2.3.2. Algorithm Expressing the Optimal External-Load Orientation
	2.3.3. OLOC Training Simulation and Evaluation of the Training Trajectory
	2.3.4. Influence of the Load Magnitude


	3. Results
	3.1. Optimal External-Load Orientation
	3.2. Active-Resisted Abduction with Loads Based on OLOC
	3.3. Evaluation of Rehabilitation Training Movements
	3.4. Influence of the Load Magnitude on the Effect of OLOC Training

	4. Discussion
	Data Availability
	Conflicts of Interest
	Acknowledgments

