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SUMMARY

Signaling through innate immune receptors such as the Toll-like receptor (TLR)/interleukin-1 

receptor (IL-1R) superfamily proceeds via the assembly of large membrane-proximal complexes 

or “signalosomes.” Although structurally distinct, the IL-17 receptor family triggers cellular 

responses that are typical of innate immune receptors. The IL-17RA receptor subunit is shared 

by several members of the IL-17 family. Using a combination of crystallographic, biophysical, and 

mutational studies, we show that IL-17A, IL-17F, and IL-17A/F induce IL-17RA dimerization. 

X-ray analysis of the heteromeric IL-17A complex with the extracellular domains of the IL-17RA 

and IL-17RC receptors reveals that cytokine-induced IL-17RA dimerization leads to the formation 

of a 2:2:2 hexameric signaling assembly. Furthermore, we demonstrate that the formation of the 

IL-17 signalosome potentiates IL-17-induced IL-36γ and CXCL1 mRNA expression in human 

keratinocytes, compared with a dimerization-defective IL-17RA variant.
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IL-17RA is the shared co-receptor for several IL-17 family members. Goepfert et al. show that 

IL-17 induces IL-17RA dimerization, which then drives the formation of a 2:2:2 hexameric 

signaling assembly with IL-17RC. Furthermore, IL-17RA dimerization potentiates IL-17 signaling 

in immortalized primary human keratinocytes, compared with cells expressing a dimerization-

defective IL-17RA variant.

Graphical Abstract

INTRODUCTION

The IL-17 family of pro-inflammatory cytokines is an important player in both adaptive and 

innate immunity (Gaffen et al., 2014; Veldhoen, 2017). The best characterized members to 

date are the homodimeric IL-17A, IL-17E (also known as IL-25), and IL-17F cytokines, 

which are produced by many cell populations of the innate immune system, notably in 

the skin, lung, and mucosal barriers, and contribute to the early inflammatory and innate 

immune responses against stress, injury, or extracellular pathogens (Cua and Tato, 2010). 

While IL-17E is also produced by effector T helper type 2 (Th2) cells and augments Th2-

type immune responses (Deng et al., 2021), IL-17A and IL-17F are the signature cytokines 

of Th17 cells that regulate the adaptive immune response to extracellular bacteria and fungi 

(Korn et al., 2009). Besides their normal physiological role, Th17 cells have been implicated 

in a broad range of chronic inflammatory diseases, autoimmune disorders, and cancers 

(McGeachy et al., 2019; Majumder and McGeachy, 2021; Chung et al., 2021). Recently, 
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several components of the Th17 pathway have been successfully targeted for therapeutic 

intervention, notably IL-17A and the IL-17RA receptor (Patel and Kuchroo, 2015; Beringer 

et al., 2016).

IL-17RA is shared by several IL-17 family members, including IL-17A, IL-17C, IL-17E, 

IL-17F, and the IL-17A/F heterodimer. Signaling through IL-17RA requires the formation of 

a heteromeric receptor complex with either IL-17RB (IL-17E), IL-17RC (IL-17A, IL-17F, 

IL-17A/F), IL-17RD (IL-17A), or IL-17RE (IL-17C). The exact composition of these 

signaling complexes has not been firmly established to date (Krstić et al., 2015). IL-17RA, 

IL-17RB, and IL-17RD have short extracellular domains (ECD), whereas IL-17RC and 

IL-17RE are so-called “tall” receptors (Goepfert et al., 2020; Skiniotis et al., 2005). The 

association of short receptors with tall receptors has been documented for other cytokines 

such as IL-6 and IL-23, both of which, however, use a tall receptor (gp130 and IL-12Rβ1, 

respectively) as shared receptor (Wang et al., 2009; Glassman et al., 2021).

All members of the IL-17 receptor (IL-17R) family are single-pass type I membrane 

proteins typified by an intracellular signaling motif, the SEFIR domain (Novatchkova 

et al., 2003). This domain shows some similarities to the Toll/IL-1R (TIR) domain 

found in Toll-like receptors (TLR) and IL-1 receptors (IL-1R) as well as in cytoplasmic 

adaptor proteins recruited by these receptors. Upon TLR/IL-1R receptor activation, the 

TIR domain mediates TIR-TIR homotypic interactions, resulting in the recruitment of TIR 

and death-domain (DD)-containing bifunctional adaptor proteins, which, in turn, drive the 

formation of large membrane-proximal complexes or “signalosomes” through subsequent 

DD-DD interactions (Ferrao et al., 2012). While IL-17 signaling does not involve any DD-

containing proteins, the SEFIR domain plays a similar role as the TIR domain in mediating 

the initial, membrane-proximal recruitment of the multifunctional adaptor protein, Act1, 

through SEFIR-SEFIR interactions (Chang et al., 2006; Qian et al., 2007). Act1 controls 

both the transcriptional as well as the post-transcriptional regulation of IL-17 responsive 

genes, by recruiting and activating different TRAF proteins (TRAF6, TRAF2), and also by 

directly interacting with RNAs (Li et al., 2019). According to a recent study, the IL-17A/

IL-17RA/IL-17RC heterotrimeric receptor recruits approximately six ACT1 molecules, 

which provide high-avidity docking sites for TRAF6 homotrimers (Draberova et al., 2020). 

Non-degradative K63-linked polyubiquitination of TRAF6 by Act1 leads to the recruitment 

of downstream adaptor (ABIN1, TAX1BP1, TANK, NAP1), effector (TAK1, LUBAC, 

NEMO/IKKα/IKKβ), and regulatory proteins (IKKε, TBK1, A20, Cullin1, β-TrCP1/2) and 

ultimately to the activation of the NF-κB and MAP kinase pathways (Amatya et al., 2017; Li 

et al., 2019; Draberova et al., 2020).

While the TLR/IL-1R superfamily and the IL-17R family are both playing an important 

role in the regulation of the innate and inflammatory immune response, our understanding 

of the architecture and assembly mechanism of the IL-17 signaling complex remains 

comparatively very poor.

Here, we report the crystal structure of human IL-17RA in the unliganded state and show 

the presence of a conserved IL-17RA dimerization interface, which has remained unnoticed 

thus far in all previously published IL-17RA-IL-17 (A, F, A/F) binary complexes. We also 
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disclose low-resolution crystallographic data on the extracellular portion of the IL-17A 

- IL-17RA - IL-17RC signalosome that firmly establish its composition and reveal that 

IL-17RA dimerization controls its architecture. Our structural inferences are corroborated 

by biochemical and biophysical studies of a dimerization-defective variant of IL-17RA. 

Using an IL-17RA knockout human keratinocyte cell line expressing either wild-type or the 

dimerization-defective IL-17RA mutant, we show that a functional consequence of IL-17-

induced IL-17RA dimerization is a lower threshold for IL-17-induced mRNA expression of 

the downstream effector cytokines IL-36γ and CXCL1.

RESULTS

The X-ray analysis of IL-17RA in the free state reveals IL-17-induced domain motions

The unliganded, full-length extracellular domain (ECD) of human IL-17RA was expressed 

in GnTI-deficient HEK293S cells, purified, crystallized, and its three-dimensional structure 

determined at 1.90 Å resolution by molecular replacement (Tables S1 and S2 and Figure 

1A). The IL-17RA ECD consists of two non-canonical fibronectin-III (FnIII) domains D1 

and D2 connected by an 18-amino acid linker comprising a short α-helix (Ely et al., 

2009). Previous X-ray analyses of IL-17RA binary complexes with IL-17F, IL-17A, or 

IL-17A/F have shown that both FnIII domains contact the cytokine through three main 

binding subsites, referred to as sites 1, 2, and 3 (Ely et al., 2009; Liu et al., 2013; Goepfert et 

al., 2017).

While the structures of IL-17RA in the free and cytokine-bound states are highly similar 

overall, unexpected structural changes within the amino-terminal FnIII domain (D1) as well 

as a change in the relative orientation of the two FnIII domains are revealed by the X-ray 

analysis of unliganded IL-17RA (Figure 1).

The linker region that connects the D1 and D2 domains appears to act as an elbow joint, 

allowing the fine adjustment of the relative orientation of the two FnIII domains in response 

to the various IL-17 cytokines. The corresponding elbow angle differs in the unliganded 

receptor and in the three known cytokine complexes (Figure 1B). In comparison to the 

ligand-free state, the binding of IL-17A, IL-17F, or IL-17A/F induces a rotation of the D2 

domain of about 23°, 19°, and 30°, respectively (Figures 1B and 1D). The first 13 residues 

of the linker are rigidified by a disulfide bridge (Cys185–Cys196). The joint region begins 

at the following residue, Met197 (numbering scheme based on Uniprot: Q96F46). The D2 

domain interacts with site 3, a surface binding site that comprises the C-terminal tail of 

one IL-17 (A, F, or A/F) subunit. The last five C-terminal residues, which are disordered in 

the free cytokines, adopt an extended conformation in the complex with IL-17RA and form 

sequence-independent, β-strand/ β-strand interactions with the D2 domain of the receptor 

(Ely et al., 2009; Liu et al., 2013; Goepfert et al., 2017). Together with the elbow motion of 

the receptor, the flexibility and the binding mode of the C-terminal tail of IL-17 (A, F, or 

A/F) ensure the formation of optimal interactions between the D2 domain of IL-17RA and 

its different ligands. In addition, the rotation of the D2 domain upon cytokine binding might 

play a role in the formation of the signaling-competent state.
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The D1 domain of IL-17RA undergoes cytokine-induced structural changes

The IL-17RA D1 domain interacts with IL-17 (A, F, or A/F) at two sites referred to as 

site 1 and site 2, both located at the cytokine dimer interface (Ely et al., 2009; Liu et 

al., 2013; Goepfert et al., 2017). While site 2 is largely preformed in the free cytokine, 

site 1 is a cryptic site that opens up upon receptor binding. Three receptor loops of the 

IL-17RA D1 domain, of which two play a role in cytokine binding at site 1 (A’A loop, 

residues 59–73, and FG loop, residues 166–174), are disordered in the free state (Figure 

1). Notably, the 58LDDSWI63 motif, which has been shown to provide critical binding 

interactions in site 1 (Ely et al., 2009; Liu et al., 2013; Goepfert et al., 2017), is disordered in 

the unliganded state. The side-chain of Leu58 is defined but pointing in a direction opposite 

to the cytokine-binding interface. In contrast, the CC′ loop (residues Leu117–Arg124) that 

inserts into site 2 is well-defined and in a conformation similar to that of the cytokine-bound 

state, albeit with a small (~1.5 Å) translational shift of its tip.

The X-ray structure of IL-17RA in the free state also reveals that the BC loop of the 

D1 domain (residues 102–109) adopts an extended conformation instead of the α-helical 

conformation seen in the three known cytokine complexes (Figures 1B and 1C). In free 

IL-17RA, this loop is flanked on either side by the disordered A’A and C’E loops and 

is stabilized in the crystal by contacts with the D2 domain of a neighboring IL-17RA 

molecule. Overall, it appears that IL-17 (A, F, or A/F) binding to IL-17RA induces a 

stable conformation for three flexible, disordered loops of the free D1 domain and that 

these structural changes are associated with a conformational switch of the BC loop from a 

random coil to an α-helical structure.

An IL-17RA dimer is present in all crystal structures of IL-17RA binary complexes

The BC loop mentioned above and the three disordered loops in the unliganded IL-17RA 

structure are involved in conspicuous crystal contacts that are consistently found—but have 

been overlooked thus far—in the binary complexes of IL-17RA with IL-17A, IL-17F, 

and IL-17A/F, despite different crystallization conditions, unit cell dimensions, and crystal 

symmetries (Ely et al., 2009; Liu et al., 2013; Goepfert et al., 2017) (Figure 2). These 

crystal contacts form an IL-17RA homodimerization interface of about 750–820 Å2 that is 

only absent in the crystal structure of the free IL-17RA receptor reported here. We used the 

EPPIC protein-protein interface classifier (Duarte et al., 2012) to investigate its potential 

biological relevance. This method analyzes evolutionary pressure on interface residues 

using closely related homologs to distinguish mere crystal lattice contacts from biologically 

relevant interfaces. When applied to the three available IL-17RA binary complexes, EPPIC 

consistently classified the IL-17RA - IL-17RA dimer interface as biologically relevant and 

identified residues Thr69, Thr102, Asp103, Ala104, and Ser105 as core interface residues 

with very low sequence entropy, based on a sequence alignment with 78 close homologs 

(sequence identity >60%) (Tables S3 and S4 and Figure S1). This prediction, combined 

with our structural observation that the A’A, C’E, FG, and BC loops did not have the 

conformation required for homodimerization in the unliganded IL-17RA receptor, raised the 

possibility that the structural changes of the D1 domain upon IL-17 (A, F, or A/F) binding 

and the subsequent dimerization of IL-17RA might be a prelude to the assembly of the 

signaling complex.
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IL-17-induced IL-17RA dimerization controls the architecture of the heteromeric signaling 
complex

Through extensive crystallization screening and optimization, we obtained crystals of the 

ternary complex of human IL-17A with the extracellular domains of its two cognate 

receptors, IL-17RA and IL-17RC (Tables S1 and S2). While these crystals only diffracted 

to a maximum resolution of 5.1 Å, structure determination by molecular replacement, 

using the X-ray structures of IL-17RC (PDB: 6hg4) and of the IL-17A-IL-17RA complex 

(PDB: 4hsa), was straightforward. Because of the limited resolution, the structure did not 

provide reliable atomic details of individual amino acid side-chains, but it did reveal the 

overall composition and quaternary structure of the IL-17A signaling complex (Figure 

3). The asymmetric unit of the crystal contained one IL-17A homodimer flanked by one 

IL-17RA and one IL-17RC subunit, in an arrangement that confirmed the validity of a 

recently published, tentative model of the heterotrimeric complex (Goepfert et al., 2020). A 

superimposition with the binary IL-17RA - IL-17A complex did not reveal any significant 

domain shifts (Figure S2). However, inspection of the crystal packing revealed a structural 

feature that had not been anticipated, the dimerization of the heterotrimeric complex driven 

by the same IL-17RA-IL-17RA interface as seen in all IL-17RA binary complexes (Figures 

2 and 3B). The full signaling complex may thus comprise two heterotrimeric units related by 

a crystallographic 2-fold symmetry axis to form a 2:2:2 hexameric complex (2 × IL-17RA, 

2 × IL-17RC, 2 × IL-17A homodimers) (Figure 3B). No higher order oligomerization state 

was found by visual inspection and EPPIC analysis of the crystal packing.

The dimerization of the heterotrimeric complex did not create any additional subunit-subunit 

interface within the signaling assembly except between the two IL-17RA D1 domains: each 

IL-17A homodimer interacted with only one IL-17RA and one IL-17RC subunit, and the 

two co-receptors were not in contact with each other. IL-17RC was located at a distance 

from the IL-17RA dimerization interface and did not contribute to dimerization (Figure 3B). 

However, the formation of this hexameric assembly defines the relative position of the two 

IL-17RC stalks (Goepfert et al., 2020) and is therefore likely to play an important role in 

assembling the intracellular signaling machinery.

As expected from the known crystal structures of IL-17RA-IL-17A (Liu et al., 2013) 

and IL-17RC-IL-17F (Goepfert et al., 2020), the amino-terminal FnIII domains (D1) of 

IL-17RA and IL-17RC interacted with equivalent binding pockets located on either side of 

the cytokine homodimer (Figure 3A). The following FnIII domain (D2) adopted a different 

orientation in the two receptors but formed otherwise similar interactions with the cytokine, 

notably a β-sheet/ β-strand interaction with the C-terminal residues of IL-17A, as previously 

observed in IL-17A and IL-17F binary complexes (Figure S3). Like in the IL-17RC-IL-17F 

complex (Goepfert et al., 2020), the D3–D4 domains of IL-17RC did not contribute any 

contacts to the cytokine and appeared to act as a sturdy stalk, whereas IL-17RA was 

connected to the cell membrane via a flexible 17-amino acid linker, not defined in this 

structure (Figure 3A). This loose connection between the IL-17RA ECD and its intracellular 

domains suggested that IL-17RC may play a key structural role in driving the spatial 

organization of the intracellular signaling components, while IL-17RA dimerization plays 

a more indirect, yet no less important structural role in defining the precise geometry of 
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the two IL-17RC subunits and ensuring that their juxtamembrane regions are about 90 Å 

apart in the hexameric complex. These structural inferences further suggested that IL-17RA 

dimerization may have functional implications for IL-17 signaling.

IL-17A binding induces IL-17RA dimerization in solution

We therefore set out to investigate whether IL-17RA dimerization induced by IL-17A 

binding could also be observed in solution and used site-directed mutagenesis for generating 

a dimerization-defective IL-17RA variant. We looked for a critical residue near the center 

of the dimerization interface and selected alanine 104 on the basis of the EPPIC analysis 

combined with visual inspection of the IL-17RA dimer interface on a 3D display. Ala104 

is located within the α-helical region of the BC loop, at the heart of the IL-17RA-IL-17RA 

protein-protein interface. This residue was identified as a core interface residue with very 

low sequence entropy by the EPPIC web server (Table S4 and Figure S1). It is exposed 

on the surface of the IL-17RA monomer, but its solvent-accessible surface is reduced by 

99% upon receptor dimerization. The two alanine 104 residues in the IL-17RA dimer are 

7 Å apart. We reasoned that the replacement of alanine 104 by a glutamate (A104E point 

mutant) would prevent dimerization through steric hindrance and repulsive electrostatic 

interactions (Figures 3B and S4). Each of the two Glu104 side-chains would collide with 

Leu68, Thr70, Pro71, Ser105, and Tyr108 of the opposite IL-17RA subunit and would be 

located in a mainly hydrophobic environment. Binding of IL-17A to IL-17RA, however, 

should not be affected by this mutation, because it is located at a distance (21 Å) from 

the cytokine-binding region, and it is facing bulk solvent in the absence of dimerization; 

also, like alanine, glutamate has a high helix-forming propensity, and it is therefore not 

likely to interfere with the IL-17RA motions induced by IL-17A binding, including the 

conformational switch of the BC loop.

We first analyzed the binding of IL-17A to wild-type (WT) and A104E IL-17RA by surface 

plasmon resonance (SPR) and isothermal titration calorimetry (ITC).

SPR analyses confirmed that the A104E point mutation had no significant effect on 

the affinity and binding kinetics of IL-17A to IL-17RA (Figure 4A). The KD value 

for the WT IL-17RA complex with IL-17A (5.2 nM) was well in agreement with a 

previous determination using the same technology (2.8 nM; Ely et al., 2009). Using ITC, 

we observed very similar isothermal titration profiles, indicating that the A104E point 

mutation did not affect the thermodynamics and binding stoichiometry of the cytokine 

to the IL-17RA receptor (Figure 4B). The stoichiometry inferred from the ITC data was 

consistent with one IL-17A homodimer binding only one IL-17RA receptor subunit, in 

line with crystallographic findings (Liu et al., 2013). Note that dimerization of IL-17RA 

does not change the overall stoichiometry of the IL-17A-IL-17RA complex. The similar 

ITC profiles indicated that the much smaller IL-17RA dimerization interface (~750–820 

Å2 compared with ~2022–2070 Å2 for the IL-17A/IL-17RA binding interface) contributed 

little, if at all, to the overall enthalpy. Alternatively, or in addition, only a fraction of all 

IL-17A complexes with the IL-17RA ECD may have formed 2:2 complexes under these 

experimental conditions. It is unclear why the KD values obtained by ITC were significantly 

weaker than those determined by SPR. Previous ITC analyses of IL-17RA and IL-17RC 
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binary complexes have also suggested weaker affinities (Goepfert et al., 2020) compared 

with SPR measurements (Ely et al., 2009).

Next, we investigated the influence of the A104E point mutation on the formation of the 

binary complex with IL-17A and of the ternary complex with IL-17A and IL-17RC by 

analytical size-exclusion chromatography coupled to a multi-angle light scattering apparatus 

(SEC-MALS). This experiment showed clear differences between the WT IL-17RA and the 

A104E point mutant (Figure 5). Whereas the mutant IL-17RA receptor formed a 1:1 binary 

complex with the expected molecular weight (MW) of about 61 kDa, the WT receptor 

had a much shorter elution time and was nearly two times bigger (115 kDa), indicating 

a 2:2 complex (2 × IL-17RA, 2 X IL-17A homodimers). In presence of IL-17RC, the 

A104E mutant formed the expected heteromeric 1:1:1 complex with IL-17A (observed 

MW of 131 kDa). WT IL-17RA exhibited a significantly higher MW of about 165 kDa. 

This observation confirmed a previous SEC-MALS analysis of the heterotrimeric complex 

(Goepfert et al., 2020). At the time, we were not aware of IL-17A-induced IL-17RA 

dimerization and concluded that the 1:1:1 complex was in equilibrium with a higher order 

oligomer that was an integer multiple of the 1:1:1 complex, as shown by high-performance 

liquid chromatography (HPLC) quantification of the protein components. In the light of 

the crystallographic data, consistently showing dimerization of IL-17RA complexes, we 

can now interpret the observed molecular weight of 165 kDa as being a weighted average 

indicative of an equilibrium between the 2:2:2 heteromeric complex (calculated MW 258 

kDa) and the 1:1:1 complex (calculated MW 129 kDa), under these experimental conditions. 

Importantly, while the A104E mutation did not affect binding of IL-17A to IL-17RA, as 

shown by SPR and ITC, it clearly suppressed the formation of higher MW complexes in the 

SEC-MALS experiment, further supporting our conclusion that IL-17A-induced IL-17RA 

dimerization was also taking place in solution and was responsible for the increase in the 

apparent MW of the heteromeric complex. While dimerization of the IL-17RA ECD was not 

complete in the SEC-MALS experiment, it is conceivable that the full-length transmembrane 

IL-17RA receptor may form stronger dimeric complexes within the plane of the cell 

membrane, with its intracellular domains potentially also contributing to dimerization.

IL-17RA dimerization lowers the threshold for IL-17A and IL-17F signaling

In order to investigate potential functional consequences of IL-17RA dimerization, we then 

generated an IL-17RA knockout N/TERT keratinocyte cell line (Dickson et al., 2000) and 

retrovirally introduced either WT IL-17RA or the A104E point mutant cDNAs under control 

of the EF1α promoter. In order to avoid clonal differences, we used stable WT or A104E 

IL-17RA cell pools for our analysis. These stable cell pools were confirmed to display 

similar levels of human IL-17RA protein on the cell surface (Figure S5) and exhibited 

similar IL36G and CXCL1 mRNA induction following TNFα stimulation (Figure S6).

In agreement with our biophysical data (Figure 4), the mutation did not affect cytokine 

recognition: biotinylated IL-17A displayed a very similar level of binding to A104E and WT 

IL-17RA cells by flow cytometry (EC50 values of 586 ng/mL and 486 ng/mL, respectively) 

(Figure 6). Likewise, binding of biotinylated IL-17F to A104E and WT IL-17RA cells was 

in a similar range (EC50 values 184 μg/mL and 393 μg/mL, respectively) (Figure 6).
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In contrast to experiments using TNFα stimulation (Figure S6), A104E IL-17RA cells 

showed a clear reduction in responsiveness compared with the WT IL-17RA cells when 

IL-17A or IL-17F stimulation was used, irrespective of the presence or absence of a fixed 

concentration of 1 ng/mL TNFα (Figures 7A and 7B). Whereas WT IL-17RA cells required 

0.36 ± 0.11 ng/mL or 1.14 ± 0.67 ng/mL IL-17A (with and without TNFα, respectively) 

for half-maximal response (EC50) in IL36G mRNA induction, A104E cells required >5-fold 

more IL-17A in order to achieve half-maximal response (EC50 values of 1.91 ± 0.59 ng/mL 

and 6.64 ± 1.64 ng/mL with and without TNFα, respectively) (Figure 7A). A similar shift 

in responsiveness was also seen for IL-17F, where WT IL-17RA cells required 10.0 ± 

2.0 ng/mL (with TNFα) or 41.9 ± 10.4 ng/mL (without TNFα) IL-17F for half-maximal 

response (EC50) in IL36G mRNA induction, while A104E cells required >6-fold higher 

IL-17F concentrations for half-maximal response (EC50 values of 64.7 ± 26.7 ng/mL and 

264 ± 96 ng/mL when stimulated with or without TNFα, respectively) (Figure 7B). A 

reduced responsiveness to IL-17 cytokines of the A104E IL-17RA cells compared with the 

WT IL-17RA cells was also observed for CXCL1 gene induction (Figure 7C).

DISCUSSION

Human IL-17A was originally identified from a library of CD4+ T cells (Yao et al., 1995). 

The subsequent discovery of the Th17 cell lineage and its implication in numerous chronic 

inflammatory and autoimmune diseases has drawn much attention to the role of IL-17A in 

the adaptive immune response. However, IL-17A and IL-17F are also produced by many 

cell types of the innate immune system and play important roles in the early inflammatory 

immune response (Veldhoen, 2017; McGeachy et al., 2019). IL-17A and IL-17F synergize 

with several cytokines of the innate immune response, including IL-1β, IL-18, IL-22, and 

TNFα, in inducing a strong inflammatory response mediated by IL-6 production. The 

IL-17 signaling pathway shares important nodes with other receptors of the innate immune 

response, such as the TNF receptor family, the TLRs, and the interleukin-1 (IL-1) receptors 

(IL-1Rs), notably TRAF6, TAK1, IKKγ, nuclear factor-κB, AP-1, c-Jun N-terminal kinase, 

and p38 MAPK (Amatya et al., 2017; Li et al., 2019).

Full-length, membrane-bound IL-17RA has been reported to self-associate in the absence 

of ligand (Kramer et al., 2006, 2007), and forced over-expression of both IL-17RA and 

IL-17RC was not sufficient for ligand-independent signal transduction (Toy et al., 2006). 

These findings have led to the hypothesis that unliganded IL-17RA remains in an inactive 

state through homotypic interactions, and that ligand binding triggers rapid conformational 

changes that relieve these interactions and foster productive, heterotypic interactions with 

IL-17RC (Toy et al., 2006). Whether these homotypic interactions involve the extracellular 

(ECD) or the intracellular domains or both is not known. Our work focused on the 

recombinant, soluble IL-17RA ECD. The analysis of the crystal packing of the IL-17RA 

ECD in the ligand-free state did not reveal any crystal contacts that would be suggestive of 

homotypic interactions, indicating that homotypic IL-17RA interactions may rather involve 

the intracellular domains. In contrast, the comparison of the free and cytokine-bound states 

of the IL-17RA ECD revealed cytokine-induced structural changes that affect four loops 

of the D1 domain, and an elbow movement of the D2 domain that leads to a significant 

shift (11–17 Å, depending on the IL-17 cytokine) of the juxta-membrane region and 
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may therefore play a role in relieving intracellular homotypic interactions. Moreover, the 

structural changes of the D1 domain enable dimerization of the IL-17RA-cytokine complex 

through the formation of a sizable IL-17RA-IL-17RA interface that involves the upper part 

of this domain. While the size of this interface falls in the range (600–1200 Å2) where 

differentiating biologically irrelevant crystal lattice contacts from biologically relevant 

interfaces can be difficult, EPPIC analysis, which considers the conservation through 

evolution of interface residues, indicated a potential biological significance. The pervasive 

occurrence of this IL-17RA dimer interface in three different IL-17RA-cytokine complexes, 

and across distinct crystal forms and crystallization conditions, further supported a potential 

biological significance. Lastly, the observation that IL-17RA receptor dimerization appeared 

to require cytokine binding strongly spoke in favor of a potential regulatory mechanism, 

which deserved further investigations, including biochemical, biophysical, and cell-based 

experiments using a dimerization-defective point mutant of human IL-17RA.

Our biochemical and biophysical analyses confirmed that the designed A104E mutation 

in the IL-17RA ECD did not affect IL-17A binding. Evidence for dimerization of the 

WT IL-17RA binary and ternary complexes but not of the corresponding A104E IL-17RA 

complexes was obtained by SEC-MALS analysis. Under the SEC-MALS experimental 

conditions, dimerization was not complete, suggesting rather weak IL-17RA dimers when 

the receptor is truncated to its ECD and analyzed in solution. Conceivably, the full 

transmembrane IL-17RA receptor may form stronger dimers because of its reclusion within 

the membrane and through additional interactions with intracellular components of the 

signaling machinery. While the A104E point mutation did hamper dimerization of the 

binary and ternary complexes of the soluble IL-17RA ECD in the SEC-MALS experiment, 

we cannot rule out the possibility that, in our cellular experiments, the correct assembly 

of the intracellular signaling machinery is only compromised but not fully blocked by 

this mutation. Hence, our cellular data might not reveal the functional importance of 

IL-17RA dimerization to its full extent. Nevertheless, these data clearly indicate that the 

dimerization of the heteromeric receptor complex into a hexameric signalosome has a 

functional importance: it lowers the IL-17A and IL-17F signaling threshold for IL36G 
and CXCL1 mRNA induction in human N/TERT keratinocytes, presumably through more 

efficient recruitment of downstream effectors such as the membrane proximal effectors 

ACT1 and TRAF6. Further investigations are clearly needed to gain a broader overview 

of the functional consequences of IL-17-induced dimerization of IL-17RA for other IL-17 

family members that also use IL-17RA as co-receptor and for other cell types such as 

fibroblasts.

The picture that is emerging from this work, however, is a mechanism whereby IL-17RA 

receptor sharing by IL-17 family members is not only governed by the intrinsic flexibility of 

these cytokines (Waters et al., 2021) but also by order/disorder transitions of ligand-binding 

loops within the D1 domain of the receptor and by the fine adjustment of the position of its 

D2 domain. Starting from the resting state of the IL-17RA receptor, the rotation of the D2 

domain and the subsequent receptor homodimerization induced by IL-17 binding are a likely 

prelude to the assembly of the membrane-proximal signaling machinery. This molecular 

mechanism, seen with IL-17A, IL-17F, and IL-17A/F, may also hold for IL-17C and IL-17E, 

which also use IL-17RA as co-receptor.

Goepfert et al. Page 10

Cell Rep. Author manuscript; available in PMC 2022 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IL-17RA is a “short” receptor, characterized by a flexible, 17-amino-acid-long segment 

connecting its cytokine-binding domains to the cell membrane (Goepfert et al., 2020). 

In the case of IL-17A, IL-17F, and IL-17A/F, IL-17RA associates with IL-17RC to 

form the heteromeric 2:2:2 signaling complex. In contrast to IL-17RA, IL-17RC is a 

“tall” receptor that possesses a rigid stalk connecting its cytokine-binding domains to the 

cell membrane (Goepfert et al., 2020). Therefore, the two IL-17RC subunits within the 

hexameric signalosome, in the configuration imposed by the geometry of the IL-17RA 

dimer, appear to play a key role in driving the proper spatial organization of the intracellular 

signaling machinery through their rigid stalk and transmembrane region. As IL-17RE is 

also a tall receptor, IL-17C signaling probably follows a similar molecular mechanism. The 

situation is less clear for IL-17E, which signals through two short receptors, IL-17RA and 

IL-17RB, and for IL-17A when it uses IL-17RD, another short receptor, in combination with 

IL-17RA.

While this report describes IL-17-induced IL-17RA dimerization and its role in assembling 

the IL-17 signaling complex, much of the corresponding biology remains to be explored. 

Our preliminary data suggest that blocking IL-17RA dimerization, eventually with a 

therapeutic agent, will only reduce and not abrogate downstream IL-17RA-dependent IL-17 

signaling. Whether such a strategy would lead to a distinct, beneficial clinical outcome 

in some indications, or eliminate potential side effects compared with fully antagonistic 

anti-IL-17RA therapeutics, is unclear at present.

Limitations of the study

Our biophysical experiments were performed with the soluble, extracellular domains of 

IL-17RA and IL-17RC; therefore, our data may not faithfully reflect the oligomerization 

behavior of the full-length receptors in the cell membrane. In particular, it is unclear whether 

IL-17-induced IL-17RA dimerization leads to increased avidity of (potentially oligomeric) 

full-length IL-17RC for the IL-17RA/IL-17A complex. While our cellular experiments 

clearly show reduced IL-17A and IL-17F signaling in immortalized human keratinocytes 

overexpressing the dimerization-defective IL-17RA A104E variant, the impact of this 

mutation on the full IL-17 signaling complex (extracellular and intracellular) at natural 

expression levels and in primary human cell lines is not known. Consequently, further 

investigations are needed to gain a deeper understanding of the functional importance of 

IL-17RA dimerization in vivo and to unravel how IL-17RA dimerization potentiates IL-17 

signaling at the molecular level.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact, Jean-Michel Rondeau 

(jeanmichel.rondeau@novartis.com).

Materials availability—Requests regarding the N/TERT cell lines should be directed 

to Johann E. Gudjonsson (johanng@med.umich.edu). All other unique reagents generated 
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in this study are available from the lead contact with a completed Materials Transfer 

Agreement.

Data and code availability

• Crystallographic atomic coordinates and structure factors have been deposited 

in the Protein Data Bank (www.rcsb.org) with accession codes 7zan: IL-17A/

IL-17RA/IL-17RC complex; 5n9b: unliganded IL-17RA.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

METHOD DETAILS

Cloning—For cellular studies, full-length IL-17A (amino acid residues 1–155 of 

Uniprot:Q16552) with the native signal peptide and full-length IL-17F (amino acid residues 

31–163 of Uniprot:Q96PD4) fused to the Myeloid cell surface antigen CD33 signal peptide 

(UniProt: P20138–1) were cloned into a pCI-derived co-expression vector. To facilitate 

purification, a synthetic peptide with the amino acid sequence EFRHDS derived from the 

human Amyloid Precursor protein (APP6-tag) was fused N-terminally to the IL-17F chain 

(Goepfert et al., 2017).

For ITC, SEC-MALS and crystallisation, a DNA construct of IL-17A (34–155) lacking 

the first 10 residues of the mature IL-17A and with the N68D and C129S point 

mutations, as used by Liu and colleagues (Liu et al., 2013) was cloned into a pCI-

derived vector. The DNA sequence was fused with an N-terminal Myeloid cell surface 

antigen CD33 signal peptide (UniProt: P20138–1) followed by the EFRHDS peptide and 

a PreScission recognition sequence (LEVLFQGP). Several IL-17RA constructs were tried 

in crystallisation trials. The full-length extracellular domain (ECD) of IL-17RA (amino 

acid residues 33–320 of UniProt: Q96F46) fused to the CD33 protein signal peptide and a 

C-terminal APP6-Avi-tag was cloned in a pRS5-derived vector. This construct enabled the 

X-ray analysis of IL-17RA in the unliganded state. For the crystallisation of the ternary 

complex, a more convenient IL-17RA construct with a shorter APP-tag (amino acids 

sequence: EFRH; “APP4-tag”) and three N-linked glycosylation sites removed by replacing 

Asn with Asp at positions 49, 206 and 265 gave the best diffracting crystals. Site-directed 

mutagenesis was performed on the latter construct to generate the A104E point mutant for 

SPR, ITC and SEC-MALS studies. The full-length ECD domain of IL-17RC (amino acid 

residues 21–467 of UniProt:Q8NAC3-2, Q307R variantHaudenschild et al., 2002) fused to 

the CD33 protein signal peptide and a C-terminal APP6-tag was cloned in a pRS5-derived 

vector.

Protein expression and purification—IL-17A/F, IL-17A, IL-17RA, A104E IL-17RA, 

and IL-17RC were transiently expressed in human embryonic kidney (HEK) 293–6E cells 

or, alternatively, in GnTI-deficient HEK293S cells (RRID:CVCL_A785) for the purpose of 

crystallisation trials.
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Transient co-expression of IL-17A and IL-17F in HEK 293S cells led to the production of 

IL-17A, IL-17F and of the IL-17A/F heterodimer. The three isoforms (IL-17A, IL-17F and 

IL-17A/F) were separated by affinity chromatography using NHS-activated resin coupled 

to an anti-APP-tag antibody. While the IL-17A homodimer was in the flow-through, 

the IL-17A/F heterodimer and the IL-17F homodimer were retained on the column and 

eluted with 0.1 M glycine, pH 2.7. pH was immediately restored by addition of 1.0 M 

of Tris, pH 8.5. IL-17A was further purified by affinity chromatography with the human 

anti-IL-17A monoclonal antibody XAB4 (WO 2014/122613 A1) and eluted as before. 

IL-17A/F was separated from IL-17F homodimers using the same affinity chromatography. 

The isolated IL-17A, IL-17A/F and IL-17F proteins were further purified by size exclusion 

chromatography (SEC) with a Superdex-75 10/300 (GE Healthcare) in PBS pH 7.4, 1mM 

EDTA.

All IL-17RA ECD constructs were also purified by anti-APP affinity chromatography, 

followed by SEC on a Superdex-200 26/600 (GE Healthcare).

For IL-17RC, an additional purification step was used. After affinity purification, the protein 

was applied to a Resource-Q anion exchange column (Amersham Biosciences) and eluted 

with a linear gradient of NaCl. Pooled fractions were further purified by SEC as before.

APP-tagged IL-17A was also purified by affinity capture as before. The APP-tag was then 

cleaved with PreScission protease overnight at 4°C. Tag-free protein was further purified by 

SEC using a Superdex-75 10/300 in PBS pH 7.4, 1mM EDTA.

Untagged IL-17A constructs used in SPR and SEC-MALS were expressed in E. coli 
BL21(DE3)T1 cells as inclusion bodies. For IL-17A(31–155), cells were lysed with a 

French press in 50mM Tris pH 8.0, 5mM EDTA, 5mM DTT, 5mM benzamidine. After 

centrifugation, inclusion bodies were washed 3 times in lysis buffer, followed by three 

washing steps using 50mM Tris pH 8.0, 300mM NaCl, 1.0% Triton and two more washing 

steps with 10mM DTT. Inclusion bodies were then dissolved in 6.0M guanidine, 20mM 

Tris pH 8.5, 100mM NaCl, 10mM DTT. After centrifugation, the supernatant was diluted at 

room temperature under stirring in refolding buffer containing 20mM Tris pH 9.0, 500mM 

Arginine-HCl, 15% glycerol, 1mM cystamine, 5mM L-cysteine, and then stirred further 

at 4°C for two days. After filtration, concentration, and dialysis against 20mM MES pH 

6.0, 20mM NaCl, the refolded material was loaded onto an XK 26/10 SP-Sepharose HP 

column (GE Healthcare) and eluted with a 0.02–1.0M NaCl gradient. Fractions containing 

covalent IL-17A homodimers were identified by non-reducing SDS-PAGE, pooled, and 

further purified by reverse phase chromatography on an XK26/10 Source 30 RPC column 

(Cytiva), using a 0–90% acetonitrile, 0.1% TFA gradient, followed by chromatography 

over an MPC ceramic hydroxyfluoro-apatite column (Bio-Rad Laboratories), and by cation-

exchange chromatography on a Mono-S HR 1010 column (GE Healthcare). After each 

chromatographic steps, fractions containing covalent IL-17A homodimers were identified by 

non-reducing SDS-PAGE, pooled and analyzed by LC-MS.

For the IL-17A(34–155)_C129S construct which lacks the inter-chain disulfide bridges, a 

simplified refolding and purification protocol was used. The cell pellet was resuspended 
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in lysis buffer (50mM Tris pH 8.0, 300mM NaCl, 1mM MgCl2, 100μg/mL lysozyme, 

200μg/mL DNaseI, 1 tablet of protease inhibitor cocktail) and lysed with a French press. 

After centrifugation, inclusion bodies were washed 2 times in 2M urea, 5mM DTT, 2% 

Triton X-100, 50mM Tris pH 8.0, followed by two more washing steps using 100mM 

Tris pH 8.0. Inclusion bodies were then solubilised in 6.0M guanidine, 50mM Tris pH 

8.0, 50mM NaCl. After centrifugation, the supernatant was diluted 20-fold dropwise, at 

room temperature under stirring, into a refolding buffer containing 50mM Tris pH 8.5, 

500mM guanidine, 0.4M arginine, 2mM reduced glutathione, 1mM oxidised glutathione, 

and then stirred further at 4°C overnight. The refolding mix was then centrifuged, filtered 

and concentrated. After overnight dialysis against 50mM MES pH 6.0, centrifugation and 

filtration, the refolded material was purified on a Mono-S column (GE Healthcare) followed 

by size-exclusion chromatography with a Superdex75 column in 25mM HEPES, pH 7.5, 

150mM NaCl.

Crystals of IL-17RA in the free state were obtained using the wild-type IL-17RA(33–

320)-APP6-Avi construct. To facilitate crystallization, the APP-Avi-tag was removed by 

treatment with Carboxypeptidase A (Sigma-Aldrich, MO, USA) for 3 days at room 

temperature and the reaction stopped by adding 1mM EDTA. The protein was further 

treated with Endoglycosidase H (Sigma-Aldrich, MO, USA) for 4h at 37°C and purified by 

size-exclusion chromatography in 10 mM Tris (pH 7.5), 100 mM NaCl. The protein was 

concentrated to 8.7 mg Ml−1.

The IL-17RA/IL-17A/IL-17RC complex was formed by mixing the Endoglycosidase H-

treated receptors IL-17RC(21–467)-APP6 and IL-17RA(33–320)_N49D_N206D_N265D-

APP4 and the cytokine IL-17A(34–155)_N68D_C129S with a 1.2-fold molar excess of 

receptors. The complex was purified by size-exclusion chromatography with a Superdex-200 

16/600 equilibrated with PBS pH 7.4, 10 mM EDTA and concentrated to 7.5 mg mL−1.

Biotinylation—To enable cell binding measurements, chemical biotinylation of IL-17A 

and IL-17F was performed with a 5- and 10-fold excess, respectively, of EZ-Link-Sulfo-

NHS-LC-LC-Biotin (cat.no. 21338; Thermo Fisher Scientific) in PBS pH 7.4. After one 

hour incubation at room temperature, the reaction was stopped with 1M Tris pH 8.0 and the 

excess biotin removed by running the sample on a SPX75 10/30 equilibrated with PBS pH 

7.4.

Crystallization—Initial crystals were obtained at 20°C using the sitting-drop vapor 

diffusion method after mixing 0.2 μL protein solution with 0.2 μL reservoir solution. 

Unliganded IL-17RA crystallized from 0.1 M Tris-HCl (pH 7.0), 25% (w/v) PEG MME 

2000, 0.05 M lithium sulfate monohydrate. Crystals of the IL-17A complex with IL-17RA 

and IL-17RC were initially obtained from 14% v/v PEG MME 500, 0.1M MES pH 6.5. 

These crystals were optimized using the microseeding technique. Seeds were prepared by 

crushing crystals with the “seed-bead” kit from Hampton Research and were resuspended in 

the mother liquor. Microseeding was carried out by mixing 1 μL protein solution with 0.8 

μL reservoir solution containing 10% v/v PEG DME 500, 0.1M MES pH 6.5 and 0.2 μL 

seeding solution. Crystals of the complex were transferred for 2 min in a cryo-protecting 

buffer composed of 0.1M HEPES pH 7.0, 5% PEG 4,000, 25% glycerol, whereas no 
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cryo-protection was needed for the IL-17RA crystals. All crystals were flash-frozen into 

liquid nitrogen.

Structure determination and refinement—Diffraction data were collected at 100 K 

at beamline X10SA (PXII) of the Swiss Light Source (λ = 1.0000Å) with a PILATUS 

pixel detector. In total, 720 images of 0.25° oscillation each were recorded at a crystal-to-

detector distance of 300mm and 720mm for the free IL-17RA receptor and the ternary 

complex, respectively. The IL-17RA data were processed with XDS version September 26, 

2012 and were scaled and merged with XSCALE version July 4, 2012 (Kabsch, 1993; 

RRID: SCR_015652). The IL-17A ternary complex was processed with autoPROC 1.1.7 

(20210716) (Vonrhein et al., 2011; RRID:SCR_015748), using a resolution cut-off based on 

the CC1/2 statistics (Karplus and Diederichs, 2012, 2015). The use of the CC1/2 statistics led 

to a resolution cut-off of 5.06Å, compared to 6.15Å when using a more conservative cut-off 

based on mean I/σ(I) > 2.0. STARANISO analysis showed some anisotropy with diffraction 

limits of 6.07Å along c* and 5.09Å for the other two ellipsoid axes. No evidence was found 

for pseudo-translation, twinning, higher symmetry, or pseudo-symmetry.

Both structures were determined by maximum likelihood molecular replacement with 

PHASER (McCoy et al., 2007; RRID:SCR_014219). For the free IL-17RA structure, the 

two FnIII domains of IL-17RA (chain C of PDB: 4hsa (Liu et al., 2013), residues 2–

172 and 173–273, respectively) were used as independent search models. Several rounds 

of iterative model building and refinement were performed with Coot 0.8.6 (Emsley et 

al., 2010; RRID:SCR_014222) and autoBUSTER version 2.11.6 (Bricogne et al., 2021; 

RRID:SCR_015653), respectively.

The structure of the ternary complex of IL-17A with IL-17RA and IL-17RC was determined 

with PHASER 2.8.3 using the binary complex with IL-17RA (chains ABC of PDB: 4hsa), 

and the D1 and D2D3D4 domains of IL-17RC from PDB: 6hg4 as search models. After 

an initial rigid-body refinement of all protein domains with autoBUSTER, the structure 

was further refined with autoBUSTER and PHENIX_ROSETTA (DiMaio et al., 2013; 

Liebschner et al., 2019; RRID: SCR_014224), using secondary-structure restraints and 

reference-model (Headd et al., 2012) or target-structure (Smart et al., 2012) restraints based 

on PDB:6hg4 (IL-17RC D1, 3.32Å), PDB: 6hga (IL-17RC D2D3D4, 2.6Å), PDB: 5n9b 

(IL-17RA, 1.9Å) and an in house, high resolution (1.27Å) structure of human IL-17A. 

Only one translation/libration/screw (TLS) group was refined per protein chain (Afonine 

et al., 2018). The inclusion of all hydrogen atoms with null occupancy was essential for 

maintaining good geometry. A subset of 5% of the diffraction data were excluded from 

refinement and used for cross-validation (Brünger, 1992). Refinement protocols which led 

to a lower Rfree at the expense of increased overfitting (as judged by a larger difference 

between Rfree and Rwork) were discarded. The final model was produced by autoBUSTER. 

The autoBUSTER electron-density maps revealed N-glycosylation of Asn54 of IL-17RA 

and of Asn213, Asn226 and Asn349 of IL-17RC. The highest positive peak of the F(early)-

F(late) Fourier map was located at the position of the IL-17RA Cys43 disulfide-bridge. 

Among the remaining 18 peaks greater than 3 standard deviations above the mean, another 

four were located on disulfide bridges (Cys146B of IL-17A; Cys338 of IL-17RC, Cys196 

of IL-17RA, Cys144B of IL-17A), two others on aspartic acid (Asp29 and Asp45 of 
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IL-17RC) and two more on glutamic acid side-chains (Glu141 of IL-17RC, Glu136A of 

IL-17A). The geometry of the final model was assessed using the PHENIX implementation 

of Molprobity (Williams et al., 2018). Buried solvent-accessible surfaces of protein-protein 

interfaces were computed with the program AREAIMOL from the CCP4 program suite 

using default parameters (Winn et al., 2011; RRID:SCR_007255). All figures were prepared 

with PyMol version 2.5.2 (Schrödinger LLC; RRID:SCR_000305).

ITC—ITC was performed with a MicroCal Auto-ITC200 calorimeter (Malvern Instruments, 

UK) at 298K. Proteins were dialyzed overnight against the same reaction buffer (PBS pH 

7.4, 1mM EDTA). Protein concentration was quantified by monitoring UV absorbance at 

210nm using High-Performance Liquid Chromatography (HPLC). All titrations were made 

by 26 successive 3s injections of 1.5μL cytokines into 120μL of IL-17RA solution with 

a 180s interval between consecutive injections. An initial delay of 60s was applied before 

the first injection and a stirring speed of 750rpm was applied. For the wild-type receptor, 

the experiment was performed with 250μM IL-17A (syringe) and 35μM IL-17RA (cell). 

For the experiment with the A104E receptor variant, 149μM IL-17A and 22μM A104E 

IL-17RA were used. The binding isotherms were fitted to a single-site binding model under 

the MicroCal PEAQ-ITC analysis software (version 1.21, Malvern Instruments, UK).

SPR—The binding affinity of IL-17A toward wt IL-17RA and the A104E variant was 

determined by surface plasmon resonance measurements using a MASS2 instrument 

(Sierrasensors). Protein concentrations were quantified by monitoring UV absorbance at 

210nm using High-Performance Liquid Chromatography (HPLC). IL-17A was diluted at 

5μg/mL in 10mM HEPES pH 7.5 and immobilized by direct coupling on SPR Affinity 

Sensors, High Capacity Amine (Sierrasensors) to a level of approximately 1800RU, using 

the standard amine coupling procedure (activation with EDC/NHS and deactivation with 

ethanolamine). For the measurements, IL-17 receptors were diluted in running buffer (PBS 

pH 7.4, with 3 mM EDTA and 0.05% Tween 20), to a starting concentration of about 20–50 

times the KD, and serial dilutions in two-fold increments were made (highest concentrations 

were 100nM for wt IL-17RA and 250nM for the A104E variant). To determine kinetic 

constants, sensorgrams were collected at 22°C with a flow rate of 25μL/min. Each protein 

was loaded for 200s with a dissociation time of 300s. The sensor chip surface was 

regenerated between runs with 3.0M MgCl2. All experiments were performed four times 

independently. All data were analyzed with the MASS2 evaluation software and fitted to a 

1:1 Langmuir binding model.

SEC-MALS—SEC-MALS experiments were performed at room temperature with an 

analytical Superdex 200 3.2/300 Increase SEC column, using an Äkta micro system (GE 

Healthcare) coupled to a miniDAWN TREOS triple-angle light-scattering detector equipped 

with an Optilab T-rEX refractive index detector (Wyatt Technology). The column was 

pre-equilibrated with running buffer (20mM Na-phosphate pH 7.4, 150mM NaCl, 0.02% 

sodium azide). 25–100μg of protein were diluted into 60μL of running buffer and 50μL were 

run on the SEC column at a flowrate of 0.075mL/min. For the IL-17A binary complex with 

IL-17RA, a 1.2-fold molar excess of cytokine was used. For the IL-17A ternary complex 

with IL-17RC and IL-17RA, the cytokine was mixed with a 1.1-fold molar excess of 
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IL-17RC followed by addition of 1.1-fold molar excess of IL-17RA. UV, light scattering 

and refractive index values were recorded. Peaks of interest were manually selected, and 

data analysis was carried out with the ASTRA software (version 5.3, Wyatt Technology; 

RRID:SCR_016255).

Generation of IL-17RA KO keratinocytes by CRISPR/cas9—Human immortalized 

keratinocyte N/TERT cells (Dickson et al., 2000; RRID:CVCL_CW92) were cultured 

in keratinocytes-SFM medium (Gibco #17005042) supplemented with 30μg/mL bovine 

pituitary extract (BPE), 0.2ng/mL EGF and 0.3mM Ca2+ final concentration.

CRISPR KO keratinocytes were generated by an insertion or deletion of a single 

or multiple nucleotides induced by a single guide RNA (sgRNA) designed from 

the 5′ end of the coding sequence/ORF of the target gene. sgRNA target sequence 

(TCCCCGTGGCTCACATCGAA) for IL-17RA was generated using a web interface for 

CRISPR design (https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design). 

Two synthetic oligos, IL17RAsgRNA-F: CACCGTCCCCGTGGCTCACATCGAA and 

IL17RAsg RNA-R: AAACTTCGATGTGAGCCACGGGGAC (IL-17RA sgRNA target 

sequence and its complementary sequence flanked by adapter sequences corresponding to 

the BBS-I cut site) were purchased from Millipore-Sigma. These two oligos were annealed 

and then ligated into a CRISPR backbone vector, pSpCas9 (BB)-2A-GFP (PX458; a gift 

from Feng Zhang (Addgene plasmid # 48138)) by T4 ligase. Ligated plasmids were cloned 

into competent E. coli (ThermoFisher # C737303) and sgRNA target sequence insertion 

was verified by Sanger sequencing. The plasmid was transfected into an immortalized 

keratinocyte line (N/TERT) using the TransfeX transfection kit (ATCC # ACS4005). GFP 

positive single cell sorting was performed into 96-well plate using a MoFlo Astrios #1 

cell sorter at the University of Michigan Flow Cytometry Core. Single cell colonies were 

grown up to ~50% confluency. Cells were then transferred from 96-well plates into 12-well 

plates and grown again up to ~50% confluence. Each clone was then divided into two 

parts, with one part used to isolate DNA for genotyping and the other part stored for 

further analysis after completing genotyping. DNA was extracted and PCR was performed 

using two primers (IL17RAPCRF1: GATTCACCCTCGAAACCTGA and IL17RAPCRR1: 

CTGACTGGGAGAGCCACTTG) spanning the sgRNA target sequence of IL-17RA. We 

confirmed homozygous mutant clone with 14 nucleotides deletion. For validation of 

findings, a total of three independent CRISPR/Cas9 KO mutants were generated for 

IL-17RA.

Generation of stable cell pools—Complementary DNAs (cDNAs) encoding the full-

length human wild type IL-17RA (wtIL-17RA, transcript variant 1, NCBI NM_014339.7) 

or the human A104E IL-17RA mutant were cloned into the lentiviral expression vector 

(pCDH-EF1α-MCS-T2A-hygro) containing the EF1α promotor and a hygromycin B 

selection cassette resulting in the two vectors, pCDH-EF1-IL17RA-WT and pCDH-EF1-

IL17RAmut. For the generation of pCDH-EF1α-MCS-T2A-hygro, the puromycin selection 

cassette of pCDH-EF1α-MCS-T2A-puro (System Biosciences LLC, CD527A-1) was 

replaced with a hygromycin B selection cassette. For the generation of wt IL-17RA and 

A104E IL-17RA N/TERT cells using lentiviral transduction, 1.5 × 106 293T cells were 
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seeded into 6-well plates. The next morning, cells were transfected with 1μg of above-

described lentiviral vectors (pCDH-EF1-IL17RA-WT or pCDH-EF1-IL17-RAmut) together 

with 1μg of lentiviral packaging plasmid mix (CELLECTA, CPCP-K2A) using TransIT-

Lenti Transfection Reagent (Mirus, MIR6600). 48h later supernatants were filtered through 

a 0.45μm filter (Millipore SLHV013SL) to obtain cell free viral supernatant. N/TERT 

IL-17RAko cells (passage 6) were seeded into 6-well cell culture plates at 6 × 104 cells/well. 

Two days after plating, cells were transduced with 1mL of viral supernatant lentivirus for 8 

h in the presence of 2μg/mL Polybrene (Sigma #TR1003). 36 h after transduction cells were 

washed and replated. Stable wt IL-17RA and A104E IL-17RA cell pools were generated 

by antibiotic selection using 20μg/mL hygromycin B (Invitrogen # 10687010). Transgene 

expression was verified in each pool by flow cytometry staining for the human IL-17RA 

receptor (Figure S3).

Flow cytometry analysis

Expression of wild-type and A104E mutant IL-17RA: Adherent N/TERT keratinocyte 

cells were dissociated using Accutase (Promocell cat#41310) to obtain a single cell 

suspension. For the detection of cell surface expression of IL-17RA receptor on IL-17RAko, 

wt IL-17RA and A104E IL-17RA cells, cells were stained with Alexa Fluor® 488-

conjugated anti-IL-17RA antibody (R&D Systems cat# FAB177G) or isotype control 

antibody Alexa Fluor488-conjugated msIgG1 (IC002F, R&D Systems) for 30 min on 

ice. Cells were washed once before flow cytometry analysis using a Fortessa LSR flow 

cytometer (BD Biosciences).

Binding of IL-17A and IL-17F to IL-17RA KO, wt IL-17RA and A104E IL-17RA 
N/TERT cells: Cells were incubated with serial dilutions of biotinylated IL-17A or IL-17F 

and cell surface bound cytokines were detected by flow cytometry using Alexa Fluor™ 

647 conjugated Streptavidin, (Thermofisher #S32357). Analysis and visualization of flow 

cytometry data was done using FlowJo version 10.7.1 (RRID:SCR_008520).

Functional assay—Wild-type IL-17RA and A104E IL-17RA N/TERT hygromycin 

B selected cell pools were cultured at 37°C, 5% CO2 in keratinocyte-SFM medium 

(Gibco #17005042) supplemented with 30μg/mL bovine pituitary extract (BPE), 0.2ng/mL 

EGF, 20μg/mL hygromycin B and 0.3mM Ca2+ final concentration. IL-17A and IL-17F 

stimulation of cells was done in presence or absence of a fixed concentration of 1ng/mL 

TNFα (Novartis #BTP14065) for 6 h. After stimulation, cells were lysed using RLT lysis 

buffer (Qiagen cat# 79216) containing 40mM dithiothreitol (DTT, Sigma cat#: 3483–12-3) 

and total RNA was isolated using the RNeasy Mini kit (Qiagen cat#: 74106). One-step qRT-

PCR was done according to the manufacturers’ instructions (TaqMan® RNA-to-Ct™ 1-Step 

Kit Thermofisher # 4392656) using primer probe sets (Thermofisher) for human IL36G 
(Hs00219742_m1) and CXCL1 (Hs00236937_m1). Quantification of gene expression was 

performed using the ΔΔCT method (Livak and Schmittgen, 2001) and normalized to the 

housekeeping gene RPLPO (Hs99999902_m1).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data were analyzed using GraphPad PRISM 9.12 (RRID:SCR_002798). For each 

experiment, replicates were performed as indicated in the figure and table legends and 

all results are shown as the mean value ± SEM. Statistical significance of each group was 

determined using the unpaired Student’s t test (Student’s t test for unpaired samples).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• IL-17 (A, A/F, or F) induces IL-17RA dimerization

• IL-17RA dimerization orchestrates the formation of the IL-17 signalosome

• The A104E mutation abrogates IL-17-induced IL-17RA dimerization

• IL-17RA dimerization potentiates IL-17A and IL-17F signaling
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Figure 1. Cytokine binding to IL-17RA induces structural changes in four receptor loops
Structural comparison of unliganded and liganded states of IL-17RA.

(A) Structure of unliganded human IL-17RA, represented as a blue cartoon diagram with 

the three disordered loops A’A (15 missing residues), C’E (7 missing residues), and FG (9 

missing residues) shown as dotted lines and the BC loop highlighted by a dotted ellipsoid.

(B) Structural overlay of the three known liganded states of IL-17RA with IL-17A (black, 

from PBD: 4hsa), IL-17F (yellow, from PDB: 3jvf), and IL-17A/F (red, from PDB: 5nan) 

in ribbon representation, with the cytokine ligands omitted for clarity. The overlay is based 
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on the D1 domain only. The orientation is identical to (A). Note the shift of the D2 domain 

induced by the different IL-17 cytokines, and the structural transition of the BC loop on top 

(dotted ellipsoid).

(C) Close-up view of the D1 domain, in a different orientation that better shows the 

conformational switch of the BC loop. Note the key role of the A’A loop in cytokine 

binding.

(D) Close-up view of the D2 domain. Note the change in the domain orientation in 

the IL-17A (black), IL-17F (yellow), and IL-17A/F (red) complexes compared with the 

unliganded state (blue).
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Figure 2. IL-17RA dimers are found in all crystal structures of IL-17RA-IL-17 binary complexes
Conserved crystal contact between two IL-17RA receptor chains (blue ribbon) in the 

crystal structures of the IL-17A (left view; IL-17A subunits as carmine and gray ribbon, 

respectively; figure based on PDB: 4hsa), IL-17A/F (center; carmine ribbon: A-subunit; 

orange ribbon: F-subunit; figure based on PDB: 5nan), and IL-17F complexes (right view; 

IL-17F subunits as orange and gray ribbon, respectively; figure based on PDB: 3jvf).

(A) The top panel shows a side view of two copies of the complex related by exact, 

crystallographic 2-fold symmetry (IL-17A and IL-17F complexes) or non-crystallographic 

2-fold symmetry (IL-17A/F complex). The black arrow points to the BC loop that 

adopts a helical conformation upon binding of the cytokine and plays a critical role in 

forming these crystal contacts. The lower panel shows a top view (90° rotation) with the 

dimerization interface involving the BC loop indicated by a black square. Note that the three 
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X-ray structures were determined from crystals with different unit cells and space group 

symmetries.

(B) Close-up view of the BC loop at the IL-17RA dimer interface, down the 2-fold 

symmetry axis. The core interface residues Thr102 to Ser105 (PDB: 5nan numbering 

scheme) are shown in thick stick representation. The green mesh shows the electron-density 

map contoured at 1.5σ.

(C) Stereo views showing the full IL-17RA dimer interface from the top (left panel) or from 

the side (right view). All residues within 4.0 Å from the other subunit are included. The 

side-chain of Ala104, buried near the center of the interface, is shown in bold stick.
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Figure 3. IL-17A-induced dimerization of IL-17RA drives the formation of a 2:2:2 hexameric 
signalosome
Structure of the heteromeric IL-17A (carmine ribbon) complex with IL-17RA (blue ribbon) 

and IL-17RC (gray ribbon).

(A) The asymmetric unit contains one-half of the full 2:2:2 complex shown on (B).

(B) Full extracellular, hexameric complex (two views related by 90° rotation). The blue dots 

represent the flexible linker region of IL-17RA that connects the cytokine-binding domains 

to the transmembrane region. Note the presence of the same dimerization interface as found 

in all known IL-17RA binary complexes (Figure 2) and highlighted with a black square. The 

bottom panel is a close-up view of the IL-17RA dimerization interface. The alanine 104 to 

glutamate mutation, used in this study to disrupt IL-17RA dimerization, is shown in stick 

representation.

(C) Schematic model of the IL-17 signalosome; the intracellular SEFIR domains are 

depicted in arbitrary positions and orientations, with an arbitrary number of Act1 and Traf6 

molecules. For more details about the composition of the IL-17 signalosome, please refer to 

Draberova et al. (2020).
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Figure 4. The A104E point mutation does not affect IL-17A binding to IL-17RA
SPR analysis (A) and isothermal calorimetry (B) of IL-17A binding to WT and A104E 

IL-17RA. (A) Representative sensorgrams are plotted as response in resonance units (RUs) 

versus time and shown with colored lines. The concentrations of the injected analytes are 

indicated in the top left corner of the sensorgrams. The kinetic parameters are calculated 

using a Langmuir 1:1 binding model with the fitted curves depicted as black lines. The 

indicated Kd represents the mean from four independent experiments ± the standard error of 

the mean (SEM) and are also summarized in Table S5.

(B) ITC titration curves for the binding of IL-17A to WT and A104E IL-17RA. For each 

experiment, the top panel shows the raw data with the differential electrical power (DP) 

plotted against time. The bottom panel represents the binding isotherm (heat change versus 
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cytokine/receptor molar ratio) obtained from the integration of the raw data and fitted to a 

“one-site” model. Note that the 2:2 stoichiometry cannot be evidenced from the ITC data; 

the 2:2 model highlighted with a star sign was inferred from the crystallographic (PDB: 

4hsa) and SEC-MALS data.
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Figure 5. The A104E point mutation blocks IL-17A-induced dimerization of IL-17RA
SEC-MALS analysis of IL-17A binary (IL-17RA) and ternary (IL-17RA/IL-17RC) 

complexes. SEC chromatograms for isolated proteins (A) and their complexes (B) are 

color-coded as indicated in the insert table and overlaid with the molecular mass distribution 

determined by MALS (shown as horizontal lines). Experiments using the A104E IL-17RA 

point mutant are shown as dotted lines. Peaks are labeled with the corresponding protein 

or protein complex, depicted schematically, with the star indicating the A104E mutation. 

The calculated molecular weights in (A) do not consider the glycosylation. Therefore, the 
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observed values are larger, except for IL-17A, which was expressed in E. coli and was thus 

not glycosylated. For an improved comparison between calculated and observed molecular 

weights in the case of the receptor complexes, the calculated values in (B) were derived from 

the observed molecular weights in (A) for the isolated proteins.
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Figure 6. The A104E point mutation does not affect IL-17A or IL-17F binding to N/TERT cells
Binding of IL-17A and IL-17F to WT and A104E IL-17RA cells. Biotinylated human 

IL-17A (left) or biotinylated human IL-17F (right) was incubated with the cells for 1 h at 

4°C, and bound IL-17 was determined by flow cytometry using Alexa Fluor 647 conjugated 

streptavidin. IL-17A: mean ± standard error of the mean (SEM) (n = 4). IL-17F: mean ± 

SEM (n = 2); highest possible concentration for IL-17F (1 mg/mL). Color code: blue = 

IL-17RA WT cells; red = A104E IL-17RA cells.
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Figure 7. IL-17-induced dimerization of IL-17RA potentiates IL-17 signaling
Functional response of WT and A104E IL-17RA N/TERT cells stimulated for 6 h with 

(A) IL-17A ± 1 ng/mL TNFα or (B) IL-17F ± TNFα after which IL36G mRNA induction 

was quantified by qRT-PCR. Left side: Concentration-response curves of IL36G mRNA 

induction (n = 4). Right side: EC50 values and statistical significance of response between 

WT and A104E IL-17RA cells. (C) EC50 values for CXCL1 mRNA induction by IL-17A or 

IL-17F ± 1 ng/mL TNFα in WT and A104E IL-17RA cells. Shown is mean ± SEM (n = 4). 

*p < 0.05, **p < 0.01, and ***p < 0.001. Color code: blue, WT IL-17RA cells; red, A104E 

IL-17RA cells.

Goepfert et al. Page 34

Cell Rep. Author manuscript; available in PMC 2022 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Goepfert et al. Page 35

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

human anti-human IL-17A antibody XAB4 Novartis WO 2014/122613 A1

mouse anti-APP tag antibody 6E10-A5 Novartis N/A

Alexa Fluor® 488-conjugated anti-IL-17RA antibody R&D Systems Cat# FAB177G

isotype control Ab Alexa Fluor488- conjugated msIgG1 R&D Systems Cat # IC002F; RRID:AB_357241

Chemicals, peptides, and recombinant proteins

hIL-17A, hIL-17F, hIL-17RA, hIL-17RC, hIL-17RA mutants, 
hTNFα

This paper N/A

Alexa Fluor™ 647 conjugated Streptavidin Thermo Fisher Sci. Cat #S32357

ATCC TransfeX Transfection Reagent Thermo Fisher Sci. Cat # ATCC ACS4005

TransIT-Lenti Transfection Reagent Mirus Cat # MIR6600

PreScission Protease GE Healthcare Cat # 27–0843-01

EndoH Sigma-Aldrich (Merck) Cat #11088726001

EZ-link Sulfo NHS-LC-Biotin Thermo Fisher Sci. Cat #21338

Deposited data

IL-17A:IL-17RA:IL-17RC This paper PDB: 7ZAN

IL-17RA, unliganded This paper PDB: 5N9B

Experimental models: Cell lines

Human: HEK293-F Invitrogen Cat # R79007

Human: HEK293S GnTI- ATCC Cat # CRL-3022; RRID:CVCL_A785

Human: immortalized keratinocyte N/TERT cells Dickson et al. (2000) RRID:CVCL_CW92

Invitrogen™ One Shot™ Stbl3™ Thermo Fisher Sci. Cat #C737303

Chemically Competent E. coli

Oligonucleotides

IL17RAsgRNA-F: CACCGTCCCCGTGGCTCACAT CGAA Millipore-Sigma N/A

IL17RAsgRNA-R: AAACTTCGATGTGAGCCACGGGGAC Millipore-Sigma N/A

IL17RAPCRF1: GATTCACCCTCGAAACCTGA Millipore-Sigma N/A

IL17RAPCRR1: CTGACTG GGAGAGCCACTTG Millipore-Sigma N/A

Recombinant DNA

Plasmid: pSpCas9 (BB)-2A-GFP Addgene Addgene_48138

Plasmid: pCDH-EF1 α-MCS-T2A-puro System Biosciences LLC Cat # CD527A-1

Plasmid: pCDH-EF1 α-MCS-T2A-hygro This paper N/A

Software and algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

Astra, version 5.3 Wyatt https://www.wyatt.com/products/software/
astra.html; RRID:SCR_016255

autoPROC, version 1.1.7 Vonrhein et al. (2011) https://www.globalphasing.com/autoproc/; 
RRID:SCR_015748

autoBUSTER 2.11.6 Bricogne et al. (2021) https://www.globalphasing.com/buster/; 
RRID:SCR_015653

CCP4, version 7.0.057 Winn etal. (2011) http://www.ccp4.ac.uk/; RRID:SCR_007255

Coot 0.8.6 Emsley et al. (2010) http://www2.mrc-lmb.cam.ac.uk/personal/
pemsley/coot/; RRID:SCR_014222

FlowJo version 10.7.1. FlowJo, LLC https://www.flowjo.com RRID:SCR_008520

GraphPad PRISM 9.12 GraphPad https://www.graphpad.com/; 
RRID:SCR_002798

MASS2 evaluation software Bruker https://www.bruker.com/

PEAQ-ITC analysis software, version 1.21 Malvern https://www.malvern.com/en

PHASER 2.6.1 McCoy et al. (2007) https://www.phenix-online.org/
documentation/reference/phaser.html; 
RRID:SCR_014219

Phenix 1.12 Adams et al. (2010) https://www.phenix-online.org/; RRID: 
SCR_014224

Phenix_rosetta DiMaio et al. (2013) https://www.phenix-online.org/; RRID: 
SCR_014224

PyMOL 2.5.2 Schrödinger LLC http://www.pymol.org/; RRID:SCR_000305

XDS/XSCALE, version Sep. 26, 2012 Kabsch (1993) http://xds.mpimf-heidelberg.mpg.de/

Other

keratinocyte-SFM medium Gibco Cat # 17005042
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