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ABSTRACT

DNA mechanical properties play a critical role in ev-
ery aspect of DNA-dependent biological processes.
Recently a high throughput assay named loop-seq
has been developed to quantify the intrinsic bend-
ability of a massive number of DNA fragments si-
multaneously. Using the loop-seq data, we develop
a software tool, DNAcycP, based on a deep-learning
approach for intrinsic DNA cyclizability prediction.
We demonstrate DNAcycP predicts intrinsic DNA cy-
clizability with high fidelity compared to the exper-
imental data. Using an independent dataset from
in vitro selection for enrichment of loopable se-
quences, we further verified the predicted cyclizabil-
ity score, termed C-score, can well distinguish DNA
fragments with different loopability. We applied DNA-
cycP to multiple species and compared the C-scores
with available high-resolution chemical nucleosome
maps. Our analyses showed that both yeast and
mouse genomes share a conserved feature of high
DNA bendability spanning nucleosome dyads. Ad-
ditionally, we extended our analysis to transcription
factor binding sites and surprisingly found that the
cyclizability is substantially elevated at CTCF bind-
ing sites in the mouse genome. We further demon-
strate this distinct mechanical property is conserved
across mammalian species and is inherent to CTCF
binding DNA motif.

INTRODUCTION

DNA bendability is a fundamental mechanical property
that affects genomic packing and transcriptional regulation
across species (1,2). In the context of genome packaging,
a 147-bp stretch of eukaryotic DNA is tightly bent around

histone octamer to form the nucleosome as the basic unit
of chromatin (3,4). By contrast, the entire viral genome un-
dergoes sharp bending to fit into a capsid (2). In the pro-
cess of transcription, many protein factors bend DNA se-
quence to form DNA-protein complexes regulating gene ex-
pression (2,5–9). For example, it is well known that human
TATA-binding protein (TBP) binds to a bent DNA element
in the promoter (10,11). Moreover, it is a common feature
in both prokaryotes and eukaryotes that DNA bending en-
ables the formation of a small DNA loop that allows juxta-
posed transcription factors to regulate transcription (2,12).
Beyond its role in biological functions, DNA flexibility is
also a key design parameter for DNA-based nanotechnol-
ogy application such as designing DNA origami, force sen-
sors and other environmental sensors and creating nanoma-
chines (13–16). Thus, to better understand the relationship
between intrinsic mechanical properties of double-stranded
DNA and its biological applications, it is highly desirable to
have a tool for direct quantification of DNA bendability.

Increasing evidence has shown that DNA sequence is a
major determinant of DNA flexibility along its central axis
due to variations in stacking between adjacent base pairs
(17–26). At present, theoretical modeling is not suitable
to provide sequence-dependent quantification of intrinsic
DNA bendability on a genomic scale (1,27–31). One im-
portant practical parameter to quantify DNA bendability,
relevant to its biological functions is dsDNA looping ef-
ficiency or cyclization efficiency (32). Following the initial
cyclization assay, a number of studies involving DNA lig-
ation or single-molecule Fluorescence Resonance Energy
Transfer (smFRET) have identified DNA sequences with
relatively large bendability or compared relative bendability
between DNA of varying lengths and sequences (25,33–35).
However, most of them were based on small-scale study or
do not provide a direct metric for bendability of every se-
quence (26,32,33,36,37). In 2020, Basu and his coworkers
developed a high-throughput sequencing method to mea-
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sure the bendability of 90 000 unique DNA sequences in
a single experiment (38). In this method named ‘loop-seq’,
a library of dsRNA is immobilized on streptavidin-coated
beads. After capturing DNA looping through base-pairing
between complementary overhangs, RecBCD exonucleases
digest unlooped DNA containing free ends, thereby allow-
ing the enrichment of the looped DNA fragments. Both en-
riched and non-enriched control libraries are subjected to
deep sequencing. The cyclizability score is defined as the log
ratio of proportion of each sequence species in the loop-seq
library that survive digestion of un-looped sequences over
the proportion of the corresponding sequence species in the
control library without undergoing the same digestion. The
intrinsic cyclizability score is subsequently defined by ac-
counting for the tether location effect based on an oscilla-
tion model for the raw cyclizability scores.

The loop-seq method for the first time offers a quan-
tifiable measurement of DNA bendability of a vast num-
ber of unique DNA fragments. Moreover, the intrinsic cy-
clizability score it defined provides a very useful metric for
DNA bendability that sheds insights into how DNA me-
chanics underlies various biological observations. Never-
theless, loop-seq experiments are a significant undertak-
ing and costly, particularly when applying this approach
to a large mammalian genome. In addition, loop-seq score
may be affected by experimental conditions and variables
in library design. The cyclizability score from different li-
braries can only be compared up to an additive library-
specific constant even under the same experimental proto-
col. In practice it would be highly desirable to have a tool
that can predict the intrinsic cyclizability accurately and ef-
ficiently for any given sequence. In this study, building upon
loop-seq experimental datasets (38), we develop a software
tool DNAcycP, and demonstrate its effectiveness in accu-
rate prediction of intrinsic DNA bendability across multiple
species.

MATERIALS AND METHODS

Experimental data

We considered five loop-seq data sets from (38) for model
training and comparisons, including: (i) Saccharomyces
cerevisiae nucleosome library of 19 907 different sequences
of 50 bp selected from immediate upstream or downstream
of the dyads (dyads not included) of 10 000 nucleosomes
with highest NCP scores from (39) in S. cerevisiae SacCer2
genome; (ii) random sequence library of 12 472 sequences
generated with equal expected frequency of A/C/GT; (iii) a
tiling library of 82 368 sequences from 576 genes that were
selected from yeast genome whose ORFs ends were both
mapped with high confidence, among which the first 297
were randomly chosen and the subsequent 279 had highest
expression values. For each gene, the +1 nucleosome dyad
position ±2000 bp region was first selected, and 50 bp se-
quences within this region were extracted with tiling spac-
ing of 7 bp; and (iv) yeast ChrV library of 82 404 50 bp
sequences tiled with 7 bp spacing.

The fifth data set was from an independent in vitro study
for DNA propensity for looping (25). The initial library L0
contained ∼2.4E15 species of 90 bp DNA fragments syn-
thesized randomly. The subsequent libraries L1, L2, . . . , L6

contained 90 bp DNA fragments that successfully formed
loops in previous rounds under different experimental con-
ditions. For L0–L3, the reaction volume remained constant
as 2.18 l, while the ligation time monotonically decreased
from 30 min, 15 min, 10 min to 4 min sequentially. For L4,
L5 the reaction volume was reduced to 500 ml and the lig-
ation time decreased to 1 min and 10 s respectively. Due to
the uncertainty caused by a drastic change of ligation con-
ditions in L4 and L5, we only focused our analyses on li-
braries L0–L3 in the paper. We randomly selected 100,000
fragments from each library to evaluate the prediction of
DNAcycP.

DNAcycP software tool

In this paper we develop a computational tool named DNA-
cycP based on a deep learning model. Recently deep learn-
ing methods have achieved remarkable successes in various
applications in genomics (40). In particular, the deep convo-
lutional neural networks (DCNN) and deep recurrent neu-
ral networks (DRNN) have been widely applied in problems
involving DNA sequences such as transcription factor bind-
ing sites prediction (41–51) and etc.

The developed DNAcycP takes the one-hot encoding of
every 50 bp DNA sequence and its reverse complement as
input. The core of DNAcycP is a deep learning architecture
pipeline that processes the sequence and its reverse comple-
ment separately, the results from which are averaged and
detrended to reach the predicted intrinsic cyclizability score
(Figure 1A).

Inspired by the work in (52,53) we experimented vari-
ous deep learning architectures and arrived at an effective
model mixed with an Inception-ResNet structure and an
LSTM layer (to be called IR + LSTM, Figure 1B). The
IR + LSTM architecture starts with a convolutional layer
for dimension reduction such that the encoded sequence
space is reduced from 2D to 1D. The output is fed into
an inception module that contains two parallel branches,
each having two sequentially connected convolutional lay-
ers with branch-specific kernels to capture sequence features
of different scale. The first branch has kernel dimension
3 × 1 for both layers and the second has kernel dimension
11 × 1 and 21 × 1 sequentially. For each output of the con-
volution layers, the ReLU function is applied, followed sub-
sequently by 2 × 1 max-pooling (except first convolutional
layer on each branch), batch-normalization and a dropout
with a ratio of 0.2. The stride is equal to 1 throughout. The
output of the inception module is combined by concatena-
tion and added back to the input of the inception module
to form a short circuit or residual network. After a 2 × 1
max-pooling, a batch-normalization and a dropout layer,
the resulting layer is then passed onto an LSTM layer with
20 hidden memory units, followed by a dropout layer with a
ratio of 0.2. Finally, the IR + LSTM concludes with a dense
layer to predict output with linear activation function. The
different kernel dimensions in the inception branches were
chosen for the consideration to capture sequence proper-
ties including codon, poly-A/T tracks or 10-bp periodicity
of dinucleotide motifs that have been shown in the literature
to affect DNA sequence flexibility (see Results). The LSTM
layer further provides a holistic capturing of sequencing in-
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Figure 1. DNAcycP workflow and deep learning architecture. (A) Every sequence of 50 bp and its reverse complement are one-hot encoded into a 50 × 4 × 1
tensor, which are subsequently processed independently by the IR + LSTM deep learning architecture. The IR + LSTM outputs of each sequence and its
reverse complement are averaged and linearly detrended to output the predicted cyclizability score (C-score). (B) IR + LSTM architecture model starts
with a 3 × 4 two-dimensional convolution layer for dimension reduction of the sequence space from 2D to 1D. The output is fed into an inception module
that consists of two branches, each with two serial convolutional layers. One has same kernel size of 3 × 1 and the other has kernels of size 11 × 1 and
21 × 1 respectively. The outputs from the two branches are concatenated. The inception module output is added elementwise back on top of the input
of the inception module to form a residual network (or short circuit). Each convolutional layer is equipped with ReLU activation function, followed by
max-pooling (except first convolutional layer on each branch), batch-normalization, and 0.2 dropout layers. After a max-pooling, a batch-normalization,
and a dropout layers, the output from the residual module is passed onto an LSTM layer with 20 hidden memory units, followed by a dropout. A dense
layer follows the LSTM layer with linear activation function for prediction of intrinsic cyclizability score.

formation in the scale of entire input sequence length such
as the strength of periodicity of key dinucleotide motifs and
their phase angles etc.

We implemented the IR + LSTM pipeline using Keras
(https://github.com/fchollet/keras) environment with Ten-
sorFlow (54) as backend. The model was trained by stochas-
tic gradient descent algorithm using the rmsprop optimizer
with MSE loss function. To prevent over-fitting issue, an
early stopping technique, check-point, was used in the 10-
fold cross validation, and multiple drop-out layers were de-
ployed in the IR + LSTM architecture. We found a com-
mon mean-drift and variance-shrinkage issue with all mod-
els considered in this paper (55). The predicted values from
different runs often achieved similar correlation with the
ground truth but with pronounced overall mean shift and
variance shrinkage (see Note 1 in Supplementary Informa-
tion). To correct this bias, we added a detrend step to re-
move the linear trend in the finalized model.

RESULTS

DNAcycP training and model comparison

To implement IR + LSTM structure in DNAcycP for pre-
diction of intrinsic DNA cyclizability we first determined
which loop-seq library to use for model training purpose
among: (i) nucleosome library, (ii) random library, (iii) tiling
library and (iv) ChrV library as listed above. For a given
library the model training was performed under a 10-fold

cross-validation framework, i.e. the entire training set of
sequences was divided into 10-fold, 9-fold used for model
training and the last fold for model testing. Each model re-
sulting from the 10-fold cross-validation was further applied
to predict the intrinsic cyclizability score of the other three
test libraries. This allowed us to evaluate the model overall
performance and its robustness. As the cyclizability scores
are only comparable up to an additive library-specific con-
stant, Pearson correlation was used to evaluate the predic-
tion accuracy for external test libraries. Since the four li-
braries were constructed for different targeted sequences,
they may represent different sequence features in the se-
quence space. We aim to choose one that is most represen-
tative that can lead to robust overall performance.

Among four training libraries, IR + LSTM trained based
on tiling library achieved the highest prediction accuracy
measured by Pearson correlation. For the training data it-
self, the average Pearson correlation on the testing folds be-
tween predicted intrinsic cyclizability score and measured
intrinsic cyclizability score from loop-seq score is as high
as 0.916. Most remarkably, the prediction accuracy for the
three testing libraries, i.e. nucleosome, ChrV and random li-
braries is 0.893, 0.773, 0.930 respectively, superior to 0.860,
0.767, 0.885, the prediction accuracy achieved on the test
folds when models were trained based on the three indi-
vidual libraries (Supplementary Figure S1a). In addition,
the IR + LSTM model trained on tiling library performs
much more stable compared to the models trained on other

https://github.com/fchollet/keras
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libraries as reflected in the much smaller variance of predic-
tion accuracy observed in the cross-validation. This impli-
cates that the tiling library provides a more robust represen-
tation in the sequence space such that the sequence features
can be sufficiently learned with the current deep learning
architecture.

We also compared IR + LSTM with various architec-
tures from the literature. Some of the results are presented
in Supplementary Figure S1b–d (Supplementary Informa-
tion). The finalized DNAcycP software tool was based on
the best-performed IR + LSTM model from the 10-fold
cross validation trained on the tiling library. It is worth not-
ing that the training data (tiling library) was standardized
with 0 mean and unit variance. The standardization does
not change the prediction accuracy in terms of correlation,
but it provides two advantages. To facilitate the discussion
in the following context, we term the predicted intrinsic cy-
clizability ‘C-score’ and the experimentally determined in-
trinsic cyclizability score ‘loop-seq score’. Firstly, the C-
score directly indicates the statistical significance relative
to the population mean in yeast genome, i.e. a C-score of
1.96 in yeast genome tells it is 1.96 standard deviation above
genome average or it corresponds to ∼97.5% quantile of the
genome-wide C-score distribution. Secondly as the loop-seq
scores from different experiments are only comparable up to
an additive library-specific constant, the zero-mean in the
training data provides a convenient unified baseline (i.e. the
mean of yeast genome intrinsic cyclizability score defined as
0) that can be used to gauge the C-score predicted for other
species or other sequence libraries.

DNAcycP predicts intrinsic DNA cyclizability with high fi-
delity

We first investigated whether the predicted intrinsic cycliz-
ability score, C-score, can faithfully reproduce results from
the experimentally measured intrinsic cyclizability score by
loop-seq data in (38). To compare C-score and loop-seq
score, we first visualized the ChrV data on yeast genome
browser. Figure 2A exemplifies a typical region that shows
high consistency between C-score and loop-seq score (Pear-
son correlation = 0.908 in this region and 0.773 on entire
ChrV. Note loop-seq score is at resolution of 7 bp and C-
score is at 1 bp). This high consistency was further illus-
trated in the average C-score and loop-seq score patterns
around + 1 nucleosome dyad at 125 TSSs from ChrV (Fig-
ure 2B). We then expanded this analysis to entire genome
by selecting 3017 genes that have well annotated TSS sites
(39) and plotted the average C-scores around the TSSs. The
C-scores displayed a substantial dip upstream of TSS (Fig-
ure 2C), confirming the low bendability of DNA sequence
in nucleosome depleted region concluded in (38) based on
loop-seq data of 576 selected genes.

We next examined how C-score correlates with genome-
wide nucleosome positioning. When aligned at the dyads of
64 038 unique nucleosomes from (39), the C-score displayed
a synchronized phasing pattern as the nucleosomes occu-
pancy (Figure 2D). We further divided the nucleosomes into
four quartiles according to their nucleosome center posi-
tioning (NCP) score and calculated the average C-score of
each quartile, as well as the corresponding AA/TT/TA/AT

dinucleotide frequency (Figure 2E). The C-score in the nu-
cleosome region shows a positive correlation with the mag-
nitude of nucleosome center positioning (NCP) score. The
base pair resolution of C-score enables to reveal more de-
tails of the cyclizability score that were not revealed in the
loop-seq data due to its limitation of resolution. We observe
a pronounced fine 10-bp periodic pattern of C-score where
the C-score peaks align with the periodic AA/TT/TA/AT
dinucleotide motif peaks within nucleosome region (Figure
2E). In contrast to these dinucleotide sequence motifs, the
poly(dA:dT) tracts are well known to deplete nucleosome
occupancy for being too stiff (56,57). We plotted the aver-
age C-scores and loop-seq scores around poly(dA:dT) tracts
on ChrV for tract length exactly = 5, 7, 9 bp. Similar to the
loop-seq data, the C-score revealed a radical decline of in-
trinsic cyclizability as the tract length increased from 5 to 9
bp (Figure 2F), so was the nucleosome occupancy. This re-
sult demonstrates that the DNAcycP model has successfully
identified such sequence features that significantly impact
DNA cyclizability. Taken together we conclude the DNA-
cycP can reproduce the intrinsic cyclizability of DNA frag-
ments from the loop-seq assay faithfully.

Validation of C-score with independent experimental dataset

To validate C-score as a meaningful quantification of in-
trinsic DNA bendability independently from the loop-seq
data, we applied DNAcycP to the experimental dataset
(dataset 5 above) using a different cyclization assay (25).
In this system, highly cyclizable DNA sequences were se-
lected and enriched from a very large starting library of
random DNA sequences (90 bp), under an experimental
condition strongly favoring intramolecular DNA ligation.
Because of extraordinary complexity of the libraries (25),
this selection scheme did not actually offer a quantifiable
measurement of intrinsic bendability for individual DNA
sequences but provided libraries of DNA sequences hav-
ing varying degrees of enrichment for DNA sequences with
higher loopability. Thus, we ask whether the C-score can
distinguish the DNA fragments in these libraries that were
progressively selected for looping propensity. For each se-
quence of 90 bp, we computed the C-score for every 50 bp
using a sliding window of step size 1 bp. The resulting aver-
age C-scores of the 50-mers centered at positions from 25–
65 (note: score at position 25 is for DNA fragment from
position 1 to 50, etc.) shows a substantial progressive in-
crease from library L0 to L3, with median C-scores increas-
ing from –0.017 to 1.277 (Figure 3A), confirming the in-
creasing bendability of 90-mer DNA fragments. Interest-
ingly we found four pronounced bi-modal peaks in L2 and
L3 besides the elevated baseline compared to L0, evenly
spaced by ∼10.5 bp (Figure 3B). Rosanio et al (25) found
that the increasing looping propensity in L0–L3 is posi-
tively correlated with AA and GG dinucleotide periodic-
ity. We reproduced this plot by including all A/T or G/C
dinucleotide (i.e. AA/TT/TA/AT, GC/CG/GG/CC) and
found that the four pronounced C-score bi-modal peaks in
L2 and L3, centered at positions ∼31, 42, 52, 63 respec-
tively aligning with the AA/TT/AT/TA motif positions
(and anti-phase with GC/CG/GG/CC, Figure 3B). This
observation echoes the result from yeast data from Figure
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Figure 2. DNAcycP accurately predicts loop-seq quantified intrinsic cyclizability score on yeast genome. In all figures hereafter throughout this manuscript
the NCP scores and weighted occupancies are standardized over the genome with mean zero and unit variane for convenience of comparison with the
genome average. For all figures with C-score plot, the horizontal dash lines (grey) represent the genome average C-score for the species under consideration.
(A) Predicted intrinsic cyclizability score (C-score) versus loop-seq quantified intrinsic cyclizability score (loop-seq score) in an example region of yeast ChrV
shows high consistency with Pearson correlation = 0.908 (0.773 in entire ChrV). As DNAcycP was trained based on standardized intrinsic cyclizability
score, for convenience of comparison, the loop-seq score from ChrV was also standardized to have mean 0 and std = 1. (B) Mean loop-seq score and
C-score aligned at +1 nucleosome dyads downstream of TSSs from yeast ChrV. The unique nucleosome map was from (39). (C) Mean C-score and
nucleosome occupancy around 3017 TSSs from all chromosomes. (D) Mean C-score and nucleosome occupancy aligned at unique nucleosome dyads from
all chromosomes. (E) Mean C-score and dinucleotide AA/AT/TA/TT frequency aligned at nucleosome dyads. The four curves correspond to four quartiles
of the unique nucleosomes based on their NCP scores. (F) Average loop-seq scores (upper), C-scores (middle) and nucleosome occupancy (lower) around
poly(dA:dT) tracts on ChrV for tract length exactly = 5, 7, 9 bp.

2E, and supports the ‘wedge’ model that periodic position-
ing of such dinucleotide motifs contributes significantly to
inherent curvature of DNA (58); and the rotational phase
angle of the motifs in the sequence further affects the cy-
clizability in a finer scale. We plotted the C-score track of
randomly selected individual sequences from L3 and two
of these sequences are shown as examples in Figure 3C.
While both sequences displaying high average cyclizability,
the peak locations of C-scores distribute within the entire
interval and vary between sequences. The observed broad
distribution of intrinsic DNA bendability is consistent with
a recent Cryo EM study showing that closed circular 94 bp
DNA minicircles are smoothly bent without sharp kinks
(59). Therefore, our verification analysis further demon-

strates that the C-score provides a direct metric to measure
intrinsic bendability of DNA sequence on a relative and
quantitative scale.

DNA cyclizability varies between species

Unlike the loop-seq assay where the measured intrinsic cy-
clizability score may be affected by experimental proto-
col or library complexity, the C-score predicted by DNA-
cycP provides a unified baseline that allows direct com-
parison of cyclizability across libraries or species. We ap-
plied DNAcycP to multiple species ranging from bacte-
ria, archaea, to eucarya, including Escherichia coli, Es-
cherichia virus T4 (bacteriophage), Methanothermobacter
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Figure 3. Predicted intrinsic cyclizability score on an in vitro selected loopable DNA sequence dataset (25). From each library L0–L3, 100 000 sequences
were randomly selected. For each sequence of length 90 bp, C-score was predicted for every subsequence of 50bp using a sliding window. The score at 25
or 65 represents the 50-bp DNA fragments starting from position 1 or 41 respectively. (A) Violin- and box- plots of the mean C-score in 90 bp sequences
in L0 to L3. (B) Mean C-score and the average AA/AT/TA/TT and GG/GC/CG/CC frequency along all selected sequences in each library. (C) C-score
track plots for two randomly selected sequences from L3.

thermautotrophicus, Thermococcus kodakarensiss, S. cere-
visiae, Schizosaccharomyces pombe, Canis lupus familiaris
(dog), Macaca mulatta (monkey), Rattus norvegicus (rat),
Mus musculus (mouse) and Homo sapiens (human). Inter-
estingly, the genome-wide mean C-scores from all selected
mammal species are higher than the two bacteria (E. coli
and bacteriophage) and the two fungi species (S. cerevisiae
and S. pombe) (Figure 4A, Supplementary Table S1). Such
differences are statistically significant due to extremely large
sample size. For example, the P-value for S. cerevisiae and
dog comparison is < 2.2E–16 (other P-values are not listed).
Worth noting that the two archaea species display the high-
est C-scores among the species we have analyzed.

Using the predicted cyclizability we investigated whether
the observed relationship between DNA cyclizability and
nucleosome positioning in yeast is preserved in other
species. Because the high-resolution positioning map of nu-
cleosomes is essential for comparison, we focused on the
mouse genome using the unique nucleosome map from (60).
Indeed we found the C-score around the dyads of unique

nucleosomes has a synchronous phasing pattern of nucle-
osome occupancy (Figure 4B), and C-score is positively
correlated with the AA/TT/TA/AT dinucleotide frequency
(Figure 4C). Like in yeast, four major C-score peaks were
observed, roughly ∼ 3/4, 15 bp away from both sides of the
dyad, suggesting a ∼80 bp region of relatively high cycliz-
ability DNA sequence around nucleosome dyad (note: C-
score at position 15 from dyad measures the cyclizability of
fragment from position -9 to 40). A recent study showed
that strong sequence affinity is necessary for wrapping ∼80
bp DNA around (H3–H4)2 tetramer in initial stage of nucle-
osome forming (61). The observation from yeast and mouse
genomes concurs that cyclizability may present one essen-
tial aspect for DNA affinity for histone binding to form
the initial tetrasome, where the positioning of periodic din-
ucleotide motifs could be a main contributing sequence
feature. In contrast with the yeast result (Figure 2C), no
significant reduction of C-scores is observed upstream of
TSS, consistent with our previous finding that fragile nucle-
osomes occupy the previously designated nucleosome de-
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Figure 4. DNA intrinsic cyclizability across species. (A) Bar charts of average C-score of selected species. For non-mammalian species the C-score was
averaged over the entire genome, and for the five mammalians C-score was calculated based on Chromosome 1 for each species. (B) Mean C-score and
nucleosome occupancy aligned at unique nucleosome dyads from all chromosomes of mouse genome from (60). (C) Mean C-score and dinucleotide
AA/AT/TA/TT frequency aligned at nucleosome dyads of mouse genome. The four curves correspond to four quartiles of the unique nucleosomes based
on NCP scores. (D) Plots of C-score and nucleosome occupancy averaged over 20 811 TSSs of mouse genome.

pleted region (Figure 4D). Instead, the NCP scores exhibit
a big dip of nucleosome occupancy at about 50 bp down-
stream of TSS, accompanied by a sharper decline of DNA
cyclizability in the immediate downstream of TSS. The com-
bined results from yeast and mouse strongly support that
the intrinsic DNA mechanics plays an essential role in deter-
mination of the global nucleosome positioning in eukary-
otic species.

DNA cyclizability at transcription factor (TF) binding sites

In addition to its role in nucleosome formation, DNA cy-
clizability can directly affect the binding of TFs to their tar-
gets. It is well known that a number of TFs preferentially
bind to DNA in a bent conformation (2). For many TFs,
it remains an open question as to how DNA bending may
influence the formation of TF–DNA complexes. We used
the genome-wide C-score map to investigate how DNA
cyclizability may contribute for transcription factor (TF)
binding. Taking advantage of available ChIP-Seq datasets
for TFs from mouse embryonic stem cells (62), we com-
pared the landscape of accumulative C-score around 13
TFs. These include cMyc, CTCF, E2f1, Esrrb, NANOG,
Smad1, Zfx, Oct4, Sox2, Stat3, nMyc, Klf4 and E2f1 (Fig-
ure 5A and Supplementary Figure S2a). For most TFs,
the C-scores show statistically significant but only relatively
mild changes in the ±200 bp region or at the exact TF
binding sites compared to the genome average. However,
we surprisingly found that at the exact factor binding sites
for CTCF, the cyclizability is substantially higher. When we
zoomed in to individual sites, the C-scores at some CTCF
sites are dramatically elevated as shown in two examples
Figure 5B. Therefore, it appears that CTCF strongly favors
binding to a bendable target DNA.

We further investigated this unexpected mechanical fea-
ture of CTCF binding sites from two aspects. First, we asked

whether nucleosome positioning around CTCF sites con-
tributed to higher DNA cyclizability. We have previously
showed that CTCF and nucleosomes co-occupy the same
DNA target sequences (60). We sorted CTCF sites into four
quartiles based on CTCF motif score and compared the C-
score and NCP score between groups (Figure 5C, Supple-
mentary Figure S2b). At these sites, higher C-score corre-
lates with higher CTCF motif score, so is with higher NCP
score (Figure 5C) (see latter also in Figure 4B). To disentan-
gle whether the observed high C-score is due to nucleosome
sequence features or CTCF motifs, we first compared the C-
score at ±1, 0 nucleosome dyads relative to CTCF, where 0
nucleosome is defined as one in the unique map whose dyad
is within ±73 bp of CTCF, and ±1 nucleosome as the im-
mediate next nucleosome beyond ±73 bp of CTCF respec-
tively. Clearly the enrichment of C-score at 0 dyad (Figure
5D) or exact CTCF site (Figure 5A) is many folds as large
as that at −1/+1 dyad, suggesting the sequence features that
facilitate CTCF binding are the predominant contributor of
C-score at CTCF sites.

Next, we tested whether the C-score pattern associated
with CTCF is a universal feature across species. We com-
piled the CTCF ChIP-Seq maps from the liver tissue of
five mammalian species (63), including human (Hsap), dog
(Cfam), monkey (Mmul), mouse (Mmus) and rat (Rnor).
Indeed, the substantially enriched C-score around CTCF
is well conserved in all five species (Figure 5E). Lastly,
we asked what sequence features contributes to substan-
tially enlarged C-score at CTCF sites using simulation. We
first simulated 100 000 19-bp CTCF motif sequences us-
ing the motif model from https://jaspar.genereg.net/matrix/
MA0139.1/, and then extended each sequence by adding
same-length random sequences to both ends until reaching
length of 201 bp. The predicted C-score of these simulated
sequences shows a pronounced peak at CTCF sites (Figure
5F), but slightly lower than observed in Figure 5A, confirm-

https://jaspar.genereg.net/matrix/MA0139.1/
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Figure 5. Predicted cyclizability aligned near transcription factor binding sites. (A) Mean C-score around selected transcription factor binding sites on
mouse genome. The TF binding sites of mouse were from ChIP-Seq data (GSE11431, (62)). The exact TF binding sites were refined by scanning the
ChIP-seq peak vicinity region using motif model of the TFs (same for (E) below). (B) Two selected CTCF binding sites at ChrI:77 781 989 and ChrII:102
574 451 show two pronounced C-score peaks. (C) C-score (upper panel) and NCP-score (lower panel) averaged at the CTCF binding sites. Plotted are
for the lowest and highest quartiles (Q1 and Q4) based on CTCF binding site motif score. (D) Mean C-score and nucleosome occupancy at the −1, 0
and + 1 dyads of the nucleosomes around CTCF sites on mouse genome (unique nucleosome maps from (60)). The ‘0’ nucleosome dyad is defined as
the center of the nucleosome in the unique map that covers the given CTCF binding site, i.e. nucleosome center resides within ±73 bp of CTCF binding
site. The ‘−1’ and ‘+1’ nucleosome dyads refer to nucleosomes that do not cover a CTCF binding site, but their centers are within 221 bp upstream and
downstream respectively. (E) Mean C-score around CTCF binding sites mapped from liver tissue on five difference species: human (Hsap), dog (Cfam),
monkey (Mmul), mouse (Mmus), rat (Rnor) from a separate study (E-MTAB-437, (63)). (F) The 19-bp CTCF motif logo plot (left panel) and the mean
C-score over simulated CTCF motif sequence + extended random sequences (right panel). Using the motif model, we first simulated 19-bp CTCF motif
sequence and then extended it to both sides by a random model with equal length until reaching 201 bp. The mean C-score was averaged over 100 000
simulated sequences.
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ing that most of the enriched C-score observed in vivo is
attributable to the intrinsic CTCF motif sequence features.

Simulation study

One pronounced sequence feature associated with high cy-
clizability revealed by loop-seq and looping propensity data
is the presence of 10-bp periodic dinucleotide motifs. It re-
mains unclear to what extent such motifs may account for
the enriched DNA cyclizability. Using DNAcycP, we per-
formed two simulations as follows. Firstly, we randomly se-
lected 10 000 sequences from L3 library whose predicted C-
scores were above the 90th percentile of the set. Based on the
alignment of the 10,000 sequences, we trained a first order,
a second order and a third order time-dependent Markov
Chain models, from which we simulated 10 000 90-bp se-
quences for each. Such time-dependent Markov chain mod-
els are effective to capture the k-mer distribution along the
sequence for k up to the Markov chain order +1. Addition-
ally, we simulated 10 000 90-bp random sequences based
on the marginal A/C/G/T composition in the selected se-
quences. Secondly from the yeast unique nucleosome map,
we selected 6404 nucleosomes whose average C-score in the
dyads ±25 bp positions (which represent the average cycliz-
ability in the region of dyads ±50 bp) was above the 90th
percentile of the entire set. Like in the first simulation we
simulated four sets of 10 000 147-bp sequences following the
first, second, third order time-dependent Markov Chains
and random models respectively.

Unsurprisingly in both simulations the sequences from
the Markov Chain models perfectly preserved the aver-
age periodic AA/TT/TA/AT dinucleotide signal as in the
parental sequence sets (so were other dinucleotides, not pre-
sented), while not in the random sequence case (Figure
6A, B). In the L3-derieved data, the average C-scores for
the sequences from the random, first/second/third order
Markov chain models and sampled L3 sequences were 0.09,
1.29, 1.48, 1.55 and 2.68 respectively, suggesting that dinu-
cleotide motifs may contribute up to 46% of the increased
average C-score above the random model. Interestingly
the second or third order model, which accounts for the
position-dependent tri-/tetra-nucleotide distribution, fur-
ther raised 6% or 3% of C-score over the first/second or-
der model respectively. Likewise, in the nucleosome-derived
data, the mean C-score for sequences from the random,
first/second/third order Markov chain models and the sam-
pled nucleosome sequences were 0.10, 0.32, 0.40, 0.43 and
0.84 respectively, suggesting the dinucleotide motifs may
contribute up to 30% of the enlarged C-score compared
to the random model (Figure 6C, D). Accounting for tri-
/tetra-nucleotide signals further resulted in 11% or 4% in-
crement of C-score compared to the random model.

These results suggest that such position-specific k-mer
motifs (up to k = 4) may account for ∼50−60% of the
enriched cyclizability compared to random models. As the
number of parameters in the time-dependent Markov chain
increases exponentially with the order, good training of it
demands large number of sequences. Furthermore, the in-
crement of average C-score appears to attenuate rapidly as
Markov chain order reaches 3. Higher orders of models
were not pursued in this simulation. Instead, we hypothe-

size remote inter-positional DNA features that cannot be
accounted for by Markov chain models may play an impor-
tant role to account for the gap of cyclizability score ob-
served from the real and simulated sequences. The high pre-
diction accuracy of DNAcycP demonstrated the capability
of deep learning models in learning such features to fill in
the prediction accuracy gap beyond k-mer models.

DNAcycP software tool

Quantitative measurement of DNA mechanical properties
such as cyclizability has broad and important applications
in biology and DNA nanotechnology (1,16). The recently
developed loop-seq method provides the first large-scale
practical quantification of DNA cyclizability (38). In this
study, we have leveraged these valuable datasets and devel-
oped a deep learning approach to predict DNA cyclizability
solely based on sequence. To facilitate easy access and us-
age of DNAcycP, we implemented DNAcycP software tool
in two formats, a web server available at http://DNAcycP.
stats.northwestern.edu for real-time prediction and visual-
ization of C-score up to 20 000 bp (see screenshots of web
server in Figure 7), and a standalone Python package avail-
able for free download from https://github.com/jipingw.

DISCUSSION

High throughput loop-seq assay provides the first quantita-
tive measure of DNA cyclizability (38). The landscape of
intrinsic cyclizability derived from the experimental data
based on yeast genome has greatly improved our under-
standing of how DNA mechanics contribute to nucleosome
organization. In this study, the same genome-scale datasets
enable us to develop a deep-learning model that can faith-
fully reproduce the intrinsic cyclizability quantified by loop-
seq experiments. More importantly, although DNAcycP
was trained based on yeast tiling library, it achieves desired
prediction accuracy and effectiveness for external data sets,
particularly for the random library and the looping propen-
sity data where sequences were randomly generated and
carry no coding information, indicating that DNAcycP can
be applied to other species.

When we applied DNAcycP to predict intrinsic DNA cy-
clizability for different species, several interesting features
have emerged. First, in line with the recent findings from
yeast (38), DNA cyclizability correlates with the chemically
defined high-resolution nucleosome positioning informa-
tion in the mouse genome, namely, the central region of nu-
cleosomes favors DNA sequences susceptible for bending to
form stable interaction with H3−H4 tetramers. Worth not-
ing that among species we analyzed, the two archaea species
exhibit the highest C-scores. It is known that M. thermau-
totrophicus and T. kodakarensiss have special nucleosome
structure that involves only ∼60 bp DNAs to wrap around
(H3 + H4)2 tetramer (64,65). It is possible that relative
larger cyclizability might contribute to sharp bend of DNA
required to form special architecture of nucleosomes in ar-
chaea species. Second, nucleosome depleted regions in gen-
eral correlate with lower DNA bendability in the genome
(Figure 2F), further supporting the idea that DNA cycliz-
ability is a contributing factor in nucleosome positioning.

http://DNAcycP.stats.northwestern.edu
https://github.com/jipingw
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Figure 6. Simulation study. (A) C-score distributions for simulated sequences based on L3 data. A random sample of 10 000 sequences drawn from L3
library with C-scores above the 90th percentile of L3. Plotted are C-scores for this selected set (red); 10 000 90-bp sequences simulated from a random model
based on the marginal A/C/G/T composition in the selected L3 set (blue); 10 000 90-bp sequences simulated from first/second/third order time-dependent
Markov chain models trained from the 10,000 selected L3 set (black/green/purple respectively). (B) Average AA/TT/TA/AT dinucleotide frequency from
five sets listed in (A). (C) C-score distributions for simulated sequences based on the nucleosome data. 6,404 nucleosomes were selected from the unique
map of yeast whose average C-scores in dyad ±25 bp region were above the 90th percentile of the entire set. Sequences were simulated in the exact same
way as in L3 data above except the sequence length was 147 bp. (D) Average AA/TT/TA/AT dinucleotide signals from five sets listed in (C).

Third, various TFs may have different preferences for DNA
bendability at their binding sites. CTCF binding motif dis-
plays an unexpected feature with high DNA bendability
that are conserved in mammals (Figure 5). While the biolog-
ical significance of this surprising feature remains unknown,
we speculate that this mechanical property may be related to
the role of CTCF in promoting loop extrusion (66). Alter-
natively, our recent chemical mapping data showed CTCF
may act as a pioneer factor that binds to DNA sequence on
the surface of a nucleosome (60,67). If so, a sharply bent
CTCF motif may have evolved to accommodate the for-
mation of CTCF-nucleosome complex. Future experiments
will be necessary to explore these possibilities.

On the experimental side, the current DNAcycP is rooted
in loop-seq data from yeast data. As more experimental
datasets from different species become available, more train-
ings and tests will be performed to verify and potentially im-
prove the current version of DNAcycP. One important fu-

ture direction is to acquire loop-seq data that will allow us
to test how epigenetic modifications such as DNA methyla-
tion will affect DNA bendability (68,69). Once such data are
generated, a new version of methyl-DNAcycP will be imple-
mented to evaluate and predict the effect of DNA methy-
lation on DNA mechanics. Additionally, at the technical
level, the current version carries some limitations that loop-
seq assay may have. For example, the C-score is only de-
fined based on every sequence fragment of 50 bp. DNA-
cycP cannot be used to predict cyclizability for shorter
sequences.

On the computational side, DNAcycP was implemented
based on a structure with a hybrid of inception and resid-
ual modules and an LSTM layer. Combining convolutional
and LSTM layers has been often used in modeling DNA
sequences (38,48,52). The LSTM layer is intended to find
the relation of most relevant features summarized from the
convolutional layers, such as the recurrent or periodic key
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Figure 7. DNAcycP web server. (A) A screenshot of DNAcycP web server interface available at http://cyclizability.stats.northwestern.edu. The user can
either submit a single sequence up to 20 000 bp in FASTA file or copy and paste the DNA sequence directly into the text box. (B) Visualization of DNAcycP
predicted C-score by embedded IGV genome browser and data downloading. User can zoom in to see local details of the C-score distribution or download
the C-core in WIG format.

dinucleotide signals that have been proven predictive of the
sequence bendability. The inception module, i.e. the paral-
lel branches, allows us to use different filter sizes to extract
important sequence features at different scale, which are
subsequently concatenated and passed onto next layer. The
residual network structure is often used to effectively recycle
the useful information missed by the convolutional layers
to prevent decay of performance due to deeper convolution
layers. We ended up with IR + LSTM architecture for its
competitive performance and relative better computing effi-
ciency compared to many models we experimented (Supple-
mentary information). Due to the vast amount of available
architectures or model variants, exhaustive search of mod-
els is implausible. One biggest advantage of deep learning
model lies in its ability to explore the model space to create
a complex and nonlinear model for high prediction accu-
racy. We observed a mean-drift issue in the proposed and
other deep-learning structures implemented in the Keras
environment and corrected it by a linear detrending proce-
dure. However, we are unable to directly verify whether this
detrending procedure is transferrable to external test data or
data from other species because the measured cyclizability
score is subject to a library-specific constant. One possibil-
ity for future loop-seq experiments is to include a robust set
of spike-in controls, based on which the cyclizability scores
across libraries can be normalized. Once such data is avail-
able further investigation of this matter will be performed
and the online DNAcycP tool will be updated. Another as-
pect of future work is to quantify the uncertainty of the C-
score prediction. The prediction uncertainty may arise from
two aspects in the deep learning models. One from the un-
certainty of model training/estimation and the other from

random noise. For the model training/estimation side, the
complexity of the deep learning model prevents us from
quantifying the uncertainty analytically. One could fit the
deep learning model many times and apply the resulting
models to the data under prediction to obtain uncertainty
measure, which though could be computational expensive.
For the second aspect, it is questionable whether a constant
Gaussian noise can be assigned. Given this, we leave this as
an open question for future work.

Unique to this work, we have by serendipity found that
CTCF binding motif is an inherently flexible DNA se-
quence, only representing a tiny portion of sequence space
that account for varying degrees of DNA bending capac-
ity. Consistent with a long-standing notion in the field,
our DNAcycP prediction and simulation studies have ver-
ified that the 10-bp periodic dinucleotide signals is one
contributing sequence features for cyclizability of DNA
sequence. Our simulation study demonstrated that the
position-dependent k-mer motifs may account for 50–60%
elevated cyclizability compared to the random model. The
Markov chain models can well represent the local sequence
dependence (i.e. k-mer) because of the Markovian prop-
erty, while they cannot effectively model the dependence
in longer ranges such as 20 or 30 bp away given the lim-
itation of orders. The deep learning models excel in this
regard through convolution layers with appropriate filter
dimension or LSTM layers. The tradeoff is its black box
nature and lack of interpretability. Besides this known se-
quence feature, a combination of DNAcycP and other com-
putational methods is under investigation for deeper under-
standing of determinants of DNA intrinsic bendability in
the future.

http://cyclizability.stats.northwestern.edu
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DATA AVAILABILITY

DNAcycP web server available at http://DNAcycP.stats.
northwestern.edu for real-time prediction and visualization
of C-score up to 20K bp, and a standalone Python pack-
age available for free download from https://github.com/
jipingw. R/Python codes for data processing are available
upon request.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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