
RESEARCH ARTICLE

Sim2Ls: FAIR simulation workflows and data

Martin Hunt1, Steven Clark2, Daniel Mejia3, Saaketh Desai4, Alejandro Strachan3,5*

1 Halıcıoğlu Data Science Institute, University of California at San Diego, La Jolla, California, United States of

America, 2 San Diego Supercomputer Center, University of California at San Diego, La Jolla, California,

United States of America, 3 Network for Computational Nanotechnology, Purdue University, West Lafayette,

Indiana, United States of America, 4 Center for Integrated Nanotechnologies, Sandia National Laboratories,

Albuquerque, New Mexico, United States of America, 5 School of Materials Engineering, Purdue University,

West Lafayette, Indiana, United States of America

* strachan@purdue.edu

Abstract

Just like the scientific data they generate, simulation workflows for research should be find-

able, accessible, interoperable, and reusable (FAIR). However, while significant progress

has been made towards FAIR data, the majority of science and engineering workflows used

in research remain poorly documented and often unavailable, involving ad hoc scripts and

manual steps, hindering reproducibility and stifling progress. We introduce Sim2Ls (pro-

nounced simtools) and the Sim2L Python library that allow developers to create and share

end-to-end computational workflows with well-defined and verified inputs and outputs. The

Sim2L library makes Sim2Ls, their requirements, and their services discoverable, verifies

inputs and outputs, and automatically stores results in a globally-accessible simulation

cache and results database. This simulation ecosystem is available in nanoHUB, an open

platform that also provides publication services for Sim2Ls, a computational environment for

developers and users, and the hardware to execute runs and store results at no cost. We

exemplify the use of Sim2Ls using two applications and discuss best practices towards

FAIR simulation workflows and associated data.

I. Introduction

Scientific progress is based on the ability of researchers to independently reproduce published

results and verify inferences [1, 2]. These results are nearly universally obtained via complex,

multi-step, workflows involving experiments and/or simulations with multiple inputs, data

collection, and analysis. It is often the case that, even when the authors carefully document

their procedures, reproducing published results requires a significant investment of time even

for experts. This is true both in experimental and computational work, it slows down progress

and results in wasted resources. A related issue hindering innovation is the fact that the major-

ity of the data generated during research is not made available to the community and the frac-

tion that is used in publications, generally skewed, is often not findable or queryable. This is

particularly problematic with the increasingly important role machine learning is playing in

physical sciences and engineering [3, 4]. Guidelines to making data findable, accessible, inter-

operable, and reusable (FAIR) have been put forward [5] and a variety of concrete efforts to

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0264492 March 10, 2022 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hunt M, Clark S, Mejia D, Desai S,

Strachan A (2022) Sim2Ls: FAIR simulation

workflows and data. PLoS ONE 17(3): e0264492.

https://doi.org/10.1371/journal.pone.0264492

Editor: Parag A. Deshpande, Indian Institute of

Technology Kharagpur, INDIA

Received: December 13, 2021

Accepted: February 10, 2022

Published: March 10, 2022

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All data generated

from the use of Sim2Ls is automatically cached by

nanoHUB and indexed in the ResultsDB that can be

queried by all nanoHUB users at https://nanohub.

org/developer/api/endpoint/dbexplorer. nanoHUB

accounts are free and can be opened at: https://

nanohub.org/register/. The Sim2L library is

available for online simulation in the open platform

nanoHUB https://nanohub.org, and for download at

https://github.com/hubzero/simtool.

Documentation is available at https://simtool.

readthedocs.io/en/stable/.

https://doi.org/10.1371/journal.pone.0264492
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264492&domain=pdf&date_stamp=2022-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264492&domain=pdf&date_stamp=2022-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264492&domain=pdf&date_stamp=2022-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264492&domain=pdf&date_stamp=2022-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264492&domain=pdf&date_stamp=2022-03-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264492&domain=pdf&date_stamp=2022-03-10
https://doi.org/10.1371/journal.pone.0264492
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://nanohub.org/developer/api/endpoint/dbexplorer
https://nanohub.org/developer/api/endpoint/dbexplorer
https://nanohub.org/register/
https://nanohub.org/register/
https://nanohub.org
https://github.com/hubzero/simtool
https://simtool.readthedocs.io/en/stable/
https://simtool.readthedocs.io/en/stable/


tackle these issues have been launched in recent years. Examples in the physical sciences range

from open and queryable repositories of materials properties, both computational and experi-

mental [6–10], to publications devoted to scientific data [11] as well as infrastructure to publish

and share models [12–14].

FAIR principles apply not just to scientific data but also to research workflows used to gen-

erate them, this is particularly true for computational workflows where documentation,

automatization, and reproducibility are easier than in experiments [15]. Growing interest in

making workflows available are reflected by the increasing popularity of Git repositories [16]

and Jupyter [17]. Notable examples of reproducible workflows include ab initio calculations

performed in the Materials Project [18], openKIM property calculations [19], osteoarthritis

image processing [20]. In addition, several publishers require either data availability state-

ments or all data and codes to be made available [21]; some have also developed lists of sug-

gested repositories, see, for example Ref. [22]. Despite these laudable efforts, the majority of

research workflows used in published research are described in incomplete terms and using

technical English as opposed to using specialized tools. Furthermore they often involve ad hoc

analysis scripts and manual steps that conspire against automation and reproducibility. This is

in part due to the lack of general tools for the development and publication of computational

tools with well defined, verifiable, and discoverable inputs and outputs and the automatic stor-

age of results.

To address these gaps we introduce Sim2Ls, a library to create and share end-to-end

computational workflows with verified inputs and outputs, see Fig 1 for a schematic represen-

tation of the ecosystem. These workflows have verified inputs and outputs, could launch large-

scale simulations in high-performance computing resources, employ a simulation cache to re-

use previous runs, and index results in a database to enable querying. The Sim2L library is

Fig 1. Simtool ecosystem diagram.

https://doi.org/10.1371/journal.pone.0264492.g001

PLOS ONE Sim2Ls: FAIR simulation workflows and data

PLOS ONE | https://doi.org/10.1371/journal.pone.0264492 March 10, 2022 2 / 14

Funding: This work was partially supported by the

Network for Computational Nanotechnology, a

project of the US National Science Foundation,

through a grant awarded to MH, SC, DM, SD, and

AS (EEC-1227110). This work was also partially

supported by Sandia National Laboratories, a

multi-mission laboratory managed and operated by

National Technology and Engineering Solutions of

Sandia, LLC., a wholly owned subsidiary of

Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security

Administration through a contract awarded to SD

(DE-NA0003525). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0264492.g001
https://doi.org/10.1371/journal.pone.0264492


available via the US National Science Foundation’s nanoHUB [13] which also provides services

for workflow publication, free and open online simulations of published Sim2Ls, automatic

caching of simulation runs, and indexing of the outputs in a queryable database. This ecosys-

tem makes Sim2Ls, their services, requirements, and the results they produce FAIR. The

Sim2L library is available at https://github.com/hubzero/simtool and its documentation at

https://simtool.readthedocs.io/en/stable/. At the time of writing there are currently 8 published

Sim2Ls in nanoHUB some of which have served nearly 100 users who performed thousands of

simulations, see for example Ref. [23]. The remainder of this paper discusses the elements of a

Sim2L and the Sim2L library (Section II), provides examples of their use (Section III), followed

by general Sim2L design guidelines for developers (Section IV) and conclusions.

II. Sim2Ls and the Sim2L library

A. Elements of a Sim2L
Sim2Ls are developed and stored in Jupyter notebooks. As depicted in Fig 2, the main compo-

nents of a Sim2L are: i) declaration of input and output variables using YAML [24], ii) note-

book parameterization cells that use PaperMill [24], iii) the computational workflow

connecting inputs to outputs, including all pre and post-processing and computations (this

step can involve accessing external data resources and launching parallel simulation to external

high-performance computing systems), and iv) population of all the output fields. Each ele-

ment of a Sim2L is described in detail in the following paragraphs and subsection IIB describes

the Sim2L library through which users interact with Sim2Ls.
Description. The Sim2L notebook should contain a cell tagged as DESCRIPTION. The

plain text content of the cell should provide an overview of the Sim2L requirements (inputs)

Fig 2. Elements of a Sim2L.

https://doi.org/10.1371/journal.pone.0264492.g002

PLOS ONE Sim2Ls: FAIR simulation workflows and data

PLOS ONE | https://doi.org/10.1371/journal.pone.0264492 March 10, 2022 3 / 14

https://github.com/hubzero/simtool
https://simtool.readthedocs.io/en/stable/
https://doi.org/10.1371/journal.pone.0264492.g002
https://doi.org/10.1371/journal.pone.0264492


and services (outputs) provided, this information is reported when using the Sim2L library to

query for available Sim2Ls.
Inputs. One of the fundamental aspects of a Sim2L is that all independent input variables

(those that users will be allowed to control) need to be declared and enumerated as a fixed list.

Importantly, developers can specify acceptable ranges for numerical variables. All inputs and

their values are checked before execution and only simulations with all valid inputs are

accepted. Sim2L developers should decide which parameters will be adjustable by users and

which ones will be hard-coded. The hard-coded parameters and the ranges associated with the

various adjustable inputs should be designed to result in meaningful simulations. Importantly,

by selecting the list of adjustable parameters and their ranges, developers can focus their

Sim2Ls on specific tasks and minimize the chance of erroneous runs due to unphysical or oth-

erwise inappropriate input parameters. This is an important feature of Sim2Ls as most research

codes do not perform such checks. In addition, while most scientific software has broad appli-

cability, Sim2Ls enable developers to design workflows for specific tasks, and the explicit decla-

ration of input and outputs enables queries to Sim2L results. As will be discussed in Section

IV, this is important to make the workflows and their data findable and reusable.

Sim2Ls accept ten types of input variables: Boolean, Integer, Number, Array, Text,

Choice, List, Dictionary, Image, and Element. All input types have shared charac-

teristics: type, description, and value. The Integer and Number types additionally accept

minimum and maximum values and the Number and Array types can have units. Unit con-

version between user-provided input data and simulation input data is performed automati-

cally using the Pint [25] library. An Image refers to a file using one of several popular formats

including PPM, PNG, JPEG, GIF, TIFF, and BMP. The Element type allows specification of

several chemical element properties using only the periodic table identifier, this is powered by

the mendeleev [26] library. The Array, Text, List, Dictionary, and Image types may

be provided as files or Python variables of the proper type. All Sim2L inputs must be enumer-

ated in a single notebook cell using YAML. The tool Introduction to SimTools includes all pos-

sible input types and exemplifies their use [27].

Parameterization. The Sim2L notebook must contain a cell tagged as parameters.

The cell should contain an assignment statement for each input. The example given in Fig 2

sets specific values to the input variables, this is useful for developers during testing. The func-

tion getValidatedInputs from the Sim2L library should be used in the parameterization

cell to set default values; this is exemplified in Ref. [27]. When using the Sim2L library to exe-

cute a simulation the parameter values will be replaced by those provided by the user.

Workflow. Following the parameters cell, Sim2Ls should include the workflow

required to generate the outputs (described below) from the inputs. This workflow can include

multiple simulations, including parallel runs in HPC resources. Within nanoHUB the submit
command [28] enables users to launch simulations in various venues outside the execution

host that powers the notebook. Importantly, this workflow should contain all the pre- and

post- processing steps required to turn inputs into outputs. While these steps are often consid-

ered unimportant and poorly described in many publications, they can significantly affect

results [29].

Outputs. Another key aspect of a Sim2L is that all outputs of interest must be enumerated

as a fixed list. It should be noted that there is a difference between a Sim2L output and the sim-

ulation results. A scientific application may produce many more results than what is reported

by a Sim2L as outputs. Like inputs, outputs are not optional, if an output is declared it must be

saved during the simulation or the Sim2L library will return an error. Output types are the

same as the ten input types described above. All Sim2L outputs must be enumerated in a single

notebook cell using YAML. Developers might be tempted to include important outputs in files

PLOS ONE Sim2Ls: FAIR simulation workflows and data

PLOS ONE | https://doi.org/10.1371/journal.pone.0264492 March 10, 2022 4 / 14

https://doi.org/10.1371/journal.pone.0264492


with ad hoc formatting. This is discouraged as it precludes the results from being discoverable

and querieable and hinders the re-use of simulations.

Files. The Sim2L notebook may contain an optional cell tagged FILES. The cell contains

a list of auxiliary files required by the Sim2L notebook. Examples would be additional Python

files containing utility methods to support the simulation. In some cases it might be useful to

provide files containing static data.

B. Interacting with Sim2Ls: Sim2L library

Users and developers interact with Sim2Ls using the Sim2L library, see Fig 3. This library

enables users to find deployed Sim2Ls, their requirements (inputs), and services (outputs); it

also provides a mechanism to executing them.

Exploring Sim2Ls and setting up runs. The findSimTools command enables users to

discover available Sim2Ls and descriptions. This command can be combined with the get-
SimToolInputs and getSimToolOutputs to find Sim2Ls that provide the services of

interest.

The Sim2L library also facilitates simulation by providing an object used to declare all

required inputs. This object is passed back to the Sim2L library for parameterization and exe-

cution. Upon completion of the simulation a second object gives access to all declared simula-

tion outputs. After the successful execution of a Sim2L, the resulting notebook (including all

inputs and outputs) is automatically stored in nanoHUB’s simulation cache.

When a new Sim2L run is requested, the Sim2L library checks the cache before execution. If

a perfect match is found, the Sim2L library pulls the result from the cache. This not only saves

compute cycles (with the consequent energy savings and reduction in carbon footprint) but

also provides users with results nearly instantaneously. The simulation cache is particularly

Fig 3. Discovering, parameterizing, executing, and analyzing Sim2Ls.

https://doi.org/10.1371/journal.pone.0264492.g003

PLOS ONE Sim2Ls: FAIR simulation workflows and data

PLOS ONE | https://doi.org/10.1371/journal.pone.0264492 March 10, 2022 5 / 14

https://doi.org/10.1371/journal.pone.0264492.g003
https://doi.org/10.1371/journal.pone.0264492


useful for computationally intensive tools and for classroom use when many users perform

identical simulations.

Execution. The papermill [24] library is used to execute the code contained in the Sim2L
notebook. The constrained nature of Sim2Lsmeans that only the Sim2L notebook, self

declared additional files, and optional user provided input files need be provided to run a sim-

ulation. This well-defined structure lends itself to being able to run simulations in a variety of

venues. By default, simulations are executed within the HUBzero tool session environment

[28]. Another option is to build Docker or Singularity containers that mimic the HUBzero

environment. Such containers can then be distributed to other locations and executed. This

strategy is used to execute Sim2Ls utilizing MPI or other parallel computational methods. The

use of off-site execution utilizes the submit command and requires only minimal additional

specification including maximum wall time and number of cores to be provided. The use of

containers allows our team to deploy simulation execution to various resources without modi-

fying the Sim2L itself, eliminating the need for developer customization.

The following lists the Sim2L library functions available to interact with Sim2Ls.

• findSimTools—find all installed and published Sim2Ls. In addition to name and revi-

sion a brief description is returned for each Sim2L.

• searchForSimTool—search for a particular Sim2L. The search may include a specific

revision requirement.

• getSimToolInputs—get definition of each input for given Sim2L. Definition includes

name and type for each variable plus type dependent information such as units, minimum,

maximum, description, default value.

• getSimToolOutputs—get definition of each output for given Sim2L. Definition

includes name and type for each variable plus type dependent information such as units and

description.

• Run—method to run specific Sim2L with provided input values. In addition more informa-

tion may be provided if the simulation is to be executed remotely. There is also an option to

control data exchange with the results cache.

C. Publishing a Sim2L, simulation caching, and results database

Once tested by developers the process of tool publication makes them available to nanoHUB

users. Every published nanoHUB tool is assigned a digital object identifier (DOI) which is

updated as new versions are released. The tool publication process enables developers to spec-

ify authorship, acknowledgments, provide appropriate references, and describe the tool.

Optional supporting material can be included with the tool. Once published, nanoHUB tools,

including Sim2Ls, are indexed by Google Scholar and Web of Science. Published Sim2Ls can

be invoked by users from any Jupyter notebook running in nanoHUB which enables them to

be invoked in high-throughput or machine learning workflows called Apps, see Section III.

As mentioned above, every successful Sim2L run performed on behalf of users is stored in

nanoHUB’s simulation cache and the Sim2L outputs indexed and stored in the results database

(resultsDB). Thus, when a user requests a simulation previously performed it is retrieved from

the cache. This results in faster response time for the user and saves computational resources.

Finally, the resultsDB can be queried using an API. Thus, every Sim2L performed in nanoHUB

is automatically stored and the results are queryable.

PLOS ONE Sim2Ls: FAIR simulation workflows and data

PLOS ONE | https://doi.org/10.1371/journal.pone.0264492 March 10, 2022 6 / 14

https://doi.org/10.1371/journal.pone.0264492


III. Sim2L examples

A. Melting temperature calculations using molecular dynamics

TheMelting point simulation using OpenKIM Sim2L [23] in nanoHUB calculates the melting

temperature of metals using molecular dynamics simulations. Users specify the element of

interest, the model to describe atomic interactions, any additional simulation parameters, and

the Sim2L calculates the melting temperature of the material of choice using the two-phase

coexistence method [30]. In this approach one seeks to achieve the coexistence between a liq-

uid and a crystal phase, by definition the temperature at which this occurs is the melting tem-

perature of the system. The tool creates a simulation cell, assigns initial temperature values to

two halves of the simulation box and, after a short equilibration, performs a molecular dynam-

ics simulation under constant pressure and enthalpy. The choice of ensemble results in the sys-

tem temperature naturally evolving towards the melting temperature and if coexistence is

observed once the system reaches steady-state, the system temperature corresponds to the

melting temperature. If the entire cell ends up as a solid, the initial temperatures were too low

and should be adjusted upward. Conversely, if the entire system melts, the initial temperatures

were too high. The Sim2L sets up, executes, and analyzes the simulation results. The simulation

reports the fraction of solid and liquid phases, the time evolution of the instantaneous temper-

ature and the overall system temperature with a confidence interval. In addition, the Sim2L
analyzes the data to report whether a meaningful melting temperature can be extracted from

the simulation. Below is a description of the key inputs and outputs, focusing on the use of the

Sim2L library to standardize this melting point calculation protocol. The Sim2L is available for

online simulation in nanoHUB [23].

1. Inputs. Material. Users input the element for which they wish to calculate the melting

temperature. This input can be one of 29 metals, listed explicitly in the ‘options’ keyword of

the Sim2L input. This explicit listing allows users to quickly inspect this Sim2L input and deter-

mine the list of allowed elements. The complete list of elements can be found in Ref. [23].

Mass. The Sim2L requires the atomic mass of the material as an input, this is of type ‘Ele-

ment’. This allows users to either specify a numeric mass value or simply specify the symbol of

the element, which the Sim2L library uses to automatically obtain the mass.

Crystal structure and lattice parameter. The crystal structure can be specified to be face cen-

tered cubic (FCC), body centered cubic (BCC) or hexagonal close packed (HCP). The ‘options’

feature for this input prevents users from selecting any other crystal. The Sim2L expects the lat-

tice parameter to be a number between 2 and 10 Å. However, by leveraging the Pint unit con-

version tool [25], the Sim2L library allows users to specify the lattice parameter in any units.

The Sim2L library automatically handles unit conversion and checks whether the converted

value belongs to the range of the Sim2L input. Thus, a user input of ‘0.5 nm’ is automatically

converted to 5 Å, but a user input of ‘5 nm’ will result in an error as the input is internally con-

verted to 50 Å, beyond the range allowed by the Sim2L.

Solid and liquid temperatures. The Sim2L inputs also include the initial temperatures to

assign to the solid and the liquid regions of the simulation. Users can enter temperatures in

any units as the Sim2L library automatically converts them to Kelvin.

Run time. Users can also specify the time for which the coexistence calculation is carried

out. The run time determines whether the simulation is converged or not. Short run times can

result in non-steady state conditions and unreliable calculations. The run-time is also inter-

nally converted to femtoseconds, with a default of 50000 fs or 50 ps.

Interatomic model. Every molecular dynamics simulation requires an interatomic model to

describe the interactions between atoms. Themeltingkim Sim2L obtains the user-specified

interatomic model from the OpenKIM repository [31].

PLOS ONE Sim2Ls: FAIR simulation workflows and data

PLOS ONE | https://doi.org/10.1371/journal.pone.0264492 March 10, 2022 7 / 14

https://doi.org/10.1371/journal.pone.0264492


2. Workflow and outputs. The Sim2L takes in all the user inputs, creates an input file for

the parallel molecular dynamics code LAMMPS [32], executes the simulations, and post-pro-

cesses the results to determine the melting temperature if the simulation was successful. We

describe the workflow is some detail to exemplify the various steps and decisions required,

even for a relatively simple and standard calculation. The Sim2L documents all these steps

facilitating reproducibility and accelerating progress as researchers can re-use parts or the

entirity of the workflow.

The Sim2L first creates a system with the requested crystal structure and lattice parameter

and initializes the solid and liquid with atomic velocities matching the specified temperatures.

The user specified OpenKIM interatomic model is then downloaded from OpenKIM using

their API. The KIM model name is included in the LAMMPS input file such that OpenKIM

can interface with LAMMPS and modify any LAMMPS setting (units, atom style etc.) to run

the simulation.

Once the system is initialized, the simulation cell parameters and atomic positions are

relaxed via energy minimization. The system is then equilibrated under atmospheric pressure

for 10 ps, using two independent thermostats applied to the solid and liquid regions to keep

the regions at the user-specified temperatures. Following the thermalization, the system is

evolved via molecular dynamics under constant pressure and enthalpy (no thermostats), for

the run time specified by the user. This phase of the simulation results either in the coexistence

of solid and liquid phases (success) or a single phase; the latter indicates that initial tempera-

tures need to be modified and a new simulation must be performed.

The raw output from LAMMPS is also post-processed by the Sim2L to provide users with

information about the simulation. Not just the systems temperature but also if both solid and

liquid are coexisting in equilibrium. The final atomic configuration from the simulation is ana-

lyzed to establish whether solid-liquid coexistence exists at the end of the simulation or the sys-

tem evolved into a single phase. This is done by analyzing the local environment of each atom

using the polyhedral template matching algorithm [33] as implemented in OVITO [34]. Each

atom is classified into one of many crystal structures based on its neighborhood, with any

atom having an unknown neighborhood identified as liquid.

Based on this analysis a boolean output variable, ‘coexistence’, is determined. If 35% to 65%

of the atoms are identified to belong to the initial crystal structure and if 35% to 65% of the

atoms are identified as liquid, the system is deemed to have achieved coexistence and the out-

put variable is set to TRUE. The Sim2L also outputs a snapshot of the final atomic configura-

tion, for the users to visually inspect coexistence, see bottom panel in Fig 3.

The second test to establish a successful melting temperature the Sim2L performs is to

check if the system is in equilibrium. To do this, it computes the the slope of the instantaneous

temperature vs. time over the 20 ps of the simulation. If the absolute value of the slope is less or

equal to 10 K/ps equilibrium is declared and a second boolean variable, ‘steady state’, is set to

TRUE. Lastly, the temperature obtained from the last 20 ps of the simulation is reported as an

output and fluctuations of the instantaneous temperature are used to determine the 95% confi-

dence interval on the melting temperature.

The Sim2L then saves the melting temperature, the confidence interval, the ‘coexistence’

and ‘steady state’ flags, and the fraction of atoms belonging to each crystal structure. This is

performed using the save() command from the Sim2L library that allows these results to be

stored in the Results Database, for easy access later.

3. Invoking the Sim2L and example results. The tool [23] also contains a Jupyter note-

book to invoke the Sim2L and demonstrate its use. This driver notebook exemplifies the use of

getSimToolInputs() and getSimToolOutputs() functions to understand the

Sim2L inputs and outputs, following which the user specifies some or all of the inputs. For

PLOS ONE Sim2Ls: FAIR simulation workflows and data

PLOS ONE | https://doi.org/10.1371/journal.pone.0264492 March 10, 2022 8 / 14

https://doi.org/10.1371/journal.pone.0264492


unspecified inputs, the Sim2L uses default values, which are also displayed when the getSim-
ToolInputs() function is called. The Run() function invokes the Sim2L by passing it all

user inputs, which the Sim2L then uses to launch the the LAMMPS simulation and save the

outputs to the Results Database. The getResultSummary() function can then be used to

get a dataframe with the results from the simulation.

The workflow notebook additionally showcases an example of using the Sim2L to calculate

the melting temperature of a list of elements in an automated manner. We define functions to

query repositories such as Pymatgen [35] for elemental properties to be passed as inputs. We

also query OpenKIM to find interatomic models appropriate for the element. This example

demonstrates how using the Sim2L as a fundamental compute unit can help users develop

complex workflows and script multiple runs, while utilizing Sim2L library capabilities such as

unit conversion, input validation, and result caching.

As an illustration of this capability, Fig 4 shows the predicted melting temperatures for cop-

per and nickel using all the interatomic models available for that metal on the OpenKIM

repository. Each bar shows the melting temperature predicted for a particular model, with the

error bar indicating the uncertainty in the calculation.

B. P-N junction diode properties using semiconductor device simulations

The P-N junction Sim2L [36] uses the device simulator PADRE (Pisces And Device REplace-

ment software) [37] to explore basic concepts of P-N junctions. A P-N junction consists of a P-

doped and an N-doped semiconductor arranged in series and has the electrical characteristics

of a diode. Despite their simplicity, their operation involves several fundamental concepts of

solid state physics and these devices provide useful pedagogical examples and are at the heart

of many electronic devices. The Sim2Lmodels these devices solving a coupled set of partial dif-

ferential equations describing its electrostatics (Poisson equation), drift-diffusion (carrier con-

tinuity equation), and energy balance (carrier temperature equation). Users of the Sim2L can

Fig 4. Melting temperature for copper and nickel, using all OpenKIM interatomic models (bars) compared to experimental results (dashed lines).

Green bars represent calculations which achieved coexistence and steady state, orange bars are calculations which achieved coexistence but not steady

state, indicating that longer run times can successfully determine the melting temperature. Gray bars are calculations that did not result in coexistence.

https://doi.org/10.1371/journal.pone.0264492.g004

PLOS ONE Sim2Ls: FAIR simulation workflows and data

PLOS ONE | https://doi.org/10.1371/journal.pone.0264492 March 10, 2022 9 / 14

https://doi.org/10.1371/journal.pone.0264492.g004
https://doi.org/10.1371/journal.pone.0264492


change doping concentrations for each section of the device, modify materials, the operating

temperature, and tune additional properties and explore the resulting I-V characteristics, elec-

tronic band structures and hole/electron recombination. The Sim2L verifies the input parame-

ters, creates the required input files required for PADRE, and stores energy bands, carrier

densities, net charge distribution, voltage-current (IV) characteristic, and other properties as

output variables.

1. Inputs. Dimensions. The Sim2L inputs include dimensions of each section in the device,

P/N doped and intrinsic regions. PADRE expects these values in microns, however, Sim2L
users can use any unit that represents distance, the Sim2L library process the values and trans-

form the values accordingly.

Mesh refinement. The Sim2L also expects values for the meshing required by the regions

mentioned before, all values are expected to be positive and dimensionless.

Doping concentration. Doping levels are required for the P/N type regions, and values are

expected in cm−3 units, these values can be expressed on any scientific notation supported by

YAML.

Material. The material properties used for the simulation depend on the parameter passed

to the Sim2L, the material input is a string, and supports selected semiconductors (‘Si’, ‘Ge’,

‘GaAs’, and ‘InP’).

Additional inputs. The Sim2L also expects inputs for temperature, carriers lifetime, applied

voltage, intrinsic region impurity, and environmental options. All the parameters, units,

ranges and restrictions are defined on YAML on the cell tagged as ‘INPUTS’.

2. Workflow and outputs. The Sim2L translates inputs as an ASCII text file required by

PADRE to run the charge transport analysis. PADRE can calculate DC, AC small signal, and

transient solutions. The input file generated defines the structure, material models, numerical

methods, and solutions. Meshes for each region of the device are defined based on the length

and doping level of each region. The transport model includes Shockley-Read-Hall genera-

tion/recombination process, concentration-dependent mobility model, field-dependent

mobility, and impact ionization process. The Sim2L first calculates the solution for the equilib-

rium state, and then the solutions are calculated for bias applied to the anode. The bias is

increased on the specified range, and the step size defined by the inputs. PADRE’s outputs are

saved as text files, files are post-processed and the results saved as the Sim2L outputs. Sim2L
outputs provide users with the characteristics and quantities representative of the device. The

most relevant outputs of the Sim2L are described next.

Energy bands. The Sim2L calculates electron and hole energies, conduction band (Ec),

valence band (Ev), intrinsic Fermi energy (Ei), and Fermi levels along the dimension of the

device. Together these outputs represent the band diagram that describes the operation of the

device under the desired conditions. The Sim2L not only calculates energies at equilibrium but

also under different bias potentials, see Fig 5 This can be used to visualize evolution of the

band diagram as voltage is increased.

Device characteristics and related outputs. The Sim2L calculates and outputs current-voltage

characteristics as well as capacitance. In addition, doping densities, electric fields, charge den-

sities, potentials and recombination rates as function of position are tool outputs, see Fig 5.

3. Running the Sim2L via an App. Sim2Ls can be invoked from Python scripts, including

Jupyter notebooks, or from graphical user interfaces. The P-N junction tool includes an easy-

to-use GUI implemented in a Jupyter notebook [36]. This App enables users to set inputs and

visualize the device band structure, recombination rates, as well other Sim2L outputs. The

workflow within the App calculates the electric field and potentials using the depletion approx-

imation. This approximation assumes that the depletion region around the junction has well-

defined edges and transitions between regions are abrupt. The workflow only includes

PLOS ONE Sim2Ls: FAIR simulation workflows and data

PLOS ONE | https://doi.org/10.1371/journal.pone.0264492 March 10, 2022 10 / 14

https://doi.org/10.1371/journal.pone.0264492


approximations for junctions without intrinsic regions, in equilibrium, and only use the ideal

silicon intrinsic doping. The approximation is displayed together with the simulation results

for educational purposes.

IV. Discussion and outlook

This section discusses important aspects of the simulation ecosystem for developers to con-

sider when designing Sim2Ls. While nanoHUB makes Sim2Ls and their data automatically

accessible (via DOIs, standard licenses and APIs), these additional considerations are impor-

tant to facilitate findability, interoperability, and reuse and the Sim2Ls themselves and the data

they produce.

Descriptions and metadata

Sim2L abstracts are required as part of the publication process and the Sim2L itself has a

[description] field that can be queried when searching for Sim2Ls. Detailed descriptions help

users find the appropriate tools. In addition, concise and accurate descriptions of inputs

(requirements) and outputs (services) help with findability.

Narrow focus vs. general Sim2Ls
We believe narrowly defined Sim2Ls, i.e. workflows designed to accomplish specific tasks, con-

tribute to the usability of the tool and the findability and reuse of the results produced. The

success of large repositories of ab initio materials data is due, at least in part, to the specific

nature of the quantities included [9].

Many physics-based simulation codes have a very broad applicability, and Sim2Ls can be

used to establish workflows for specific tasks. For example, molecular dynamics simulations

can be used to explore mechanical properties, chemical reactions, shock physics, thermal

transport, in materials ranging from metals to bio-inspired composites. Sim2Ls can be used by

researchers in all those fields to document and share specific workflows targeting specific

properties.

Input and outputs

The choice of inputs and outputs and their descriptions is critical to make Sim2Ls and their

data FAIR. While files are allowed as input and outputs, their use should be very limited since

Fig 5. P-N junction App invoked a Sim2L that performs the device simulations. The App enables users to easily

setup the simulation and visualize results. The example shows the charge density of the diode for an applied voltage of

0.157895 eV, the slider allows user to visualize different applied voltages.

https://doi.org/10.1371/journal.pone.0264492.g005

PLOS ONE Sim2Ls: FAIR simulation workflows and data

PLOS ONE | https://doi.org/10.1371/journal.pone.0264492 March 10, 2022 11 / 14

https://doi.org/10.1371/journal.pone.0264492.g005
https://doi.org/10.1371/journal.pone.0264492


they can defeat the purpose of queriable inputs, outputs, and results. For example, a Sim2L
could take the input file of a physics-simulator as the only input and produce a single output

that contains a tar file of all results. This is strongly discouraged. Inclusion of results files from

the simulator as a Sim2L output in addition to outputs that focus on the quantities of interest

may be useful to enable users to perform a detailed exploration of their runs and even identify

problems with certain simulations. Another acceptable use of output files are well defined file

types like PDB for molecular structures or CIF files for crystals.

The results database (ResultsDB)

All cache simulations in nanoHUB are indexed and stored in the ResultsDB and can be

explored via an easy-to-use API [38]; these elements will be described in a subsequent publica-

tion. The ability to query and re-use community-generated Sim2L results highlights the impor-

tance of carefully defining inputs and outputs quantities and types and designing complete

end-to-end workflows that generate all relevant quantities of interest.

Web services

Sim2Ls can be launched from within the nanoHUB simulation environment, either a terminal

or a Jupyter notebook. In addition, Sim2Ls can be queries and launched from nanoHUB web

services as will be described subsequently.

V. Conclusion

In summary, Sim2Ls are a key component of the nanoHUB ecosystem to deliver simulations

and their data. Queryable descriptions, requirements, and services (including metadata) and

the use of standard technologies make both the workflows and data FAIR. The declaration of

inputs and outputs, including metadata, together with the simulation cache and ResultsDB

means that all data generated can be explored, analyzed, and repurposed. Sim2Ls are available

in the open platform nanoHUB both for developers and users. nanoHUB provides a complete

scientific software development environment and compute power free of charge and online to

lower the barrier of access to advanced simulations and to level the playing field in computa-

tional science.

Acknowledgments

Stimulating discussions with Michael Zentner and Gerhard Klimeck are gratefully

acknowledged.

Author Contributions

Conceptualization: Alejandro Strachan.

Funding acquisition: Alejandro Strachan.

Software: Martin Hunt, Steven Clark, Daniel Mejia, Saaketh Desai.

Supervision: Alejandro Strachan.

Visualization: Daniel Mejia, Saaketh Desai.

Writing – original draft: Steven Clark, Daniel Mejia, Saaketh Desai, Alejandro Strachan.

Writing – review & editing: Steven Clark, Daniel Mejia, Saaketh Desai, Alejandro Strachan.

PLOS ONE Sim2Ls: FAIR simulation workflows and data

PLOS ONE | https://doi.org/10.1371/journal.pone.0264492 March 10, 2022 12 / 14

https://doi.org/10.1371/journal.pone.0264492


References
1. Baker Monya. Reproducibility crisis. Nature, 533(26):353–66, 2016.

2. Goodman Steven N, Fanelli Daniele, and Ioannidis John PA. What does research reproducibility mean?

Science translational medicine, 8(341):341ps12–341ps12, 2016. https://doi.org/10.1126/scitranslmed.

aaf5027 PMID: 27252173

3. Butler Keith T, Davies Daniel W, Cartwright Hugh, Isayev Olexandr, and Walsh Aron. Machine learning

for molecular and materials science. Nature, 559(7715):547–555, 2018. https://doi.org/10.1038/

s41586-018-0337-2 PMID: 30046072

4. Himanen Lauri, Geurts Amber, Foster Adam Stuart, and Rinke Patrick. Data-driven materials science:

status, challenges, and perspectives. Advanced Science, 6(21):1900808, 2019. https://doi.org/10.

1002/advs.201900808 PMID: 31728276

5. Wilkinson Mark D, Dumontier Michel, Aalbersberg IJsbrand Jan, Appleton Gabrielle, Axton Myles, Baak

Arie, et al. The fair guiding principles for scientific data management and stewardship. Scientific data, 3

(1):1–9, 2016. https://doi.org/10.1038/sdata.2016.18 PMID: 26978244

6. Saal James E, Kirklin Scott, Aykol Muratahan, Meredig Bryce, and Wolverton Christopher. Materials

design and discovery with high-throughput density functional theory: the open quantum materials data-

base (oqmd). Jom, 65(11):1501–1509, 2013. https://doi.org/10.1007/s11837-013-0755-4

7. Curtarolo Stefano, Setyawan Wahyu, Hart Gus LW, Jahnatek Michal, Chepulskii Roman V, Taylor Rich-

ard H, et al. Aflow: an automatic framework for high-throughput materials discovery. Computational

Materials Science, 58:218–226, 2012. https://doi.org/10.1016/j.commatsci.2012.02.005

8. Blaiszik Ben, Ward Logan, Schwarting Marcus, Gaff Jonathon, Chard Ryan, Pike Daniel, et al. A data

ecosystem to support machine learning in materials science. MRS Communications, 9(4):1125–1133,

2019. https://doi.org/10.1557/mrc.2019.118

9. Jain Anubhav, Persson Kristin A, and Ceder Gerbrand. Research update: The materials genome initia-

tive: Data sharing and the impact of collaborative ab initio databases. APL Materials, 4(5):053102,

2016. https://doi.org/10.1063/1.4944683

10. O’Mara Jordan, Meredig Bryce, and Michel Kyle. Materials data infrastructure: a case study of the citri-

nation platform to examine data import, storage, and access. Jom, 68(8):2031–2034, 2016. https://doi.

org/10.1007/s11837-016-1984-0

11. Nature news. URL https://www.nature.com/sdata/.

12. OpenKIM. Open Knowledgebase of Interatomic Models https://openkim.org/, 2018. URL https://

openkim.org/.

13. Strachan Alejandro, Klimeck Gerhard, and Lundstrom Mark. Cyber-enabled simulations in nanoscale

science and engineering. Computing in Science & Engineering, 12(2):12–17, 2010. https://doi.org/10.

1109/MCSE.2010.38

14. Pizzi Giovanni, Cepellotti Andrea, Sabatini Riccardo, Marzari Nicola, and Kozinsky Boris. Aiida: auto-

mated interactive infrastructure and database for computational science. Computational Materials Sci-

ence, 111:218–230, 2016. https://doi.org/10.1016/j.commatsci.2015.09.013

15. Lamprecht Anna-Lena, Garcia Leyla, Kuzak Mateusz, Martinez Carlos, Arcila Ricardo, Del Pico Eva

Martin, et al. Towards fair principles for research software. Data Science, 3(1):37–59, 2020. https://doi.

org/10.3233/DS-190026

16. Spinellis Diomidis. Git. IEEE software, 29(3):100–101, 2012. https://doi.org/10.1109/MS.2012.61

17. Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias Bussonnier,

Jonathan Frederic, et al. Jupyter Notebooks-a publishing format for reproducible computational work-

flows., volume 2016. 2016.

18. Jain Anubhav, Hautier Geoffroy, Moore Charles J, Ong Shyue Ping, Fischer Christopher C, Mueller

Tim, et al. A high-throughput infrastructure for density functional theory calculations. Computational

Materials Science, 50(8):2295–2310, 2011. https://doi.org/10.1016/j.commatsci.2011.02.023

19. Karls Daniel S, Bierbaum Matthew, Alemi Alexander A, Elliott Ryan S, Sethna James P, and Tadmor

Ellad B. The openkim processing pipeline: A cloud-based automatic material property computation

engine. The Journal of Chemical Physics, 153(6):064104, 2020. https://doi.org/10.1063/5.0014267

20. Bonaretti Serena, Gold Garry E, and Beaupre Gary S. pykneer: An image analysis workflow for open

and reproducible research on femoral knee cartilage. Plos one, 15(1):e0226501, 2020. https://doi.org/

10.1371/journal.pone.0226501 PMID: 31978052

21. Science journals: editorial policies. URL https://www.sciencemag.org/authors/science-journals-

editorial-policies.

22. Scientific Data. Scientific data recommended repositories, Mar 2019. URL https://figshare.com/articles/

dataset/Scientific_Data_recommended_repositories_June_2015/1434640/16.

PLOS ONE Sim2Ls: FAIR simulation workflows and data

PLOS ONE | https://doi.org/10.1371/journal.pone.0264492 March 10, 2022 13 / 14

https://doi.org/10.1126/scitranslmed.aaf5027
https://doi.org/10.1126/scitranslmed.aaf5027
http://www.ncbi.nlm.nih.gov/pubmed/27252173
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2
http://www.ncbi.nlm.nih.gov/pubmed/30046072
https://doi.org/10.1002/advs.201900808
https://doi.org/10.1002/advs.201900808
http://www.ncbi.nlm.nih.gov/pubmed/31728276
https://doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26978244
https://doi.org/10.1007/s11837-013-0755-4
https://doi.org/10.1016/j.commatsci.2012.02.005
https://doi.org/10.1557/mrc.2019.118
https://doi.org/10.1063/1.4944683
https://doi.org/10.1007/s11837-016-1984-0
https://doi.org/10.1007/s11837-016-1984-0
https://www.nature.com/sdata/
https://openkim.org/
https://openkim.org/
https://openkim.org/
https://doi.org/10.1109/MCSE.2010.38
https://doi.org/10.1109/MCSE.2010.38
https://doi.org/10.1016/j.commatsci.2015.09.013
https://doi.org/10.3233/DS-190026
https://doi.org/10.3233/DS-190026
https://doi.org/10.1109/MS.2012.61
https://doi.org/10.1016/j.commatsci.2011.02.023
https://doi.org/10.1063/5.0014267
https://doi.org/10.1371/journal.pone.0226501
https://doi.org/10.1371/journal.pone.0226501
http://www.ncbi.nlm.nih.gov/pubmed/31978052
https://www.sciencemag.org/authors/science-journals-editorial-policies
https://www.sciencemag.org/authors/science-journals-editorial-policies
https://figshare.com/articles/dataset/Scientific_Data_recommended_repositories_June_2015/1434640/16
https://figshare.com/articles/dataset/Scientific_Data_recommended_repositories_June_2015/1434640/16
https://doi.org/10.1371/journal.pone.0264492


23. Martin Hunt, Alejandro Strachan, and Saaketh Desai. Melting point simulation using openkim, Mar

2019. URL https://nanohub.org/resources/meltingkim.

24. Papermill Developers. Parameterize, execute, and analyze notebooks, a. URL https://papermill.

readthedocs.io.

25. Pint Developers. Pint: Operate and manipulate physical quantities in python, b. URL https://pint.

readthedocs.io.

26. Łukasz Mentel. mendeleev—a python resource for properties of chemical elements, ions and isotopes.

URL https://github.com/lmmentel/mendeleev.

27. Saaketh Desai, Stephen Clark, and Alejandro Strachan. Introduction to simtools, April 2020. URL

https://nanohub.org/tools/introtosimtools.

28. McLennan Michael, Clark Steven, Deelman Ewa, Rynge Mats, Vahi Karan, McKenna Frank, et al.

Bringing scientific workflow to the masses via pegasus and hubzero. parameters, 13:14, 2013.

29. Alzate-Vargas Lorena, Fortunato Michael E, Haley Benjamin, Li Chunyu, Colina Coray M, and Strachan

Alejandro. Uncertainties in the predictions of thermo-physical properties of thermoplastic polymers via

molecular dynamics. Modelling and Simulation in Materials Science and Engineering, 26(6):065007,

2018. https://doi.org/10.1088/1361-651X/aace68

30. Morris James R, Wang CZ, Ho KM, and Chan CT. Melting line of aluminum from simulations of coexist-

ing phases. Physical Review B, 49(5):3109, 1994. https://doi.org/10.1103/PhysRevB.49.3109 PMID:

10011167

31. Tadmor Ellad B, Elliott Ryan S, Sethna James P, Miller Ronald E, and Becker Chandler A. The potential

of atomistic simulations and the knowledgebase of interatomic models. Jom, 63(7):17, 2011. https://

doi.org/10.1007/s11837-011-0102-6

32. Plimpton Steve. Fast parallel algorithms for short-range molecular dynamics. Journal of computational

physics, 117(1):1–19, 1995. https://doi.org/10.1006/jcph.1995.1039

33. Larsen Peter Mahler, Schmidt Søren, and Schiøtz Jakob. Robust structural identification via polyhedral

template matching. Modelling and Simulation in Materials Science and Engineering, 24(5):055007,

2016. https://doi.org/10.1088/0965-0393/24/5/055007

34. Stukowski Alexander. Visualization and analysis of atomistic simulation data with ovito–the open visual-

ization tool. Modelling and Simulation in Materials Science and Engineering, 18(1):015012, 2009.

https://doi.org/10.1088/0965-0393/18/1/015012

35. Ong Shyue Ping, Richards William Davidson, Jain Anubhav, Hautier Geoffroy, Kocher Michael, Cholia

Shreyas, et al. Python materials genomics (pymatgen): A robust, open-source python library for materi-

als analysis. Computational Materials Science, 68:314–319, 2013. https://doi.org/10.1016/j.

commatsci.2012.10.028

36. Daniel Mejia. pntoy using simtool infrastructure, Feb 2021a. URL https://nanohub.org/resources/

st4pnjunction.

37. M. R. Pinto, C. S. Rafferty, R. K. Smith, and J. Bude. Ulsi technology development by predictive simula-

tions. In Proceedings of IEEE International Electron Devices Meeting, pages 701–704, 1993. https://

doi.org/10.1109/IEDM.1993.347216

38. Daniel Mejia. Database Results Explorer API. https://nanohub.org/developer/api/endpoint/dbexplorer,

2021b. [Online; accessed 20-August-2021].

PLOS ONE Sim2Ls: FAIR simulation workflows and data

PLOS ONE | https://doi.org/10.1371/journal.pone.0264492 March 10, 2022 14 / 14

https://nanohub.org/resources/meltingkim
https://papermill.readthedocs.io
https://papermill.readthedocs.io
https://pint.readthedocs.io
https://pint.readthedocs.io
https://github.com/lmmentel/mendeleev
https://nanohub.org/tools/introtosimtools
https://doi.org/10.1088/1361-651X/aace68
https://doi.org/10.1103/PhysRevB.49.3109
http://www.ncbi.nlm.nih.gov/pubmed/10011167
https://doi.org/10.1007/s11837-011-0102-6
https://doi.org/10.1007/s11837-011-0102-6
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1088/0965-0393/24/5/055007
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1016/j.commatsci.2012.10.028
https://doi.org/10.1016/j.commatsci.2012.10.028
https://nanohub.org/resources/st4pnjunction
https://nanohub.org/resources/st4pnjunction
https://doi.org/10.1109/IEDM.1993.347216
https://doi.org/10.1109/IEDM.1993.347216
https://nanohub.org/developer/api/endpoint/dbexplorer
https://doi.org/10.1371/journal.pone.0264492

