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Simple Summary: The Notch signal transduction pathway is important for various physiological
processes, including immune responses, and plays a role in many diseases, for example cancer. We
have developed a new assay to quantitatively measure Notch pathway activity, and we validated
it using data from various human cancer cell lines. The assay can be applied across different cell
types, and offers numerous possibilities to explore the contribution of the Notch pathway to tumor
formation and the stratification of cancer patients. We assessed Notch pathway activity in a cohort of
T cell acute lymphoblastic leukemia (T-ALL) patient samples, and found that the pathway activity
score more accurately reflects Notch pathway activity than a prediction on the basis of NOTCH1
mutations alone. Finally, we found that patients with low Notch pathway activity had a significantly
shorter event-free survival compared to patients who had T-ALL cells with higher activity.

Abstract: Background: The Notch signal transduction pathway is pivotal for various physiological
processes, including immune responses, and has been implicated in the pathogenesis of many
diseases. The effectiveness of various targeted Notch pathway inhibitors may vary due to variabilities
in Notch pathway activity among individual patients. The quantitative measurement of Notch
pathway activity is therefore essential to identify patients who could benefit from targeted treatment.
Methods: We here describe a new assay that infers a quantitative Notch pathway activity score from
the mRNA levels of generally conserved direct NOTCH target genes. Following the calibration
and biological validation of our Notch pathway activity model over a wide spectrum of human
cancer types, we assessed Notch pathway activity in a cohort of T-ALL patient samples and related
it to biological and clinical parameters, including outcome. Results: We developed an assay using
18 select direct target genes and high-grade serous ovarian cancer for calibration. For validation,
seven independent human datasets (mostly cancer series) were used to quantify Notch activity in
agreement with expectations. For T-ALL, the median Notch pathway activity was highest for samples
with strong NOTCH1-activating mutations, and T-ALL patients of the TLX subtype generally had
the highest levels of Notch pathway activity. We observed a significant relationship between ICN1
levels and the absence/presence of NOTCH1-activating mutations with Notch pathway activity scores.
Patients with the lowest Notch activity scores had the shortest event-free survival compared to other
patients. Conclusions: High Notch pathway activity was not limited to T-ALL samples harboring
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strong NOTCH1 mutations, including juxtamembrane domain mutations or hetero-dimerization
combined with PEST-domain or FBXW7 mutations, indicating that additional mechanisms may
activate Notch signaling. The measured Notch pathway activity was related to intracellular NOTCH
levels, indicating that the pathway activity score more accurately reflects Notch pathway activity
than when it is predicted on the basis of NOTCH1 mutations. Importantly, patients with low
Notch pathway activity had a significantly shorter event-free survival compared to patients showing
higher activity.

Keywords: Notch pathway activity; NOTCH1 mutation; T cell acute lymphoblastic leukemia

1. Introduction

An increasing number of precision drugs are becoming available for clinical medicine, and many
more are in development. These targeted drugs are intended for personalized medicine and aim at
targeting the pathophysiological defects underlying specific diseases in individual patients. For cancer,
but also for many other diseases including auto-immune or immune-mediated diseases, patient samples
may display a similar histopathology, while significant pathophysiological variations can be found at
the cellular level [1,2]. Such variations may be the reason that only a portion of all patients with a specific
disease responds to a targeted drug. Matching the right drug to the right patient has therefore become
an increasingly important issue. However, developing a diagnostic approach to reliably predict therapy
responses has proven difficult. The prime example is oncology, wherein efforts in predicting patient
responses to targeted drugs based on cancer genome mutations have generally been disappointing,
despite exceptions in select cases [3–7]. To improve clinical decision-making regarding targeted
treatment, and therefore to improve clinical outcomes, assays are needed that accurately characterize
and quantify the underlying pathophysiological processes in individual patient samples [1,8–17].
Cellular signal transduction pathways are evolutionarily conserved, and control fundamental cellular
processes such as cell division, differentiation, migration and metabolism [1,18–20]. They include
nuclear receptor pathways (e.g., androgen and estrogen receptor pathways), developmental pathways
(Wnt, Hedgehog, TGFβ and Notch), the highly complex growth factor- and cytokine-regulated
signaling pathway network (including JAK-STAT, PI3K-AKT-mTOR and MAPK pathways), and the
inflammatory NFκB pathway [18,21]. The measurement of the functional activity of these pathways in
tumor biopsies from individual patients is expected to improve the prediction of therapy response.
We have previously described a novel approach to quantitatively measure the activity levels of
individual signal transduction pathways in various cell and tissue types [22–25]. In addition to the
development of assays to measure the activity of the estrogen and androgen receptor pathways, the PI3K,
JAK-STAT3, Wnt, Hedgehog, TGFβ, NFκB and JAK-STAT1/2 pathways, we now report the development
and biological validation of a quantitative Notch pathway activity assay. The human Notch pathway
is an evolutionarily highly conserved developmental signaling pathway, activated by the interaction
of one of four NOTCH transmembrane receptors with Jagged or Delta-like Canonical Notch ligands
on neighboring cells [16]. Upon ligand binding, the receptor is cleaved by two consecutive protease
steps that include an ADAM (a disintegrin and metalloproteinase) protease and the gamma-secretase
complex. The resulting cleaved intracellular NOTCH (ICN) migrates to the nucleus, where it forms
a transcription factor complex with DNA binding factor RBPJ (recombination signal binding protein for
immunoglobulin kappa J region) and coactivators of the MAML (Mastermind-like) family, and activates
the transcription of its target genes. The Notch pathway plays a role in multiple diseases, including
T-cell acute lymphoblastic leukemia (T-ALL) [16,26]. Notch pathway inhibitors have been developed
for multiple potential clinical applications, but their use has generally been associated with severe side
effects [27–32]. In addition, NOTCH inducers have been developed, e.g., for small cell lung cancer [33].
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A major clinical challenge is to minimize side effects and identify patients who benefit from Notch
pathway-modifying drugs.

To illustrate the potential utility of the Notch pathway assay for clinical decision-making, a Notch
pathway activity analysis was performed in a large cohort of diagnostic samples from pediatric
T-ALL patients with known genetic backgrounds and mutation statuses. Activating mutations in the
NOTCH1 pathway, including mutations in NOTCH1 and/or FBXW7 (which encodes for a ubiquitin
ligase involved in the degradation of active intracellular NOTCH1 (ICN1)), are found in approximately
60% of T-ALL patients [34,35]. Publications on patient outcomes in T-ALL report different prognostic
significances for NOTCH1-activating mutations alone [36]. We present evidence that patients with
active Notch pathway signaling have a more favorable long-term outcome when on high-intensity
combination treatment protocols [37–39].

2. Results

2.1. Development of the Notch pathway Assay and Selection of NOTCH Target Genes

For the development of the Notch pathway assay, we selected high evidence direct target genes
of NOTCH. This selection was based on (i) the presence of minimally one binding element in the
promoter region, (ii) the functionality of these binding elements that have been assessed, for instance,
by gene promoter-reporter studies, (iii) the binding of ICN to the respective response/enhancer element
using ChIP and/or Electrophoretic Mobility Shift Assay, (iv) their differential expression upon pathway
activation and/or inhibition, and (v) the consistency of evidence as reported by multiple research
groups for multiple cell/tissue types. Based on such accumulated experimental evidence as described
before [22–24], we selected 18 direct target genes, CD44, DTX1, EPHB3, HES1, HES4, HES5, HES7, HEY1,
HEY2, HEYL, MYC, NFKB2, NOX1, NRARP, PBX1, PIN1, PLXND1 and SOX9 (Table S1) [40–82]. This
number is sufficient for the robust and sensitive prediction of the pathway activity while comprising
only high evidence target genes that enable maximal specificity over multiple cell types.

2.2. Calibration and Validation of the Notch Pathway Activity Assay

We calibrated the Notch pathway assay using data from high-grade serous (HGS) ovarian
cancer samples with high Notch pathway activity, and normal ovarian tissue samples with low
Notch pathway activity (Figure 1A). While in healthy ovarian tissue samples the Notch pathway is
inactive, HGS ovarian cancer is associated with an active Notch pathway and activating NOTCH3
gene mutations or amplifications in about two third of the patients [83–86]. Following the freezing of
the Notch pathway model, it was validated on various independent datasets from cells of different
tissue origins with Notch pathway-activated or gamma-secretase inhibited conditions, including cell
types from ectodermal (neuroblastoma) and endodermal (lung cancer cells) origins, in contrast to the
mesodermal origin of the ovarian cancer samples the model had been calibrated on (Figure 1B–H).
Two independent clones of a neuroblastoma cell line transfected with ICN3 showed a rapid and
persistent quantitative increase in Notch pathway activity score, starting within 4 h and reaching a
plateau activity at 12 h after transfection (Figure 1B). In leukemia, the AF1Q-MLLT11 fusion protein
confers sensitivity to ligand-induced Notch pathway signaling [87,88]. Hematopoietic progenitor cells
(CD34+CD45RA-Lin-) from umbilical cord blood were transduced with the A2M mutant version of
this fusion product that sequesters it in the nucleus. Following a three-day exposure to immobilized
NOTCH ligand Delta1ext-IgG at two different dose levels, high Notch pathway activity scores were
measured for both mock and A2M transduced cells (Figure 1C). As expected, the Notch pathway
activity scores were higher for A2M-transduced cells than control cells. This result provides additional
evidence for the ability of the Notch pathway assay to quantify small differences in Notch pathway
activity. In other experimental designs in which Notch pathway activity was inhibited by exposure to
gamma-secretase inhibitors (GSIs), the robustness of the assay for various additional cell types was
validated. A549 lung cancer cells exposed to the GSI RO4929097 for 6 or 24 h scored a significantly
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lower Notch pathway activity than control A549 cells (Figure 1D). Similar findings were found for
the GSI-exposed Mantle B-cell lymphoma cell line SP-49 and the NOTCH mutant Rec-1 line [89]
(Figure 1E), and for the T-cell lymphoma and leukemia cell lines CUTLL1 and MOLT4 (Figure 1F,G).
In CUTLL1 cells, the wash-out of the GSI resulted in the reactivation of the Notch pathway, which was
accurately quantified (Figure 1H). Furthermore, a dominant-negative form of the NOTCH cofactor
MAML1 (DNMAML1) synergized with GSI and resulted in the lowest Notch pathway activity score.
Interestingly, in this study the removal of GSI was performed both in the absence and presence of the
protein translation inhibitor cycloheximide, so as to exclude any feedback or secondary effects from
NOTCH-induced gene products. The measured Notch pathway activity scores were independent of
protein translation, confirming that all genes that are part of the computational Notch pathway model
are indeed direct target genes (Figure S1). In summary, these results demonstrate that the ovarian
cancer-calibrated Notch pathway assay can be used to measure Notch pathway activity levels in T-cells,
while the limited results available on other cell types suggest that the assay may also be usable in cell
types of endodermal and ectodermal origin.

2.3. Notch Pathway Activity in Pediatric T-ALL Patient Samples

Following biological validation of the Notch pathway assay, we measured the Notch pathway
activity scores in diagnostic samples from 117 pediatric T-ALL patients. This dataset has been
previously used to distinguish four main T-ALL subgroups (ETP-ALL/immature, TLX, Proliferative
and TALLMO) based on their differential gene expression profiles that strongly correlate with unique
oncogenic rearrangements [98]. Notch pathway activity scores ranged from −8.59 to 7.45 on the linear
log2 odds scale. To investigate these scores in relation to the presence of specific types of Notch
pathway-activating mutations, we categorized NOTCH1 mutations into weak or strong activating
mutations, as done before [35,99,100]. Weak NOTCH1 activating mutations are considered mutations
in the NOTCH1 heterodimerization domain (HD) or PEST domain, or inactivating mutations in FBXW7.
Strong NOTCH1-activating mutations are mutations in the juxtamembrane domain, or HD-mutations
combined with PEST domain or FBXW7 mutations. Based on this division, the median Notch pathway
activity score was lowest for the patient samples without NOTCH-activating mutations, and highest
for the samples with strong NOTCH1-activating mutations (p < 0.001; Figure 2A). Still, there is
considerable overlap in activity scores among these groups. To investigate the potential effect of
differences in genetic background among patients, we compared Notch pathway activity levels between
the four T-ALL subtypes. The TLX subtype had the highest Notch pathway activity scores compared
to the other subtypes, and included 10 out of 23 patient samples with strong NOTCH mutations
(Figure 2B). Various TLX samples without, or with only weak, NOTCH-activating mutations also had
high Notch pathway activity scores, further supporting the previous observation that alternative Notch
pathway-activating mechanisms may exist. We then related the activity scores to intracellular NOTCH1
(ICN1) levels as measured using reverse-phase protein array for 62 patient samples [35]. We observed
a significant relationship between ICN1 levels and the absence or presence of NOTCH1-activating
mutations (Figure 2C), and between ICN1 levels and the Notch pathway activity scores (Figure 2D).
The significance of the correlation between ICN1 levels and Notch pathway activity was mainly
attributed to the strong NOTCH1-activating mutations, as the significance was lost for patient samples
without, or with only weak, NOTCH1-activating mutations (Figure S2). This raised the question
of whether those samples could harbor other Notch pathway-activating mechanisms. For this,
we assessed NOTCH3 protein levels as an alternative Notch pathway-activating mechanism for various
NOTCH1/FBXW7 non-mutated T-ALL patient samples with low ICN1 levels but high Notch pathway
activity scores. We did not find expression of NOTCH3 protein in these or other T-ALL samples tested.
We then excluded the influence of bone marrow or peripheral blood origin of the T-ALL samples on
the Notch pathway activity scores. Therefore, the incidental discrepancy between ICN and Notch
pathway activity scores remains unclear. In conclusion, the results show that the Notch pathway assay
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quantitatively measures Notch pathway activity not only in cell line systems, but also in a cohort of
primary T-ALL patient samples.
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Figure 1. Calibration and biological validation of the Notch pathway model. (A) Calibration of
the Notch pathway model. GSE7307, GSE18520 [90], GSE29450 [91], GSE36668 [92], normal ovarian
tissue samples (inactive pathway); GSE2109, GSE9891 [93], high grade serous ovarian cancer samples
(active pathway). (B–G) Validation of the model on independent GEO datasets from different cell lines.
* p < 0.05, ** p < 0.01, *** p < 0.001. (B) GSE16477 [94]. Two clones (c6 and c8) of the IMR32 neuroblastoma
cell line at different times (0–120 h) after induction of active intracellular NOTCH3. (C) GSE29524.
A2M (+ symbol) or control vector-transfected CD34+CD45RA-Lin- hematopoietic progenitor cells
from umbilical cord blood were cultured for 72 h on a surface with 0, 2 or 5µg plastic-immobilized
NOTCH ligand Delta1ext-IgG. A2M is a nuclear-trapped mutant of AF1q/MLLT11. (D) GSE36176 [95].
A549 lung cancer cell lines subjected to vehicle control or gamma secretase inhibitor (GSI) RO4929097
for 6 or 24 h. (E) GSE34602 [89]. Rec-1 (containing an activating NOTCH1 mutation) and SP49 Mantle
cell lymphoma cell lines subjected to vehicle control or GSI compound E for 24 h.
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(SP49 cells harbor an activating NOTCH4 rearrangement. (F) GSE33562 [96]. Duplicate samples of
the CUTLL1 T-cell lymphoma cell line were subjected to vehicle control or the GSI PF-03084014 (1µM)
for 48 h. G) GSE6495 [97]. MOLT4 T-cell acute lymphoblastic leukemia cell line before and 48 h after
addition of the GSI DAPT (5µM); three independent experiments. (H) GSE29544 [82]. CUTLL1 T-cell
lymphoblastic lymphoma cells subjected to GSI compound E (1 µM) for 3 days. From left to right:
DMSO control; 3 grouped conditions: GSI without or with 2 or 4 h mock washout; 4 grouped conditions:
GSI followed by 2 or 4 h GSI washout in the presence or absence of cycloheximide; GSI in presence of a
control viral transcript MigR1; 2 grouped conditions: GSI in the presence of a control viral transcript
MigR1 with 2 or 4 h washout; GSI in the presence of viral transcript DNMAML1; 2 grouped conditions:
GSI in the presence of viral transcript DNMAML1 with 2 or 4 h washout. The activity score is calculated
as log2odds. Two-sided Wilcoxon signed-rank statistical tests were performed, p-values are indicated
in the figures. In case fewer than 3 samples were needed for presentation, bar plots are used instead of
dot plots.
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Figure 2. Notch pathway activity in T-ALL. (A–D) GSE26713 [98]. No NOTCH-activating
mutations (blue symbols), weak NOTCH1-activating mutations (NOTCH1 heterodimerization domain,
PEST domain or in FBXW7) (white symbols) and strong NOTCH1-activating mutations (juxtamembrane
domain or more than one NOTCH1 activating mutation) (red symbols) are indicated. p-values are
indicated. (A–C) Kruskal–Wallis statistical test. Medians are indicated by the red lines. (D) Linear
regression test. (A) Notch pathway activity of T-ALL samples (n = 112) per NOTCH1/FBXW7 mutation
status group. (B) Notch pathway activity per T-ALL subgroup (n = 117). Five samples have an unknown
NOTCH1/FBXW7 mutation status (grey symbols). (C) Active intracellular NOTCH1 (ICN1) protein
level measured in relative intensity units using reverse-phase protein array (RPPA), indicated per
NOTCH1/FBXW7 mutation status group (n = 69). (D) Correlation of active intracellular NOTCH1
(ICN1) protein level and Notch pathway activity (n = 62).
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2.4. Notch Pathway Activity and T-ALL Patient Survival

The prognostic significance of NOTCH-activating mutations is not consistent in various patient
studies [36]. Part of this may be due to the mechanisms, other than activating mutations in hotspots of
NOTCH1 or FBXW7, that activate Notch signaling in T-ALL patients, and which may explain the large
overlap in the Notch pathway activity levels for T-ALL patients with and without NOTCH/FBXW7
mutations. In order to investigate outcomes in relation to Notch pathway activity, we divided the
T-ALL patients into three groups based on their NOTCH activity scores: a group with the highest
NOTCH activity scores (>75th percentile), a group with the lowest activity scores (<25th percentile)
and a group with intermediate activity scores (between the 25th and 75th percentiles of activity scores).
When assessing the event-free and relapse-free survival curves, we observed that the patients with
the lowest activity scores had the shortest event-free survival compared to both of the other groups
(p < 0.05), while relapse-free survival showed the same trend (Figure 3A,B).
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Figure 3. Relapse-free and event-free survival of T-ALL patients in three different Notch pathway
activity groups. Three different Notch pathway activity groups were separated based on the lowest
25% Notch pathway activity (blue line), the highest 25% Notch pathway activity (red line), and the
remaining 50%, termed the ‘middle’, Notch pathway activity (orange line). Relapse-free (A) and
event-free (B) survival is plotted for the T-ALL pediatric patients treated on the DCOG ALL-7, -8 and -9
and COALL-97 protocols. p = NS (not significant) (A) and p < 0.05 (B) (log-rank test). Events include
relapse, non-responsiveness to induction or maintenance therapy, change of treatment or death due to
infection, toxicity or other causes.
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2.5. Relation between Notch Pathway Activity and PTEN Loss

The group with the lowest NOTCH activity scores contained patients that lacked either PTEN
protein and/or had inactivating mutations or deletions in PTEN. We found an increased percentage of
patients (11 out of 29, 38%) with functional PTEN loss in the group with the lowest Notch pathway
activity, whereas only 12 out of the 84 patients (14%) with intermediate and high Notch pathway
activity scores had functional PTEN loss (p = 0.006, Pearson Chi-Square, 2-sided).

3. Discussion

We have developed an assay to measure Notch pathway activity, consisting of a Bayesian network
computational model which calculates a pathway activity score based on target gene expression levels.
The set of NOTCH target genes was selected based on experimental evidence, irrespective of cell
type or gene function [22–24]. The computational model was successfully validated on a variety of
samples from different cell types with known Notch pathway activity, i.e., brain, lung, hematopoietic
stem cells, and T-ALL cell lines. This suggests that the assay can be used on multiple different cell
types without model recalibration, even across cell types originating from different embryonic germ
layers. This is to a large extent enabled by the selection of high evidence direct transcriptional target
genes of the NOTCH transcription factor family (e.g., NOTCH1, NOTCH2, NOTCH3), eliminating
cell type-specific influences on target gene expression as much as possible. In addition, the Bayesian
network model is well suited to handling variations in input data, which presents a crucial advantage
when analyzing patient samples that are intrinsically highly variable in gene expression regulation [22].
Other RNA-based pathway analysis tools are available, mainly for biomarker discovery applications,
and differences have been discussed before [22,24,101–103]. In short, we use a knowledge-based
Bayesian modeling approach as opposed to a more generally used data-driven approach, thus avoiding
common problems with data-overfitting. This approach improves specificity in measuring signaling
pathway activity, and enables development as a diagnostic assay across multiple disease types.

To explore the clinical utility of the biologically validated Notch pathway model, we have analyzed
diagnostic samples from 117 pediatric T-ALL patients. We found that the Notch pathway activity
score was related to the presence of NOTCH1-activating mutations and the type of mutations, and
was correlated to the levels of ICN protein in these samples. Correspondingly, we found the highest
Notch pathway activity scores in the TLX subgroup, a group that we described before as having the
highest incidence of NOTCH1-activating mutations [35]. Most T-ALL patients in this T-ALL subgroup
(21 out of 30 patients) bear TLX3-BCL11B rearrangements [98]. Moreover, the TLX subgroup is related
to gamma-delta T-cell lineage development [104]. Interestingly, human gamma-delta T-cell lineage
development especially depends on high Notch pathway activity levels, in contrast to alpha-beta
T-lineage development [77]. The proliferative and TALLMO subgroups, which are associated with
the early and late cortical stages of the alpha-beta T-lineage, respectively, indeed have lower Notch
pathway activity scores. Therefore, the NOTCH dependency in normal development mirrors that of the
respective T-ALL subgroups. Remarkably, about half of the ETP-ALL patients seem to have an activated
Notch signaling pathway based on measured activity scores, despite their overall lower incidence
of NOTCH-activating mutations [105]. We observed that various samples without, or with weak,
NOTCH-activating mutations still have high Notch pathway activity scores [35]. This is especially
evident for patients from the TLX subgroup, and points to other, as yet unidentified, mutations outside
the present hotspot regions or other mechanisms that may activate the Notch pathway in T-ALL.

The patients with a Notch pathway activity score in the lowest 25th percentile had the worst
event-free and relapse-free survival. Interestingly, NOTCH mutations in this cohort were not associated
with beneficial outcomes, as reported before [35], while other studies identified activating NOTCH
mutations as a favorable prognostic factor [37–39]. This result suggests that scoring the Notch pathway
activity might be a more reliable method for determining prognosis than identifying NOTCH-activating
mutations. In addition, the Notch pathway test has the potential to improve the stratification of patients
to novel therapies targeting the Notch pathway.
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The patients with the lowest Notch pathway activity scores were more likely to have functional
PTEN loss, indicating that Notch pathway activation and PTEN inactivation reflect two distinct
T-ALL entities, as we and others have reported before [100,106]. PTEN aberrancies are often found
in the TALLMO T-ALL subgroup, in which they occur mutually exclusively with strong NOTCH1
mutations [100]. Moreover, patients with PTEN aberrancies have been shown to have an inferior
survival rate [100,106]. The finding that PTEN aberrancies occurred more often in the patients with the
lowest Notch pathway activity helps explain the inferior event-free/relapse-free survival of this group.

Overall, our results indicate that Notch pathway activity cannot be deduced from the presence
of activating mutations only, which may provide an explanation for the differences in the prognostic
significance of NOTCH-activating mutations in various pediatric and adult patient cohorts [36].

While the here-described Notch pathway assay is expected to be of value for a broad range
of diseases, as well as for preclinical research and drug development, the first envisioned clinical
application is therapy response prediction, e.g., to NOTCH inhibitors, for T-ALL, small cell lung cancer
and other malignancies. To enable the use of the Notch pathway activity assay on formalin-fixed
paraffin-embedded tissue samples, which are the standard in pathology diagnostics, the here-described
Affymetrix-based Notch pathway activity test has been converted to an RT-qPCR-based test, which can
be performed using standard lab equipment (in principle within three hours). To enable the
determination of Notch pathway activity from RNA sequencing data, the assay has been converted to
an RNAseq-based assay (www.philips.com/oncosignal). The conversion procedure has been described
before, and does not involve the addition of new target genes [104,107]. These assays will be used in
future clinical validation studies.

4. Materials and Methods

4.1. Development of the Notch Pathway Assay

The mathematical approach to developing Bayesian network models for the measurement of
signal transduction pathway activity, based on mRNA expression analysis, has been described in detail
before [24]. In brief, a causal computational network model for the Notch signal transduction pathway
was generated that calculates the probability that NOTCH transcription factors are active, based on the
expression levels of direct target genes (Figure 4). The Bayesian network describes the causal relation
between the up- or downregulation of NOTCH target genes and the presence of an active or inactive
NOTCH transcription complex. The parameters that describe this relationship are based on literature
evidence, and are calibrated on patient samples with known Notch pathway activity. Target genes for
the Notch pathway assay were selected according to the same principles as described before, using the
available scientific literature [22,24]. The probesets of direct target genes from the publicly available
Affymetrix (Santa Clara, CA, USA) HG-U133Plus2.0 microarray datasets were selected using the
Bioconductor package, hgu133plus2.db, available in the statistical environment R and manually curated
using GRCh38/hg38, available on the UCSC Genome Browser (www.genome.ucsc.edu, last access
9-30-2020) [26,28,32,108,109]. Probesets representing intronic sequences, probesets on opposite strands,
and other chromosomal sequences than the respective target gene, were excluded. Probesets that were
missing in Bioconductor were added.

www.philips.com/oncosignal
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Figure 4. Bayesian model for the Notch signal transduction pathway. The structure of the Bayesian
network used to model the transcriptional program of signaling pathways. The transcription complex
refers to the transcription factor associated with a specific signal transduction pathway, which can be
present in an inactive or active gene transcribing state; target genes refers to direct target genes of the
transcription complex; probesets refers to probesets for the respective target gene present on Affymetrix
HG-U133 Plus 2.0 microarray. With permission, [24].

4.2. Calibration and Validation of the Notch Pathway Activity Model

The Notch pathway Bayesian model, intended for generic use across different cell and tissue
types, was calibrated on a single public dataset containing data from normal (low Notch pathway
activity) and high-grade serous ovarian cancer (high Notch pathway activity) tissue samples [86].
Following calibration, the model parameters were frozen. Subsequently, given that the Bayesian model
describes how expression and probeset measurements depend causally on pathway activity, it can be
used to reason backwards from a set of given measurements to assess the likelihood that the pathway
was active. Upon entering new mRNA probeset measurements into the model, this reasoning is
performed by Bayesian inference, which yields the odds that the pathway is active vs. not, after which
we apply a log2 transformation to obtain a symmetric scale with higher resolution at the extreme
ends [22,23]. The resulting Notch pathway score reflects the amount of evidence delivered by the target
gene expression levels for being active, and thus is a read-out of functional Notch signaling pathway
activity. In general, higher target gene expression levels will lead to higher Notch activity, and vice
versa. The model-based Notch pathway assay was validated using multiple independent Affymetrix
datasets containing gene expression data from samples with known Notch pathway activity.

4.3. Microarray Data Source and Quality Control

The Affymetrix HG-U133Plus2.0 datasets used for Notch pathway model calibration and validation,
and for the Notch pathway analysis of T-ALL (GSE26713), are available at the GEO website (www.
ncbi.nlm.nih.gov/geo, last access 9-30-2020). GEO datasets have been listed with their associated
publications in the figure legends. Before using the microarray data, extensive quality control was
performed on the Affymetrix data from each individual sample, based on 12 different quality parameters
according to Affymetrix’s recommendations and previously published literature [22,110,111], and then
they were further preprocessed in the statistical environment R using frozen RMA [112] with ‘robust
weighted average’ summarization.

4.4. Description of the T-ALL Pediatric Patient Cohort

The Affymetrix HG-U133Plus2.0 gene expression profiles (GSE26713) from diagnostic biopsies of
117 T-ALL patients, who were treated according to the German co-operative study group for childhood
ALL-97 protocol (COALL-97) or the Dutch Childhood Oncology Group (DCOG) protocols ALL-7,-8 or
-9, were used in this study [98]. The patient data used in this study were obtained with informed
consent from the subjects’ guardians and in accordance with the Declaration of Helsinki.

www.ncbi.nlm.nih.gov/geo
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4.5. Statistics

For the validations of the Notch pathway model, two-sided Wilcoxon signed-rank statistical
tests were performed. Other used statistical methods that are more appropriate due to the content
of a specific dataset are indicated in the figure legends. For pathway correlation statistics, both
Pearson correlation and Spearman rank correlation tests were performed; since the results were
similar, only the Pearson correlation coefficient and associated p-value are reported. For outcome
analysis, Kaplan–Meier survival curves were calculated together with the associated p-value using the
log-rank test.

4.6. Ethics Approval and Consent to Participate

Informed consent was given in accordance with the Institutional Review Board of the Erasmus
MC Rotterdam and in accordance with the Declaration of Helsinki.

5. Conclusions

We have developed an assay to measure Notch pathway activity, which calculates a pathway
activity score that is based on the expression levels of conserved Notch direct target genes. This assay
was successfully validated by detecting the Notch activity in a variety of tumor models of different
cellular origins with known Notch pathway activity, i.e., brain, lung, hematopoietic stem cells, and
T-ALL cell lines. Our assay is expected to be of value for a broad range of diseases, as well as for
preclinical research and drug development. The first envisioned clinical application is therapy response
prediction, e.g., to NOTCH inhibitors, for T-ALL, small cell lung cancer and other malignancies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/11/3142/s1,
Table S1: Scoring of NOTCH target genes with respect to evidence as to direct gene regulation by Notch
transcription factors, Figure S1: Extended validation of the Notch pathway model in CUTLL1 cells, Figure S2:
Correlations of ICN1 level and Notch pathway activity, divided per NOTCH1-activating mutation status.
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