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MTHFD1 controls DNA methylation in Arabidopsis
Martin Groth1, Guillaume Moissiard1, Markus Wirtz2, Haifeng Wang3, Carolina Garcia-Salinas4,

Perla A. Ramos-Parra4, Sylvain Bischof1, Suhua Feng1,5,6, Shawn J. Cokus1, Amala John1, Danielle C. Smith1,

Jixian Zhai1, Christopher J. Hale1, Jeff A. Long1, Ruediger Hell2, Rocı́o I. Dı́az de la Garza4 & Steven E. Jacobsen1,5,6

DNA methylation is an epigenetic mechanism that has important functions in transcriptional

silencing and is associated with repressive histone methylation (H3K9me). To further

investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population

for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2

and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q)

in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahy-

drofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in

mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of

MTHFD1 in Arabidopsis. Accumulation of homocysteine and S-adenosylhomocysteine,

genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate

that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1. Comparative

analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive

feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic

networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent

transmethylation and has implications for human MTHFD1-associated diseases.
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D
NA methylation serves as a defense mechanism against
transposable elements (TEs) and other types of repetitive
DNA that can harm the genome of the organism they

inhabit. DNA methylation promotes the packaging of DNA into
so-called heterochromatin as to enforce a silent state, for example,
by making the DNA inaccessible to transcription activators.
Because of its transgenerational stability, DNA methylation is the
prime example of an epigenetic mechanism. The stability is
provided by feedback loops within, as well as crosstalk between,
different methylation pathways, as established in Arabidopsis
thaliana (Arabidopsis), where DNA methylation occurs at CG,
CHG and CHH (H¼A, T or C)1. In contrast to CHG and CHH
methylation, which are exclusively involved in heterochromatin
formation and transcriptional gene silencing (TGS), CG
methylation also occurs over gene bodies.

DNA methylation is generated by the activity of DNA
methyltransferases (DNMTs), which enzymatically transfer a
methyl group from S-adenosyl methionine (SAM) to cytosine.
In Arabidopsis, DOMAINS REARRANGED METHYLTRANS-
FERASE2 (DRM2) catalyses de novo methylation in all sequence
contexts2. Once established, DNA methylation at symmetric
CG and CHG sequences is maintained by DNA METHYL-
TRANSFERASE1 (MET1) and CHROMOMETHYLASE3
(CMT3), respectively. Maintenance of CG methylation is based
on the recognition of hemimethylated signatures after semi-
conservative DNA replication. Analogous to the recruitment
of the mammalian maintenance methylase DNMT1 through
UHRF1, members of the VARIANT IN METHYLATION (VIM)
family bind to hemimethylated DNA with their SET and RING-
associated (SRA) domains and are required for CG methylation
by MET1 (refs 1,3). In contrast, CHG methylation is maintained
by a reinforcing loop between non-CG methylation and
methylation of lysine 9 of histone H3 (H3K9me), which
involves the histone methyltransferases KRYPTONITE/SUVH4,
5 and 6. These preferentially bind methylated non-CG sequences
via their SRA domains and modify the wrapped nucleosome with
H3K9me (ref. 4). In turn, CMT3 binds H3K9me through its
chromo and BAH domains and catalyses the remethylation of
CHG sites during replication5. Similarly, maintenance of CHH
methylation by CMT2 also depends on SUVH4/5/6-mediated
H3K9me (ref. 6).

While CMT2 and 3 mostly target transposons in the
pericentromeric heterochromatin, DRM2 is mainly required for
maintenance of CHH methylation and TGS in the chromosomal
arms7. Targeting of DRM2 is mediated by the concerted action of
short transcripts that are processed into 24 nt small-interfering
RNAs and complementary long noncoding transcripts produced
by the plant-specific RNA polymerase complexes Pol IV and Pol
V, respectively. In the canonical RNA-directed DNA methylation
pathway (RdDM), 24 nt RNAs are incorporated into
ARGONAUT4 (AGO4) in order to match the RNA-induced
silencing complexes with Pol V transcripts8. Subsequently, DRM2
is recruited to the target CHH sites by direct interaction
with AGO4 (ref. 9). Recruitment of Pol IV to heterochromatin
is also dependent on H3K9me interaction via SAWADEE
HOMEODOMAIN HOMOLOGue 1 (SHH1) (ref. 10), whereas
Pol V is recruited via the non-catalytic SUV39 homologues
SUVH2 and 9 that bind to methylated DNA via their SRA
domains11.

TGS is often reinforced by the synergistic action of different
DNA methylation pathways. This is exemplified by the
SUPPRESSOR OF DRM2 CMT3 (SDC) locus, which is redun-
dantly silenced by the CMT3- and DRM2-mediated methylation
of tandem repeats in the promoter region12. Hence, SDC is
ectopically expressed in drm2 cmt3 double mutants, but repressed
during most of development in the single mutants, making SDC a

powerful genetic marker of simultaneous impairment of CHG
and CHH methylation pathways. We generated stable transgenic
lines carrying an SDCpro-GFP fusion construct in wild-type (WT)
and cmt3 genetic background and screened M2 populations
for EMS-mutants that express GFP. The identification of
microrchidia 1 (morc1) and morc6 mutants from this screen
was published previously13. Here, we identified a mutant
from the WT background that carries a missense mutation
in the Arabidopsis METHYLENETETRAHYDROFOLATE
DEHYDROGENASE/METHENYLTETRAHYDROFOLATE CYCLO-
HYDROLASE 1 (MTHFD1) gene. The mutation disrupts folate
metabolism and leads to accumulation of homocysteine (Hcy),
a hallmark of an impaired methionine (Met) cycle, whose main
function is to produce SAM for transmethylation reactions
and recycle the byproduct S-adenosyl homocysteine (SAH)14.
Genome-wide loss of CHG and CHH methylation, reduced
H3K9me and derepression of TEs in the mthfd1-1 mutant
indicate that the Met cycle constitutes an ‘Achilles heel’ of the
feedback mechanisms between DNA and histone methylation.

Results
The R175Q mutation in MTHFD1 leads to SDCpro-GFP
expression. Mutant #162 was identified by screening M2
seedlings of an EMS-mutagenized population of Arabidopsis that
carried an SDCpro-GFP insertion event in WT background
(herein after referred to as WT; Col refers to non-transgenic WT)
for individuals that showed GFP fluorescence (Fig. 1a). Using
deep sequencing of bulked GFP-positive F2 progeny of mutant
#162 crossed with a WT plant of ecotype Landsberg erecta (Ler),
we confined the target region containing the causative mutation
to the north end of chromosome 3 (Supplementary Fig. 1).
To identify the causative mutation, mutant #162 was crossed to
WT and the co-segregation of candidate EMS mutations in
GFP-positive F2 progeny was analysed using dCAPS markers
(Supplementary Fig. 2). A guanine to adenine transition in a
gene (At3g12290) encoding a putative methylenetetrahydro-
folate dehydrogenase/methenyltetrahydrofolate cyclohydrolase
(MTHFD1) showed 100% co-segregation in 98 GFP-positive F2
individuals (Supplementary Fig. 2). The mutant phenotype seg-
regated as a recessive monogenic trait (103 GFP-positive versus
368 GFP-negative, w2 P value (3:1)¼ 0.12). The mutation, herein
after named mthfd1-1, leads to a predicted substitution of a
conserved arginine by glutamine at residue 175 (R175Q) (Fig. 1b).
To confirm that mthfd1-1 caused the expression of SDCpro-GFP,
a #162 M3 mutant (mthfd1-1/mthfd1-1) was crossed with a
heterozygous plant containing a transfer DNA (T-DNA)
insertion allele, MTHFD1/mthfd1-2 (Fig. 1b). GFP expression in
F1 progeny co-segregated with the mthfd1-2 allele (Fig. 1a,c),
confirming that mthfd1-1 caused the expression of SDCpro-GFP
in #162.

GFP-positive plants originating from mutant #162 had pale
leaves, reduced seed set, were smaller and developed more slowly
compared with WT but did not display other morphological
defects (Fig. 1d and Supplementary Fig. 3a). In contrast, mthfd1-2
homozygous mutants showed severe developmental defects,
including dwarfism, pale, shortened leaves, reduced apical
dominance, delayed flowering, prolonged vegetative phase and
infertility (Fig. 1d and Supplementary Fig. 3a,b). Moreover, on
average we only retrieved one viable homozygous mthfd1-2
mutant out of 18 seeds from a heterozygous parent, indicating
that more than 75% of homozygous mthfd1-2 mutants died
prematurely (Supplementary Table 1). Viability seemed to be
affected during or after germination, because siliques from WT
and heterozygous MTHFD1/mthfd1-2 did not show differences in
ovule and seed development (Supplementary Fig. 3a). We did not
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retrieve any homozygous mutants from the T-DNA alleles
mthfd1-3 or mthfd1-4 (Fig. 1b). These results led to the
conclusion that MTHFD1 is an essential gene in Arabidopsis
and that the T-DNA insertion in the first intron in mthfd1-2 does
not completely abolish the function of MTHFD1. Moreover, the
results indicate that R175Q in mthfd1-1 partially impairs gene
function, causing a hypomorphic phenotype that does not affect
viability.

To test if DNA methylation is altered in mthfd1 mutants, we
analysed the MEDEA INTERGENIC SUBTELOMERIC REPEAT
(MEA-ISR) locus using a well-established Southern blot assay15.
In WT, approximately half of the MEA-ISR alleles are methylated
and restriction digest with methylation-sensitive MspI produces
two fragments of similar abundance. Both #162 and mthfd1-2
mutants showed a reduction of the methylated band, and the loss
of methylation was stronger in mthfd1-2 than in #162 (Fig. 1e).
We also analysed DNA methylation at Arabidopsis thaliana
SHORT INTERSPERSED ELEMENT 1 (AtSN1) by quantitative
PCR following methylation-sensitive restriction digestion and

observed similar reductions in DNA methylation (Fig. 1f).
Furthermore, bisulfite (BS)-PCR analysis of the levels of
methylation at CG, CHG and CHH sites in the tandem repeat
region of the transgenic SDC promoter showed a decrease in
CHG methylation of the transgenic SDC in #162 mutants
compared with the WT reference (Supplementary Fig. 4). In
summary, the DNA methylation assays confirmed that MTHFD1
is required for DNA methylation at different loci in different
sequence contexts, and the R175Q amino-acid substitution leads
to reduced DNA methylation. Because of the limiting amounts of
tissue available from mthfd1-2 mutants, only #162 mutants
(referred to as mthfd1-1 herein after) were analysed subsequently.

MTHFD1 is required for epigenetic silencing. To get a general
view of the DNA methylation defects in mthfd1-1, we analysed
genome-wide DNA methylation at single-nucleotide resolution
by BS-seq. The average global DNA methylation was reduced by
B40% relative to WT (Fig. 2a). The strongest effect was observed
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Figure 1 | SDCpro-GFP expression and DNA demethylation caused by R175Q mutation in MTHFD1. (a) GFP fluorescence micrographs of WT, #162 M2,

MTHFD1/mthfd1-2 F1 and #162/mthfd1-2 F1 seedlings. F1 are progeny of #162 M2 x MTHFD1/mthfd1-2. Dashed boxes indicate magnified areas shown in

lower panels. Inlets show bright-field images. (b) Gene structure, positions of mutations and conserved domains of MTHFD1. The EMS mutation in #162

lead to a R175Q substitution of a conserved residue required for NADP binding28. (c) PCR-based genotype analysis of 13 F1 seedlings and two control

samples. Arrowheads mark bands corresponding to WT/mthfd1-1 (upper) and mthfd1-2 (lower). The mthfd1-2 allele co-segregates with GFP fluorescence in

F1 (þ : present, � : absent). L, ladder. (d) Habit of different genotype plants 20 days after germination. Scale bar, 10 mm. (e) DNA blot analysis of non-CG

methylation at the MEA-ISR locus. Genomic DNA was digested with methylation-sensitive MspI; upper and lower bands correspond to methylated (m) and

unmethylated (u) fragments, respectively. Ratios of band intensities for each lane are shown under the gel image. (f) Levels of non-CG methylation at the

AtSN1 locus by quantitative chop PCR analysis of genomic DNA after digestion with methylation-sensitive HaeIII relative to undigested DNA. Mean

values±s.d. (n¼ 3). Different letters above bars indicate significant differences between pairwise comparisons by Student’s t-test (Po0.05).
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in the CHG context, which lost 62% of DNA methylation relative
to WT, followed by CHH and CG methylation with 50% and 24%
decreases, respectively (Fig. 2a). DNA methylation in all sequence
contexts was mostly decreased over the TE-rich pericentromeric
regions, which contain most of the DNA methylation along
the chromosomes (Fig. 2b). Accordingly, average methylation
levels over TEs were strongly decreased in mthfd1-1 compared
with WT, especially in CHG and CHH contexts (Fig. 2c). DNA
methylation was also moderately decreased over protein-coding
genes (PCGs) (Fig. 2d), indicating that MTHFD1 is not only
required for repressive DNA methylation at TEs but also for
efficient gene body CG methylation, although to a lesser degree,
compared with non-CG methylation. The different effects on
DNA methylation in the different sequence contexts was also
apparent when comparing WT and mthfd1-1 CG, CHG and
CHH methylation levels in randomly selected 100 bp windows
of the genome with methylation thresholds 41% (in order to
exclude unmethylated bins during randomization) (Fig. 2e–g).
This comparison additionally shows a positive correlation of
DNA methylation levels between WT and mthfd1-1 in all three
sequence contexts, which indicates that DNA methylation was
decreased uniformly across the genome (Fig. 2e–g), as opposed
to the DNA methylation patterns in loss-of-function DNMT

mutants, which show either nearly complete loss across the
sample pool (Supplementary Fig. 5a,b), or at a subset of regions
(Supplementary Fig. 5c).

To define the effect of the mthfd1-1 mutation on the different
DNA methylation pathways, we calculated differentially methy-
lated regions (DMRs) that had decreased DNA methylation in
mthfd1-1 or the DNMT mutants compared with the WT
reference (hypo-DMRs). The comparison of hypo-DMRs clearly
showed that CMT3-dependent CHG methylation was the most
affected, followed by CMT2- and DRM1,2-dependent CHH
methylation (DRM1 is a lowly expressed paralog of DRM2 (ref.
16)), and finally MET1-dependent CG methylation that was the
least affected in mthfd1-1 (Fig. 3a–c). It is noteworthy that
mthfd1-1 DNA methylation levels were also decreased in regions
that were only defined as DMRs in the DNMT mutants, but not in
mthfd1-1 (Fig. 3d–f). Moreover, all subsets of mthfd1-1 hypo-
DMRs showed residual DNA methylation, which supports a
uniform genome-wide decrease in mthfd1-1 (Fig. 3d–f). Heat
maps of hierarchically clustered CHG and CHH hypo-DMRs
further illustrated that DNA methylation levels in mthfd1-1 are
evenly decreased at moderate degrees and thus generally
proportional to WT levels (Fig. 3g). The equal ratio of TE- versus
PCG-overlapping CG hypo-DMRs in met1 and mthfd1-1 is also

0 300 15 0 20 0 15 0 25 Mbp

C CG CHG CHH

D
N

A
 m

et
hy

la
tio

n 
(%

)

0

5

10

15

20

25

30 WT
mthfd1−1

WT
mthfd1-1

CG CHG 

CHH 

100

50

0
Start 2,000–2,000 Stop

D
N

A
 m

et
hy

la
tio

n 
(%

)

TE

25

50

0
Start 2,000–2,000 Stop

TE

WT
mthfd1-1

40

20

0
Start 2,000–2,000 Stop

D
N

A
 m

et
hy

la
tio

n 
(%

) CG 

PCG

WT
mthfd1-1

WT
mthfd1-1

Chr1 Chr2 Chr3 Chr4 Chr5

CG 

100

50

0

CHG 

0

30

60

CHH 

0

6

12

D
N

A
 m

et
hy

la
tio

n 
(%

)

CHG methylation

0.4 0.6 0.8 1.0
WT

0.0 0.2

y=0.37*x
R2=0.74

CG methylation
y=0.77*x
R2=0.91

0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

WT

m
th

fd
1−

1

0.0

0.2

0.4

0.6

0.8

1.0

m
th

fd
1−

1

0.0 0.2

CHH methylation

WT

m
th

fd
1-

1

y=0.38*x
R2=0.57

0.0 0.2 0.4 0.6

0.2

0.4

0.6

0.0

a b

c d

e f g

Figure 2 | DNA methylation is globally decreased in mthfd1-1 mutants. (a) Average genome-wide DNA methylation for all Cs and in individual sequence
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in agreement with a uniform decrease in genomic DNA
methylation in mthfd1-1 (Fig. 3h). Accordingly, the small subset
of met1 CG hypo-DMRs shared by mthfd1-1 does not seem to
represent site-specific MTHFD1 function, but is more likely due
to stringent criteria for DMR calling, which were not met by the
majority of sites in mthfd1-1 despite reduced CG methylation
levels (Fig. 3a,d). In the CHH context, RdDM and the CMT2
pathway were both affected by mthfd1-1 (Fig. 3c,g). The
chromosomal distribution of mthfd1-1 CHH hypo-DMRs, with

high densities inside and at the peripheries of the pericentromeric
regions, and lower densities in the chromosomal arms, reflects
the overlaps with the alternative CHH methylation pathways
(Supplementary Fig. 5d). In summary, the DNA methylation
analysis of mthfd1-1 revealed a rather uniform genome-wide
decrease, which is most pronounced in the CHG and CHH
context.

DNA methylation by CMT3, CMT2 and RdDM is functionally
linked to histone methylation, because CMT2 and CMT3 directly
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bind H3K9me in a feedback loop with the histone methyltrans-
ferases KYP/SUVH4, SUVH5 and SUVH6 (refs 5,6), and Pol IV
is recruited to chromatin by K3K9me-binding SHH1 (ref. 10). To
test if H3K9me is also affected in mthfd1-1, we analysed H3K9
dimethylation (H3K9me2) by immunofluorescence. Nuclei of
mthfd1-1 mutants showed a strong decrease in H3K9me2, but the
majority of the nuclei still contained DNA-dense chromocenters
visualized by DAPI staining (Fig. 3i,j). Therefore, the strong
decrease in CHG and CHH methylation in contrast to the small
decrease in CG methylation is likely explained by the combined
effect of impaired DNA and H3K9 methylation.

To test if loss of DNA methylation in mthfd1-1 led to
transcriptional derepression, we analysed the expression levels
of different retrotransposons that were previously identified
as upregulated in drm1,2 cmt3 triple mutants13. Quantitative
reverse transcription (RT)-PCR showed that these TEs are also
strongly induced in mthfd1-1 (Fig. 4a and Supplementary Data 1).
Transcriptome analysis of mthfd1-1 and WT by RNA-seq
confirmed that average transcript levels over CHH and CHG
hypo-DMRs are higher in mthfd1-1 than in WT (Fig. 4b). Many
transcripts from TEs that were silenced in WT were highly
abundant in mthfd1-1, whereas transcriptional differences of
PCGs were more even and showed a slight tendency towards
higher transcript levels in WT (Fig. 4c–e). Correspondingly,
pericentromeric regions showed many differentially upregulated
TEs and—to a lesser degree—PCGs in mthfd1-1, whereas
chromosome arms contained approximately equal distributions
of up- and downregulated PCGs (Fig. 4d,e). The differentially
upregulated TEs in mthfd1-1 belonged to class I, as well as class II
transposons. Among the differentially upregulated TEs, members
of the LTR/Gypsy family were overrepresented, and members of
the RC/Helitron family were under-represented compared with
the genomic distribution (Supplementary Fig. 6). In summary, the
transcriptional analyses have shown that the loss of DNA
methylation in mthfd1-1 led to derepression of transposons and
genes (Fig. 4g), predominantly in the pericentromeric region
(Fig. 4d). The observed transcriptional changes in the
chromosome arms seem to be mainly a consequence of
pleiotropic effects of impaired MTHFD1 function. This is
supported by an analysis of GO terms annotated to genes that
are significantly downregulated in mthfd1-1 compared with WT
(Fig. 4f and Supplementary Data 2). The 10 statistically most
significantly enriched biological processes indicate that MTHFD1
serves important functions in sugar metabolism, isoprenoid
synthesis, redox homoeostasis and photosynthesis. Since mthfd1-
1-downregulated genes did not show a significant loss of DNA
methylation, the overall effects on transcript abundance caused by
decreased gene body methylation in mthfd1-1 are likely to be
negligible (Fig. 4g).

mthfd1-1 mutants show accumulation of S-adenosylhomocysteine.
Arabidopsis MTHFD1 contains two highly conserved protein
domains, a catalytic domain in the N-terminal half, and a
NAD(Pþ )-binding domain of the Rossmann fold superfamily in
the C-terminal half (Fig. 1b). Therefore MTHFD1 is probably
required for the interconversion of tetrahydrofolate (THF) species
in one-carbon metabolism of Arabidopsis. Members of the
bifunctional enzyme family catalyse the reversible interconversion
of 5,10-methylenetetrahydrofolate (5,10-CH2-THF) to 5,10-
methenyltetrahydrofolate (5,10-CH¼THF) (NADPþ -dependent
dehydrogenase activity) and further to 10-formyltetrahydrofolate
(10-CHO-THF) (cyclohydrolase activity) (Fig. 5) (ref. 17). These
enzymatic activities have previously been detected in plant
extracts18. The Arabidopsis genome encodes four homologues,
the mitochondrial MTHFD2/FOLD1 (AT2G38660), FOLD3

(At4g00600) and FOLD4 (At4g00620), which are putatively
plastidic, and MTHFD1/FOLD2, which lacks an N-terminal
targeting peptide and is presumably localized in the cytoplasm
(Supplementary Fig. 7) (refs 19–21). We confirmed the
subcellular localization of the latter two homologues by
expression and in vivo imaging of the full-length fusion
proteins MTHFD1-YPET-3xFLAG, MTHFD1_R175Q-YPET-
3xFLAG and FOLD4-YPET-3xFLAG in Nicotiana benthamiana
(Fig. 6a,b and Supplementary Fig. 8), showing that MTHFD1 is
predominantly in the cytoplasm. The Met cycle is exclusively
localized in the cytoplasm and is required for the synthesis of
SAM, which serves as methyl donor for many transmethylation
reactions, including those catalysed by histone and DNMTs
(Fig. 5). During transmethylation SAM is converted to SAH,
which is further processed into adenosine and Hcy by the SAH
hydrolase (SAHH) (Fig. 5). Hcy is recycled to Met by 5-CH3-
THF-dependent transmethylation activity of methionine synthase
and can serve for a new round of SAM synthesis (Fig. 5)
(refs 14,22). To test if the DNA methylation defects in mthfd1-1
are caused by changes in the Met cycle, we analysed the levels of
SAM, SAH and Hcy, as well as cysteine in mthfd1-1, WT and Col
leaves. SAM and SAH were both significantly increased in
mthfd1-1, but the stronger increase in SAH levels led to an overall
decrease of the methylation index (MI¼ SAM/SAH) (Fig. 7a–c).
MI is an important measure of the organismal methylation status,
because SAH is a strong competitive inhibitor of SAM-dependent
transmethylation23. Because of the low intracellular concentration
and high affinity for methyltransferases, it has been suggested that
even small changes in the MI can lead to a reduction in
transmethylation activity24. Therefore, it is likely that the
decreased MI in mthfd1-1 leads to decreased activities of DNA
and histone methyltransferases, as reflected by the observed DNA
and histone methylation defects. This is further supported by a
12-fold increase in Hcy (and an associated increase in cysteine
levels) in mthfd1-1 (Fig. 7d), because Hcy accumulation leads to
inhibition of SAH hydrolysis and consequently to a lower MI22,25.

Regulation of folate homoeostasis by MTHFD1. Analysis of
folate metabolites in leaves of mthfd1-1 and WT showed that total
folate content did not differ significantly, but mthfd1-1 had an
8.8-fold increase in THFþ 5,10-CH2-THF (these two compounds
cannot be distinguished by the analysis). On the other hand, the
levels of 5,10-CH¼THF, which also include the 10-CHO-THF
pool, were reduced by 30% and 5-CHO-THF levels were also
B33% lower (Fig. 7e). Unexpectedly, there was no significant
difference in 5-CH3-THF contents, which is the product of
5,10-CH2-THF reductase that serves as co-substrate for the
methylation of Hcy to Met and constitutes the most abundant
active THF species26. The low levels of the oxidized folates,
10-CHO-THFþ 5,10-CH¼THF and 5-CHO-THF, suggest an
impairment in the dehydrogenase and cyclohydrolase activities
towards the formation of 10-CHO-THF. On the basis of the
crystal structure and site-directed mutagenesis of human
MTHFD1, the conserved arginine that is mutated in mthfd1-1
(R175Q), forms a hydrogen bond with NADPþ and is required
for dehydrogenase, but not cyclohydrolase activity27,28.
Therefore, we anticipate that the R175Q mutation has a similar
effect in mthfd1-1 mutants. Accordingly, the accumulation of the
reduced forms THFþ 5,10-CH2-THF in mthfd1-1 might reflect
reduced conversion of 5,10-CH2-THF to 5,10-CH¼THF, which
is in agreement with the homology-based prediction that the
R175Q mutation affects NADPþ binding and dehydrogenase
activity27,28. The decreased pool of oxidized THFs further
suggests that one-carbon supply from formate via FTHFS
and reverse cyclohydrolase by MTHFD1 is not sufficient to
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compensate for reduced MTHFD1 dehydrogenase activity
(Fig. 5). This is in accordance with metabolic analyses
showing relatively low one-carbon flow from formate to
serine (Ser)29.

Ser can serve as a one-carbon source through the reversible
enzymatic activity of serine hydroxymethyltransferase (SHMT),
which converts Ser and THF to 5,10-CH2-THF and glycine (Gly)
(Fig. 5). In addition, the Gly decarboxylase complex converts Gly
and THF to 5,10-CH2-THF, carbon dioxide and ammonia during
photorespiration, which in turn can lead to Ser synthesis by

SHMT in the mitochondria30 (Fig. 5). We analysed amino-acid
levels in rosette leaves and found a threefold increase of Gly levels
in mthfd1-1 compared with WT and Col controls, whereas
Ser levels were only slightly increased in mthfd1-1 (Fig. 7f). In
accordance with our folate analysis, the lower Ser/Gly ratio in
mthfd1-1 might be due to increased SHMT activity towards
5,10-CH2-THF formation19. Furthermore, mthfd1-1 mutants
showed a 5.4-fold and 1.9-fold increase in proline and Met
levels, respectively (Supplementary Fig. 9). The increase in Met
might be due to increased de novo synthesis (which occurs
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exclusively in plastids) in response to impaired Met recycling,
whereas proline accumulation is typically observed as a stress
response31.

We sought to manipulate one-carbon metabolism in mthfd1-1
by exogenous application of metabolites involved in the folate and
Met cycle and monitor root growth and DNA methylation effects.
Previously it has been shown that growth phenotypes, DNA
methylation and epigenetic silencing defects caused by decreased
activated THF pools because of impaired plastidic folylpoly-
glutamate synthetase (FPGS1), or chemical inhibition of folate
synthesis by sulfamethazine (SMZ) were complemented by
exogenous application of 5-CHO-THF or Met32–35. Application
of 5-CHO-THF, as well as 5-CH3-THF, tests for defects in
mthfd1-1 caused by reduced folate availability before the flow of
one-carbon into the Met cycle, whereas application of Met tests
for defects in the Met cycle (Fig. 5), and SMZ was used as a
control. In contrast to previously described complementation of
fpgs1 mutants, 5-CHO-THF strongly inhibited root growth of
mthfd1-1 seedlings without showing an inhibitory effect on WT
seedlings (Fig. 8a). Although analysis of global DNA methylation
levels revealed that these are largely independent of the observed
root growth responses, average mthfd1-1 CHG methylation over
the previously defined CHG hypo-DMRs significantly increased
upon Met application. On the other hand, 5-CHO-THF, as well
as 5-CH3-THF, did not rescue the DNA methylation defects in
mthf1-1 (Fig. 8b). These results indicate that, in contrast to the
fpgs1 mutants and SMZ inhibition34,35, the DNA methylation

defects in mthfd1-1 are probably not the mere result of
diminished folate pools, but rather point towards an inhibition
of methionine synthase.

Discussion
Methylation patterns in the Arabidopsis genome are remarkably
stable not only from one generation to the next but also at
evolutionary timescales36–39. Comparative genomics and genome-
wide association studies have linked DNA methylation and
phenotypic variation in Brassicaceae to genetic polymorphisms in
the DNA methylation machinery40,41, and consequently support
an adaptive role of spontaneous epigenetic changes. For example,
two independent studies have revealed that different alleles of
CMT2 and the concomitant differences in CHH methylation are
associated with climate adaptation40,42. Here we have identified an
EMS-induced polymorphism in the essential folate metabolic
enzyme MTHFD1 from Arabidopsis, which causes a strong,
genome-wide decrease in DNA methylation. This finding
highlights that DNA methylation patterns in Arabidopsis not
only depend on the pathways and catalytic activities of the DNMTs
but also on the metabolic network that regulates the availability of
the methyl donor SAM and the adequate functioning of the
activated methyl cycle. It is therefore conceivable that regulatory
mechanisms have evolved, which connect nutritional changes to
epigenetic gene regulation by DNA and histone methylation.
Although direct examples in plants are still lacking, it has been
shown that a folate-rich diet in mice leads to changes in coat colour
of the offspring that is caused by altered expression of the agouti
gene due to increased DNA methylation of a transposon in the
agouti locus (Avy)43. This finding illustrates an example of how
such regulatory mechanisms could work.

The EMS-allele mthfd1-1 was identified through a genetic
screen for mutants that simultaneously affect CHG and CHH
methylation. Correspondingly, our genome-wide BS-seq analysis
of mthfd1-1 mutants revealed extensive hypomethylation in CHG
and CHH sequence contexts. In contrast, loss of CG methylation
was comparatively low. We therefore reason that the feedback
regulation between CHG/CHH and H3K9 methylation is
particularly prone to changes in one-carbon metabolism, because
transmethylation by DNA and histone methyltransferases are
both SAM-dependent. Accordingly, mthfd1-1, as well as previous
analyses of fpgs1 mutants and plants treated with SMZ34,35,
showed reduced H3K9me2. Because of the mechanistic
interdependence of non-CG and H3K9 methylation5, it is
difficult to tell whether histone or DNA methylation is more
directly affected by impaired one-carbon metabolism. The
predominant effect on CHG methylation might suggest that
loss of H3K9me2 is the primary defect. However, the fact that CG
methylation is also decreased in mthfd1-1, a type of methylation
that is not linked with H3K9 methylation, suggests a
general inhibition of the enzymatic activity of different
methyltransferases, including MET1.

Our transcriptome analysis demonstrated that loss of DNA
methylation in mthfd1-1 mutants leads to derepression of TEs
and a generally higher abundance of transcripts from the
pericentromeric heterochromatin compared with WT. With
respect to the almost equal numbers of up- and downregulated
PCGs, loss of gene body methylation can only account for some
of the observed changes, whereas the majority of differential gene
expression is probably caused by pleiotropic effects of impaired
MTHFD1 function. Secondary to its role in one-carbon
metabolism, a shortfall of NADPþ conversion by MTHFD1 is
expected to severely disturb the redox state44. Accordingly, GO
term analysis revealed a significant enrichment of genes involved
in cell redox homoeostasis, oxidative pentose phosphate pathway
and glycolysis (Fig. 4f and Supplementary Data 2) (ref. 45).

Col WT mthfd1−1

Methylation index

S
A

M
 / 

S
A

H

0
5

10
15
20
25
30
35

c

b

0.0

0.5

1.0

1.5

2.0

2.5

Col WT mthfd1−1

SAH

pm
ol

 p
er

 m
g 

F
W

*

a

Col WT mthfd1−1

SAM

pm
ol

 p
er

 m
g 

F
W

0

5

10

15

20

25

30 *

d

Homocysteine Cysteine

pm
ol

 p
er

 m
g 

F
W

0

2

4

6

8

10

12
Col
WT
mthfd1-1

Col
WT
mthfd1-1

*

*

0

0.6

1.2

1.8

WT mthfd1-1 

nm
ol

 p
er

 g
 F

W

5-CHO-THF

5,10-CH=THF +
10-CHO-THF

5-CH3-THF

THF + 5,10-
CH2-THF

*

*

*

e

Serine

nm
ol

 p
er

 m
g 

F
W

0

0.3

0.6

0.9

1.2

1.5 *

Glycine

f

Figure 7 | mthfd1-1 mutants show impaired one-carbon cycle.

(a–f) Steady-state levels of SAM (a), SAH (b), Methylation Index (MI) (c),

selected thiols (d), folates (e) and selected amino acids (f) in leaves of Col,

WT and the mthfd1-1 mutant. Data represent means±SD. Asterisks indicate

significant differences determined by Student’s t-test (Po0.05, nZ3).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11640 ARTICLE

NATURE COMMUNICATIONS | 7:11640 | DOI: 10.1038/ncomms11640 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


MTHFD1 related proteins in different species have mono-,
bi- or trifunctional enzymatic activity. Yeast and mammalian
cytosolic homologues, known as C1-THF synthases, are tri-
functional and reversibly catalyse the stepwise oxidation from
5,10-CH2-THF to 10-CHO-THF, which serve for thymidylate/
pantothenate and de novo purine/N-formylmethionine synthesis,
respectively, and the conversion of 10-CHO-THF to THF and
formate (reverse FTHFS activity) (Fig. 5) (refs 14,46,47).
Bifunctional forms, which are found in certain bacteria and in
plants, lack the FTHFS activity18,48,49. Moreover, methylenetetra-
hydrofolate reductase converts 5,10-CH2-THF to 5-CH3-THF and
thereby directs activated methyl towards SAM (Fig. 5).
As such, the reversible enzymatic activity of MTHFD1 channels
one-carbon into different pathways and acts as a crucial regulatory
hub (Fig. 5). Correspondingly, functional mutations, such as in
mthfd1-2, have severe pleiotropic effects and are mostly lethal. This
is in contrast to the subtle morphological defects generally observed
in epigenetic Arabidopsis mutants, for example, drm1 drm2 cmt3
triple knockout mutants50, and denotes that inhibition of MTHFD1
leads to pleiotropic morphological defects that are independent of
its impact on DNA and histone methylation. The essential nature of
MTHFD1 further indicates that the additional three Arabidopsis
MTHFD homologues have plastid- and mitochondrion-specific
functions that cannot compensate for a loss of cytoplasmic
MTHFD1 function.

Because of its role in nucleotide biosynthesis and DNA
methylation, folate metabolism is of central relevance in cancer
research, as exemplified by the therapeutical use of antifolates51.
Polymorphisms in human MTHD1 C1-THF synthase have been
associated with cancers, as well as neural tube defects and other
illnesses51. Interestingly, one polymorphism (R173C) resides in
the same conserved residue that is mutated in the EMS-allele
mthfd1-1 and was linked to severe combined immunodeficiency,
megaloblastic anaemia and altered Met metabolism, including
Hcy accumulation52. Analyses of fibroblasts harbouring
this mutation showed signs of DNA damage and uracil
misincorporation into DNA due to impaired de novo
thymidylate synthesis52. Interestingly, the mutation had the
strongest impact on one-carbon flow towards the Met cycle52.
Impaired dehydrogenase activity was partially compensated by

increased SHMT activity, as well as increased salvage thymidylate
synthesis, whereas de novo purine synthesis was not affected52.
The study did not include DNA methylation analyses, but given
the conserved function of MTHFD1 and shared effects on Hcy
remethylation, our results predict that DNA methylation is
affected by the MTHFD1 R173C mutation and might be involved
in certain types of severe combined immunodeficiency and
megaloblastic anaemia. In reverse, analogous redirection of
one-carbon flow towards nucleotide synthesis at the expense of
Hcy remethylation is a possible explanation of the defects
observed in mthfd1-1 and was also suggested to occur upon
methotrexate-induced THF depletion in Arabidopsis, based on
folate measurements and transcriptional analyses53.

Hcy accumulation and decreased MI, as observed in mthfd1-1
and previous studies32–35, are hallmarks of impaired Hcy
remethylation due to impaired folate metabolism. Increased
Hcy levels lead to decreased SAH hydrolase activity and
accumulation of SAH, which competitively inhibits SAM-
dependent transmethylation, including DNA and histone
methylation54,55.

Decreased flux of one-carbon towards the remethylation of
Hcy should intuitively lead to decreased levels of Met, yet we
observed increased cellular Met in mthfd1-1. However, primary
metabolites, in particular the sulfur amino acids Cys and Met,
are often controlled by multiple layers of regulatory circuits,
as exemplified by the sir1-1 mutant, which also show an
increased Met steady level despite a 20-fold decreased flux of
sulfur through the assimilatory sulfate reduction pathway56. This
increase was the result of decreased flux into Met sinks, due to an
attenuation of translation and growth in sir1-1 (ref. 56). To that
effect, it is conceivable that Met levels were increased in the
mthfd1 mutant because histone and DNA methylation (two
major one-carbon sinks) and growth were decreased. Moreover,
increased Met levels might also be due to increased Met de novo
synthesis. Accordingly, the transcriptome analysis of mthfd1-1
shows a 4.3-fold increase in transcripts corresponding to
MRU1 (At5g35490), which is also upregulated in the Met
over-accumulating mutant mto1-1 (ref. 57).

In the cases of chemically inhibited THF synthesis or impaired
THF polyglutamylation, exogenous application of 5-CHO-THF,
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which is readily assimilated and metabolized to active THF forms
in Arabidopsis53,58, successfully reversed the feedback inhibition
of transmethylation and TGS34,35. Interestingly, 5-CHO-THF
feeding to mthfd1-1 mutants did not complement the DNA
methylation defect and had a strong adverse effect on root
growth. This hypersensitivity could be attributable to an
inhibitory effect of 5-CHO-THF on SHMT59. As in R173C
fibroblasts52, it is likely that the supply of 5,10-CH2-THF in
mthfd1-1 mutants depends on cytosolic SHMT. Although cell
compartmentalization demands a cautious interpretation of the
metabolic profiles, the observed decrease in 5-CHO-THF levels
by 33% in mthfd1-1 versus WT might have led to an increase in
SHMT activity. Since the reaction equilibrium catalysed by
SHMT favours Gly production60, increased SHMT activity might
have contributed to the threefold increase in steady-state Gly
levels observed in mthfd1-1 versus WT. An inhibition of SHMT
by exogenously applied 5-CHO-THF would accordingly cut off
the cytosolic 5,10-CH2-THF supply and explain the enhanced
root growth defect in mthfd1-1 mutants. It is noteworthy that we
did not observe an enhanced DNA methylation defect upon
5-CHO-THF feeding, which suggests that even under normal
growth conditions SHMT-dependent 5,10-CH2-THF production
is unable to perpetuate the Met cycle in mthfd1-1. This is further
supported by the lack of phenotypic rescue of mthfd1-1 by
exogenous 5-CH3-THF. On the other hand, exogenous Met
partially restored global CHG methylation, which together with
the folate quantifications and feeding experiments suggests that
transmethylation in mthfd1-1 is impaired due to an inhibition
of Hcy remethylation, as opposed to limited availability of
folate intermediates34,35 or inhibition of SAHH54. As such, the
described DNA methylation and gene regulatory defects in
mthfd1-1 highlight a central regulatory role of MTHFD1 in one-
carbon distribution towards different cell physiological processes.

Methods
Plant material. All plants used in this study were of the Columbia-0
ecotype. T-DNA insertion mutants mthfd1-2 (WiscDsLox244C04), mthfd1-3
(SALK_015165) and mthfd1-4 (SALK_039538) were obtained from the Arabidopsis
Biological Research Center (Ohio State University). Genotypes were analysed by
PCR using primers listed in Supplementary Table 2. The triple mutant drm1 drm2
cmt3 and the WT transgenic line carrying the SDCpro-GFP fusion construct were
published previously4,13. mthfd1-1 mutants have been backcrossed with WT plants
carrying SDCpro-GFP. Plants were grown in the greenhouse at long day light cycles,
unless stated differently.

Genetics screening and mapping analyses. WT seeds (2,000) were suspended in
0.3% EMS solution for 13 h with rotation, washed with water and planted on soil.
Approximately 1,000 independent M2 populations were collected and screened for
GFP fluorescence using a Leica MZ16F Fluorescence Stereomicroscope equipped
with a GPF Plus filter. Pictures were taken with a DFC300 FX digital camera. For
mapping and identification of EMS mutations, mutant #162 was crossed with WT
Ler and 10-days-old F2 seedlings grown on media containing 1� Murashige and
Skoog basal salt mixture (MP) and 20 mg ml� 1 glufosinate ammonium (Sigma)
were analysed for GFP expression. Genomic DNA was isolated from pooled tissue
of 50 GFP-positive F2 mutants and analysed by whole-genome re-sequencing
for co-segregating single-nucleotide polymorphisms between Col and Ler13.
Primer sequences of CAPS markers for co-segregation analyses are shown in
Supplementary Table 2.

Local DNA methylation analyses. Genomic DNA was isolated from aerial tissue
of 4–5-weeks-old plants. The MEA-ISR probe for DNA blot analysis was amplified
using primers JP980 and JP981 (Supplementary Table 2) (ref. 15). Vertically
uncropped images of all blots and gels shown in this study are provided in
Supplementary Fig. 10. Chop-PCR analysis of AtSN1 was performed by real-time
PCR using primers JP6349 and JP6350 (Supplementary Table 2) (ref. 61). For DNA
methylation analysis of the transgenic SDC promoter, DNA was BS converted
using EZ DNA Methylation Gold kit (Zymo Research) and PCR amplified using
primers listed in Supplementary Table 2. PCR fragments were cloned into pCR2.1-
TOPO (Thermo Fisher Scientific), and 20 clones per genotype were sequenced.

Whole-genome bisulfite sequencing. Genomic DNA was extracted from rosette
leaves of 3-weeks-old plants using DNeasy Plant Mini Kit (Qiagen) and fragmented
into 200 bp average size with a Covaris S2 sonicator. Next, fragmented DNA was
end repaired, adenylated and ligated with TruSeq DNA LT adapters (Illumina)
using NEBNext DNA library prep reagent set (NEB). Subsequently, BS conversion
was performed with CpGenome DNA modification kit (Millipore). Libraries were
amplified using PCR primer cocktail (Illumina) and Pfu Turbo Cx hotstart DNA
polymerase (Agilent). Sequencing was performed on a HiSeq 2000 platform at
50 bp length. Identical reads were removed and unique reads were aligned to the
Arabidopsis reference genome (TAIR10) using BSMAP 2.87 (ref. 62). Read
statistics are listed in Supplementary Table 3. Data for mutants other than the
mthfd1-1 were obtained from GSE39901 (ref. 63). Methylation levels were
calculated as #C/(#Cþ #T). DMRs were defined by dividing the genome into
100 bp bins and comparing mutants and WT by the number of methylated and
unmethylated Cs with at least four Cs covered using Fisher’s exact test and cutoffs
of Benjamini–Hochberg corrected false discovery rateo0.01. Moreover, absolute
methylation difference of each bin had to be at least 0.4, 0.2 and 0.1 for CG, CHG
and CHH, respectively. Heat maps of DMRs were generated by ‘pheatmap’ package
in R software and clusters were grouped by the complete linkage method with
Euclidean distance measurement. Venn diagrams were generated by calculating
overlaps of 100 bp DMRs.

RNA analyses. Total RNA was isolated with TRIzol (Thermo Fisher Scientific)
from 0.1 g of rosette leaves from 3-weeks-old plants. For real-time RT-PCR
analysis, 2 mg of DNase I-treated total RNA were reverse-transcribed with
SuperScript III (Thermo Fisher Scientific) and cDNA was amplified at target
loci (primers listed in Supplementary Table 2) using iQ SYBR Green Supermix
(Bio-Rad) and a Mx3005P qPCR system (Agilent Technologies).

For RNA-seq analysis, unstranded libraries from poly-A-tailed RNA were
generated according to the manufacturer’s instructions (Illumina TruSeq) and
sequenced with the HiSeq 2,000 platform at 50 bp length. Reads were mapped to
the TAIR10 genome with TopHat2 (ref. 64) using defaults settings, except that
intron length was set to 40–5,000. Read statistics are listed in Supplementary
Table 3. Fragments per kilobase of exon per million fragments mapped (FPKM)
values and differential gene expression were analysed with Cufflinks65 using default
settings, except that maximum intron length was set to 5,000 and the –u option was
used. The reference annotation for Cufflinks analysis was downloaded from TAIR
and combined genes, including pseudogenes and TE genes, and TEs. GO term
enrichment in genes that were significantly down regulated in mthfd1-1 compared
with WT by at least twofold was analysed with GOrilla66, using all Arabidopsis
PCGs as background list.

Immunofluorescence analysis. Nuclei from rosette leaves of 3-weeks-old plants
were immunostained with anti-H3K9me2 primary (Abcam ab1220, 5 mg ml� 1)
and Alexa Fluor 647-conjugated anti-mouse IgG secondary (Thermo Fisher
Scientific A-31571, 10 mg ml� 1) antibodies, and counterstained with DAPI
(1 mg ml� 1) (ref. 13). Stained nuclei were imaged with a LSM 710 confocal
microscope (Zeiss), with a C-Apochromat � 40/1.2 W Corr M27 objective and
detection at l (nm)¼ 410–504 (DAPI) and l (nm)¼ 653–680 (Alexa Fluor 647).

Subcellular localization. To generate C-terminally tagged translational fusion
proteins MTHFD1-YPET-3xFLAG, MTHFD1_R175Q-YPET-3xFLAG and
FOLD4-YPET-3xFLAG, genomic DNA from Col and mthfd1-1 was amplified with
primer pairs JP14184/5 and JP14190/1 (Supplementary Table 2), spanning the
entire ORF (excluding Stop) and 1147 and 866 bp 50 of the ORF of MTHFD1 and
FOLD4, respectively. The amplified products were digested with XhoI & SpeI or
SalI & SpeI and ligated with the plasmid pBJ36 (ref. 67), which has been linearized
with XhoI & XbaI and contained an insertion of YPET-3xFLAG on the 30-side of
the XbaI site. Not1 fragments from the resulting plasmids were inserted into the
Not1 site of the binary vector pMLBART67. Overnight cultures of transformed
Agrobacterium tumefaciens strain ASE were adjusted to OD600¼ 0.3 and
coinfiltrated with p19 into N. benthamiana leaves68. Leave discs were imaged
4 days after infiltration with a LSM 710 confocal microscope (Zeiss), using a
Plan-Apochromat � 20/0.8 M27 objective and sequential scanning at excitation/
detection l (nm)¼ 514/519–559 (YFP), 488/630–730 (chlorophyll) and
405/409–530 (DAPI).

Immunopurification and western blot analysis. Agro-infiltrated N. benthamiana
leaves (0.5 g) were ground in liquid nitrogen, and ground tissue was resuspended in
3 ml of IP buffer (50 mM Tris pH7.6, 150 mM NaCl, 5 mM MgCl2, 5% (vol/vol)
glycerol, 1% Tergitol (Type NP-40, Sigma), 2.8 mM b-mercaptoethanol, 1 mg ml� 1

pepstatin, 1 mM PMSF and 1� protease inhibitor mixture tablet (Roche,
14696200)). Cleared lysates were incubated with 4 ml of anti-GFP antibody
(A-11122, Molecular Probes), followed by 50 ml of Dynabeads Protein G (Thermo
Fisher Scientific) at 4 �C for 1 h each. Western blotting was performed with
anti-FLAG M2-Peroxidase (horseradish peroxidase) antibody (A8592-1MG, Sigma,
1:7,500 dilution).
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Quantification of metabolites. Thiols, amino acids and adenosine nucleotides
were extracted with 0.5 ml of 0.1 M hydrochloric acid from 0.1 g of in liquid
nitrogen grinded rosette leaves from 4-weeks-old plants (n¼ 6) grown at long day
light and 21 �C. Amino acids and thiol were labelled with AccQ-Tag (Waters)
and monobromobimane (Callbiochem), respectively, and quantified after
separation by reverse phase chromatography69. SAM and SAH were converted by
chloroacetaldehyde treatment to their fluorescent etheno-derivates and quantified
according to Burstenbinder et al.70 after separation on a Gemini-NX C18 column
(150� 3 mm, 5 mm, 110 A, Phenomenex, Germany) connected to a Waters 600
HPLC system with a flow rate of 1 ml min� 1 using the following gradient: 5 min
100% buffer A (50 mM tri-sodium phosphate deodecahydrate, 10 mM sodium
1-heptane sulfonate, 4% acetonitrile, pH 3.2); linear gradient for 15 min to 15%
buffer B (pure acetonitrile); 7 min linear gradient to 90% buffer B; and 3 min 90%
buffer B followed by re-equilibration of the column in 100% buffer A for 20 min.

Folate analysis. Arabidopsis rosette leaves (B0.15 g) were pulverized in a mortar
with addition of liquid N2 and homogenized with 10 ml folate extraction buffer
(50 mM HEPES, 50 mM CHES, 10 mM b-mercaptoethanol, 2% Na-ascorbate (p/v),
pH 7.9). The extracts were deglutamylated with a recombinant conjugase from
Arabidopsis (100 mg AtGGH2 g� 1 sample) for 1 h at 37 �C. Folates were purified by
affinity chromatography using folate-binding columns. Purified folates were
separated by liquid chromatography (Agilent Technologies, Santa Clara, CA, USA)
using a Prodigy ODS(2) column (150� 3.2 mm; 5 mm particle size) (Phenomenex,
Torrance, CA, USA) with a 33 min nonlinear gradient of phase A (28 mM K2HPO4,
59 mM H3PO4) and phase B (75% phase A, 25% acetonitrile): 10% B (0� 2 min);
10� 20% B (2� 4 min); 20� 47% B (4� 20 min); 47� 80% B (20� 25 min);
100% B (25� 30 min); and 10% B (30� 33 min) with a 1 ml min� 1 flow. Folate
derivatives were detected by a four-channel electrochemical detector (CoulArray
Model 5600A, ESA, Massachusetts, USA) with potentials set at 100, 200, 300 and
400 mV. THF, 5-methyl-THF, 5,10-methenyl-THF and 5-formyl-THF were
quantified using calibration curves made with standards obtained from Schircks
(Schircks Laboratories, Buechstrasse, Jona Switzerland). Because of the acidic pH of
the mobile phase, in these analyses, THF represents THFþ 5,10-methylene-THF
and 5,10-CH¼THF comprises 5,10-CH¼THFþ 10-CHO-THF33.

Root growth assays and global DNA methylation analyses. Seeds were
germinated on Phyto agar (RPI Corp.) containing 1� Murashige and Skoog Basalt
Salt Mixture (MP) and 500 mM (6R,S)-5-CHO-5,6,7,8-THF calcium salt (Schircks
Laboratories); 50, 100 or 250mM L-methionine (SIGMA); 5 mM SMZ (SIGMA);
500mM (6R,S)-5-CH3-5,6,7,8-THF calcium salt (Schircks Laboratories), which has
been re-applied directly to the roots every 3 days due to its instability; or mock.
Seedlings were grown vertically at 16 h light/ 8 h dark cycles and 22 �C. Root
lengths were measured at 6, 8, 10, 12 and 14 days after germination and growth
rates were calculated by linear regression from at least 10 seedlings per genotype
per replicate. For measurement of global DNA methylation, seedlings were pooled
per genotype and isolated genomic DNA was analysed by BS-seq as described
above, except that EZ DNA Methylation-Lightning kit (Zymo Research) was used
for BS conversion. DNA methylation levels were calculated as #C/(#Cþ #T) at CG,
CHG and CHH sites and averaged over previously defined mthfd1-1 DMRs. Read
statistics are listed in Supplementary Table 3.

Data availability statement. Primary high-throughput sequencing data that
support the findings of this study have been deposited in the Gene Expression
Omnibus (GEO) with the accession code GSE77966 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE77966).

Secondary high-throughput sequencing data that support the findings of this
study are available in the Gene Expression Omnibus (GEO) with the accession code
GSE39901 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39901).

The authors declare that all other relevant data supporting the findings of this
study and computer code are available within the article and its Supplementary
Information files or on request.
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