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ABSTRACT
Synaptic connections between neurons are essential for every facet of human cognition and are 
thus regulated with extreme precision. Rho-family GTPases, molecular switches that cycle 
between an active GTP-bound state and an inactive GDP-bound state, comprise a critical feature 
of synaptic regulation. Rho-GTPases are exquisitely controlled by an extensive suite of activators 
(GEFs) and inhibitors (GAPs and GDIs) and interact with many different signalling pathways to 
fulfill their roles in orchestrating the development, maintenance, and plasticity of excitatory 
synapses of the central nervous system. Among the mechanisms that control Rho-GTPase activity 
and signalling are cell surface receptors, GEF/GAP complexes that tightly regulate single Rho- 
GTPase dynamics, GEF/GAP and GEF/GEF functional complexes that coordinate multiple Rho- 
family GTPase activities, effector positive feedback loops, and mutual antagonism of opposing 
Rho-GTPase pathways. These complex regulatory mechanisms are employed by the cells of the 
nervous system in almost every step of development, and prominently figure into the processes 
of synaptic plasticity that underlie learning and memory. Finally, misregulation of Rho-GTPases 
plays critical roles in responses to neuronal injury, such as traumatic brain injury and neuropathic 
pain, and in neurodevelopmental and neurodegenerative disorders, including intellectual disabil
ity, autism spectrum disorder, schizophrenia, and Alzheimer’s Disease. Thus, decoding the 
mechanisms of Rho-GTPase regulation and function at excitatory synapses has great potential 
for combatting many of the biggest current challenges in mental health.
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0. Introduction

No less a transformative connector of the world than 
Sir Timothy Berners-Lee (inventor of the World Wide 
Web) noted, ‘There are billions of neurons in our 
brains, but … the brain has no knowledge until con
nections are made between neurons. All that we know, 
all that we are, comes from the way our neurons are 
connected.’ Interneuronal connections are called 
synapses, and the adult human brain has ~1015 thereof 
[1]. Synapses mediate information flow and storage in 
the brain and are essential for all behaviours in humans 
and most other metazoans. Accordingly, synaptic 
pathologies underlie many pathophysiological condi
tions, so decoding their dynamic molecular nature is 
critical for human health.

Synapses form where specialized neuronal regions 
come into apposition, separated by a synaptic cleft of 
~20 nm [2]. In canonical synapses, information flows 
from the axon of one neuron to the dendrite or cell 

body of another. The axonal (presynaptic) side contains 
neurotransmitter within synaptic vesicles that fuse with 
the synaptic membrane in response to Ca2+ signals 
arising from an all-or-nothing electrochemical event, 
the action potential. Neurotransmitter is released into 
the synaptic cleft, diffuses to the dendritic (postsynap
tic) side, and interacts with receptors, eliciting electro
chemical responses in the downstream neuron. 
Synapses can be broadly divided into excitatory, inhi
bitory, and neuromodulatory classes. In adults, excita
tory synapses of the central nervous system (CNS) 
typically utilize the neurotransmitter glutamate, which 
triggers electrochemical depolarization, or activation, of 
the downstream neuron [3,4]. CNS inhibitory synapses 
primarily utilize the neurotransmitters γ-aminobutyric 
acid (GABA) and/or glycine, which cause hyperpolar
ization, or inactivation, of downstream neurons [5]. 
Finally, neuromodulatory synapses utilize a wide vari
ety of neurotransmitters, including dopamine and 
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serotonin, that generally bind to metabotropic 
G-protein coupled receptors (GPCRs) and can pro
foundly alter the biochemistry of the postsynaptic neu
ron [6,7]. Here, we focus on excitatory glutamatergic 
synapses in the CNS, though we also include discussion 
of inhibitory and neuromodulatory synapses to illus
trate the broad effects of Rho-GTPases, the primary 
theme of this review.

Excitatory postsynapses typically form on small (1– 
2 µm), actin-rich projections from the dendrite called 
dendritic spines [8] (in this review, spines) (Figure 1A). 
Spines emerge as long, thin filopodia early in develop
ment, but those that make stable axonal contacts 
mature into thin spines, which have a roughly spherical 
‘head’ at the contact site [8]. Further maturation or 
synaptic potentiation leads to shorter spines with 
wider heads, e.g. the classical mature ‘mushroom’ 
spine [8] (Figure 1A). The primary functional compo
nent of the postsynapse is the postsynaptic density 
(PSD), an electron-dense macromolecular structure 
apposed to the synaptic cleft containing neurotransmit
ter receptors, scaffolds, and regulatory proteins [9]. In 
glutamatergic synapses, there are two primary types of 
ionotropic glutamate receptors. α-amino-3-hydroxy-5- 
methyl-4-isoxazoleproprionic acid receptors 
(AMPARs) mediate fast depolarization of the postsy
naptic membrane in response to glutamate and are the 
key receptors for excitatory neurotransmission [10] 
(Figure 1B). Functional AMPARs are composed of a 
pair of dimers, each containing 1 GluA2 subunit and 1 
GluA1, GluA3, or GluA4 subunit [10]. Activating 
N-methyl-D-aspartate receptors (NMDARs) requires 
both glutamate binding and membrane depolarization 
[11,12]. NMDARs carry Ca2+ currents that control 
synaptic plasticity, and are comprised of 4 subunits: 2 
GluN1 subunits and 2 GluN2A-D or GluN3A-B sub
units [11]. Downstream of NMDARs, excitatory 
synapses undergo two primary forms of functional 
plasticity, long-term potentiation (LTP) and long-term 
depression (LTD) [13]. The ultimate effect of LTP is an 
increase in cell-surface synaptic AMPARs, yielding a 
stronger synapse, while LTD results in the opposite 
[14]. LTP and LTD are essential for cognition, and 
both are generally accompanied by the parallel process 
of structural plasticity, in which spine heads grow or 
shrink in accord with the functional properties of the 
resident synapses. Thus, spine morphology can be used 
as a proxy for synaptic strength.

Doubtlessly due to the critical importance of precise 
synaptic regulation, myriad mechanisms do so. Rho- 
GTPases are an essential component of this machinery. 
Rho-GTPases comprise a subfamily of the Ras super
family of small (20–25 kDa) GTPases. Generally 

speaking, they function as molecular switches: when 
bound to GTP, they are active and associate with and 
activate downstream proteins, called effectors 
(Figure 1C). Through their inherent GTPase activity, 
they ultimately become GDP-bound and inactive. Rho- 
GTPases regulate actin and microtubule cytoskeletal 
dynamics, membrane traffic, and gene regulation [15]. 
The most studied (the so-called canonical) family mem
bers are Ras homolog family member A (RhoA), Ras- 
related C3 botulinum toxin substrate 1 (Rac1), and cell 
division control protein 42 homolog (Cdc42) [15]. In the 
broadest terms, Rac1 and Cdc42 promote growth and 
synaptic strength, while RhoA opposes these functions 
[15,16]. Rho-GTPases are activated by guanine nucleo
tide exchange factors (GEFs) that stabilize the nucleo
tide-free conformation of the GTPase [17,18], and 
inactivated by GTPase-activating proteins (GAPs) that 
stimulate the GTPases’ enzymatic activity [19] 
(Figure 1C). While inactive, Rho-GTPases can be 
sequestered by guanine nucleotide dissociation inhibi
tors (GDIs), which prevent GTPase activation by GEFs 
[20]. While to date there are 22 known Rho-GTPases in 
the mammalian genome [21], there are nearly 90 GEFs, 
60 GAPs, and 3 GDIs that combine with Rho-GTPase 
effectors to form an immensely complex regulatory net
work that crafts exquisitely precise spatiotemporal acti
vation patterns that are essential for proper synaptic 
function. In this review, the term Rho-GEF or Rho- 
GAP designates some protein that so regulates any 
Rho-GTPase, while naming a Rho-GTPase within the 
term, e.g. Rac1-GEF, signifies specificity towards that 
particular Rho-GTPase; this specificity may not be 
absolute.

This review highlights Rho-GTPase synaptic signal
ling. In the first section, we consider GTPase regulation 
through (i) upstream signals, (ii) GEF/GAP coordina
tion of single Rho-GTPases, (iii) coordination of multi
ple Rho-GTPases by GEF/GAP and GEF/GEF 
complexes, and (iv) Rho-GTPase effectors. In the sec
ond section, we look at the consequences of these 
elaborate control mechanisms in (i) neurodevelopment, 
(ii) synaptic plasticity, (iii) neuronal injury, and (iv) 
neurodevelopmental and neurodegenerative disease. 
Each topic could fill a review, so our objective is to 
provide a useful synthesis of current trends and topics, 
not an encyclopaedic compendium, on this fascinating 
and underappreciated topic.

1. Mechanisms of Rho-GTPase regulation

A textbook view of cellular signalling can be summar
ized thusly: ligand engages receptor, receptor activates 
secondary messenger(s), secondary messenger 
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Figure 1. Rho-GTPases are master regulators of dendritic spines. (A) Confocal image of a dendritic segment showing spines 
from a mature rat hippocampal neuron expressing green fluorescent protein. Spine morphology is diverse, ranging from filopodia- 
like protrusions (spine precursors) to more mature thin, stubby, or mushroom-shaped structures (shown). The shape of a spine is 
highly correlated with the strength of its associated synapse, with the strongest synapses located on mushroom-shaped spines. 
Image by C. A. Cronkite. (B). Schematic of a dendritic spine and associated glutamatergic excitatory synapse. (C) Overview of Rho- 
GTPase signalling. Rho-GTPase activity is tightly regulated in space and time by GEFs, GAPs, and GDIs. GEFs activate Rho-GTPases by 
facilitating GDP/GTP exchange, whereas GAPs inactivate Rho-GTPases by enhancing GTP hydrolysis. GDIs also inhibit Rho-GTPases by 
sequestering them in an inactive state in the cytosol.
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propagates signal, feedback inactivates receptor. This 
simple model is correct in its essentials but an overly 
simple description of most cellular signals. Signals are 
often tightly regulated in space and time, yielding 
highly specific activation patterns. Among those for 
which these features are known are such ubiquitous 
and critical signals as Ca2+ [22–25], cAMP [26–28], 
and a wide variety of kinases, including PKA [29,30], 
PKC [30,31], PI3K/Akt [32], FAK [33], GSK-3β [34] 
and receptor tyrosine kinases [29,35]. The analogous 
textbook model of Rho-GTPase function is: signal acti
vates GEF, GEF activates Rho-GTPase, Rho-GTPase 
activates effectors, effectors mediate effects, and GAP 
inactivates Rho-GTPase (Figure 1C). This model like
wise oversimplifies and trivializes the myriad of con
nections, interactions, and complexities that craft 
exquisitely precise spatiotemporal Rho-GTPase signals 
that regulate the development and essential functions of 
neurons and other cells in the nervous system.

Signalling complexity and spatiotemporal dynamics 
are not merely diverting esoterica. The exquisite fea
tures of these messages greatly increase the encoding 
power of any given signal. For example, synaptic Ca2+ 

gives rise to both LTP and LTD, depending on the 
context and nature of the Ca2+ signal [36,37]. This 
phenomenon is specific to neither Ca2+ nor excitatory 
synapses: Ca2+ elicits manifold responses in other cell 
types [25,38], and cAMP/PKA signalling occurs within 
an network of A-kinase anchoring proteins (AKAPs) 
that plays a critical role in determining the outcome of 
cAMP signals [39,40]. The large number of dedicated 
regulators and effectors alone suggests that these fea
tures apply to Rho-GTPase signalling. Such an exten
sive, multifunctional signalling apparatus could have 
multiple effects on any given phenomenon. Indeed, 
we describe several cases in which a Rho-GTPase both 
positively and negatively regulates some phenomenon. 
Besides reflecting the aforementioned complexity and 
importance of the spatiotemporal features of Rho- 
GTPase signals, they make the critical point that cellu
lar outcomes are not linear phenomena of the ‘if some 
is good, more is better’ ilk. Rather, proper cell signalling 
delivers optimal levels of Rho-GTPase signals to speci
fic loci at specific times to yield functional outcomes. In 
this section, we describe phenomena that sculpt these 
features of Rho-GTPase signalling.

1A. Receptors modulate Rho-GTPase signalling

Transmembrane receptors on the plasma membrane 
guide Rho-GTPases in regulating excitatory synapses 
[16]. These receptors promote dendritic spine growth 
and synapse formation by controlling the balance 

between Rho-GTPase pathways mediating synaptogenic 
signals and those that antagonize these actions, tightly 
regulating synapse formation and refinement in devel
opment [41,42]. After neuronal circuit establishment, 
receptors continue to exert precise control over Rho- 
GTPases to regulate spine and synapse maturation, 
maintenance, and plasticity [43]. For instance, the 
receptor tyrosine kinase EphB2, the adhesion-GPCR 
brain-specific angiogenesis inhibitor 1 (BAI1/ 
ADGRB1), NMDARs, and the neurotrophin receptor 
TrkB are critical mediators of these processes. Here, we 
explore the ability of these receptors to regulate Rho- 
GTPases and the crosstalk between receptors that 
guides synapse formation and function.

Individual receptors coordinate multiple Rho-GTPase 
signalling pathways. Ephs are membrane-associated 
receptor tyrosine kinases that signal in response to 
cell-cell interactions [41]. Mammalian Ephs are divided 
into A and B subclasses, including 8 EphAs (EphA1-8) 
and 5 EphBs (EphB1-4 and 6) [44]. EphB2 and its 
ephrin-B ligands are essential for regulating excitatory 
synapse formation during early development and 
synaptic plasticity at mature synapses [45–47]. A 
major mechanism by which EphB2 regulates these pro
cesses is through Rho-GTPases. EphB2 orchestrates 
Rho-GTPase signalling in neurons by recruiting and 
phosphorylating Rho-GTPase regulatory proteins, 
altering their enzymatic activity, subcellular localiza
tion, and/or molecular interactions [44,48–50] 
(Figure 2A).

To promote spinogenesis, EphB2 coordinates the 
activities of Rac1, Cdc42, and RhoA (Figure 2A). In 
developing neurons, the RhoA-GEF Ephexin5 associ
ates with EphB2, restricting spine and synapse forma
tion [51]. Ephrin-B stimulation induces EphB2- 
mediated phosphorylation of Ephexin5, driving the lat
ter’s association with the E3 ubiquitin ligase Ube3A. 
Proteasomal degradation of Ephexin5 ensues and RhoA 
activity decreases, enabling spine and synapse develop
ment to proceed [51]. EphB2 also promotes Rac1 and 
Cdc42 activation, prompting filamentous actin (F- 
actin) polymerization, which is crucial for spine forma
tion and growth [47] (Figure 2A). For example, acti
vated EphB2 phosphorylates the Rac1-GEF Tiam1 (T- 
lymphocyte invasion and metastasis 1), increasing its 
GEF activity and EphB2-association [52]. The recruit
ment of Tiam1 to activated EphB2 receptors induces 
localized Rac1-dependent actin remodelling and spine 
formation [52]. EphB2 also physically interacts with 
and activates the Cdc42-GEF Intersectin-l, which 
together with neural Wiskott-Aldrich syndrome protein 
(N-WASP) promotes Cdc42-dependent actin polymer
ization and spine morphogenesis [53,54]. Thus, EphB2 
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drives global RhoA inhibition and targeted Rac1 and 
Cdc42 activation to promote spinogenesis (Figure 2A). 
Intriguingly, in addition to inhibiting overall spine out
growth in a RhoA-GEF-dependent manner, Ephexin5 
has also been shown to accumulate at sites of future 
spines and to be required for activity-dependent new 
spine growth [55]. Moreover, other studies have pro
vided evidence suggesting that RhoA may cooperate 
with Rac1 and Cdc42 to prime specific locations of 
spine formation [43,56,57], in addition to its canonical 
role in globally suppressing spine formation.

EphB2 can also signal to individual Rho-GTPases via 
multiple GEFs: for instance, it activates Rac1 by the 
Rac1-GEF Kalirin-7 in addition to Tiam1 [58]. Loss of 
either GEF spurs synapse loss and aberrant spine mor
phology, suggesting that these GEFs function at differ
ent times or places and/or induce distinct Rac1 
signalling. Thus, individual receptors can direct distinct 
cellular functions via different GEFs for a particular 
Rho-GTPase. In another striking example, the adhe
sion-GPCR BAI1 promotes Rac1 activation resulting 
in either phagocytosis or excitatory synaptogenesis, 
depending on the Rac1-GEF engaged: BAI1 signalling 
via the Rac1-GEF dedicator of cytokinesis 180 
(DOCK180) mediates phagocytosis, while signalling 
through Tiam1 drives synaptogenesis [59–61].

Multiple receptors cooperate to ensure precise regula
tion of Rho-GTPases. In spine remodelling, several 
synaptic receptors impinge upon Rho-GTPases 
[42,57], and growing evidence indicates that crosstalk 
between NMDARs, TrkB, and EphB2 is required 
(Figure 2B). Like EphB2, NMDARs regulate activity- 
dependent spine remodelling by modulating Rho- 
GTPase activity via multiple GEFs. In response to 
NMDAR activation, Tiam1 is phosphorylated in a cal
cium-dependent manner, resulting in Rac1-mediated 
actin dynamics and spine morphogenesis. Inhibiting 
Tiam1 blocks these actions in primary hippocampal 
neurons [62]. Similarly, in primary cortical neurons, 
NMDARs activate Rac1 via Kalirin-7 to induce enlarge
ment of mature spines [63]. In organotypic hippocam
pal slices, RNAi knockdown (KD) of either Tiam1 or 
Kalirin-7 reduces the long-lasting structural remodel
ling induced by single spine glutamate stimulation, 
suggesting both are involved in activity-dependent 
spine remodelling, as in EphB2 signalling [64]. 
Critically, NMDAR-dependent Rac1 regulation and 
spine morphogenesis may be modulated by EphB2, 
since EphB receptors interact directly with NMDARs 
and enhance their function through tyrosine 

Figure 2. Synaptic receptors signal to Rho-GTPases via 
multiple pathways. (A) By regulating the function of different 
Rho-family GEFs, the EphB2 receptor tyrosine kinase controls 
Rac1, Cdc42, and RhoA signalling important for the actin cytos
keletal remodelling that drives spine and synapse development. 
(B) At synapses, the actions of individual Rho-GTPases are 
coordinated by multiple receptors.
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phosphorylation [65,66] and Tiam1 recruitment to 
EphB2-NMDAR complexes [62].

Brain-derived neurotrophic factor (BDNF) and its 
receptor TrkB also regulate spine formation and func
tion [67]. Similar to EphB2 and NMDARs, TrkB acti
vates Tiam1 [68,69] and Rac1-dependent spine 
remodelling [70]. Disruption of TrkB-Tiam1-Rac1 sig
nalling with TrkB mutants in primary neurons 
abolishes BDNF-induced spine formation and enlarge
ment [70]. TrkB also signals to Kalirin-7 in neurons 
[71], and while the TrkB/Kalirin-7 pathway is unex
plored in spine morphogenesis, we expect that it plays 
some role therein. In addition to Tiam1 and Kalirin-7, 
BDNF-TrkB signalling activates Vav family Rac1-GEFs 
in neurons [72]. While CA1 pyramidal neurons from 
Vav2/Vav3 double-knockout (dKO) mouse hippocam
pal slice cultures display normal spine density and 
cumulative spine length under basal conditions, they 
fail to undergo rapid spine head growth in response to 
BDNF, suggesting a role for Vav GEFs in BDNF/TrkB- 
induced synaptic remodelling [72]. Interestingly, these 
TrkB-mediated pathways may function downstream of 
NMDARs to modulate changes in spine morphology. 
While exogenous BDNF stimulation of hippocampal 
slices is sufficient to drive rapid spine head growth, 
the same stimulation in the absence of glutamatergic 
transmission yields no spine growth or synapse poten
tiation [73]. More recently, a Förster resonance energy 
transfer (FRET)-based probe to monitor TrkB activity 
in organotypic hippocampal slices revealed that gluta
mate stimulation of single spines increased TrkB activ
ity [74]. These examples demonstrate the importance of 
receptor regulation of Rho-GTPase signalling in spines 
and highlight the need to further elucidate the mechan
isms of these complex signalling networks.

1B. GEF/GAP complexes that target single Rho- 
GTPases

Live cell measurements reveal that Rho-GTPase signal
ling dynamics occur at very short distances (µm scale) 
and on very fast (subminute) time scales during cell 
migration, axon guidance, and spine plasticity 
[43,75,76]. How is this precise spatiotemporal control 
of Rho-GTPases accomplished? One mechanism for 
achieving tightly controlled on/off cycling of a specific 
Rho-GTPase is the targeting of specific subcellular 
pools of that GTPase by GEF/GAP complexes. At first 
blush, such modules may seem pointless because the 
components counter the actions of one another. 
However, the effects of cycling rate-altering mutations, 
such as Cdc42 F28L [77] or Rac1 P29S [78], suggest 
that Rho-GTPase turnover often needs to be very 

tightly regulated. Fine tuning by GEF/GAP complexes 
may thus guide Rho-GTPase activity to highly specific 
and dynamic spatiotemporal optima.

The Rac1-GEF Tiam1 and Rac1-GAP Breakpoint 
cluster region (Bcr) protein form a complex that bal
ances Rac1 activity during synaptogenesis [50] 
(Figure 3A). Individually, Tiam1 and Bcr play opposing 
roles in neurons: Tiam1 loss causes dendrite arbour 
simplification and lowers spine and synapse numbers, 
while Bcr loss yields spine and arbour overgrowth 
[50,52,59,62,79–81]. However, the colocalization and 
physical interaction of Tiam1/Bcr at excitatory synapses 
unveils an intriguing mechanism for precisely and 
dynamically regulating Rac1. Tiam1/Bcr complex dis
ruption results in overactive Rac1, increased spine den
sity and size, and converts a spinogenic ephrin-B/ 
EphB2 signal into spine loss [50]. Functional Tiam1 
inhibition with peptides or chemical inhibitors reverses 
these phenotypes [50]. In another interesting twist, the 
Tiam1/Bcr complex appears to be dynamically regu
lated, allowing Rac1 signalling to toggle between tightly 
regulated and more global patterns of Rac1 activation 
in response to signals [50] (Figure 3A). Another Rac1- 
GEF/GAP interaction is found in the synaptic CNK2 
complex that includes the Rac1-GAP ARHGAP39/Vilse 
and the Rac1-GEFs α- and β-PIX, in addition to Rac1 
effectors, PIX modulators and Rac1 itself [82]. 
Disruption of the CNK2/Vilse association by mutating 
CNK2 results in excessive Rac1 activity and spine 
abnormalities [82], suggesting a function analogous to 
Tiam1/Bcr.

GEF/GAP complexes are not restricted to spines. 
Tiam1 and Bcr associate with members of the parti
tion-defective (Par) polarity complex in cortical astro
cytes [83]. Tiam1 is recruited by the Par complex (Par3, 
Par6, and atypical protein kinase C zeta (PKCζ)), where 
it activates Rac1 [84]. Bcr also interacts with the Par 
complex, inhibiting Rac1 and PKCζ activity [83]. Bcr 
knockout (KO) results in faster migration, and defec
tive directionality and cytoskeletal organization that are 
rescued by wild-type Bcr [83]. The interaction between 
the RhoA-GEF Ect2 and RhoA-GAP MgcRacGAP/ 
CYK-4 in cytokinesis highlights yet another aspect of 
Rho-GTPase regulation [85,86]. Metazoan cytokinesis 
is regulated by the centralspindlin complex, consisting 
of the kinesin MKLP-1 and MgcRacGAP. In Xenopus 
laevis embryos, MgcRacGAP recruits Ect2 to the cen
tralspindlin complex at the cell equator where they 
create a RhoA activity zone essential for cytokinetic 
ring formation [85]. GAP-dead mutants of 
MgcRacGAP lead to unrestrained and unstable RhoA 
activity. It is hypothesized that MgcRacGAP binds to 
Ect2-activated RhoA and transiently anchors it. RhoA- 
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GTP can then bind to a nearby effector to initiate 
signalling or be inactivated by MgcRacGAP [85], main
taining a constant and demarcated RhoA flux at the cell 
equator. Both proteins are expressed in the brain 
[87,88], though their roles there require further 
investigation.

A variation on the GEF/GAP model is GEF/GAP 
compartmentalization, leading to defined zones of 
Rho-GTPase activity [89]. This GEF/GAP relationship 
is found during posterior spiracle formation in the 
Drosophila embryo. Spiracles are organs formed by 
tissue invagination due to apical constriction and baso
lateral membrane elongation. Activated Rho1, a 
Drosophila RhoA homologue, is apically restricted 

due to the apical distribution of two GEFs, 
RhoGEF64C and RhoGEF2 and the basaolateral distri
bution of the Rho1-GAP Crossveinless-c (Cv-c) [90]. 
Basolateral Rho1 suppression is crucial to cell polarity 
during morphogenesis, as unrestricted Rho1 inhibits 
invagination. Interestingly, Cv-c is also involved in 
directional elongation of dendrites in Drosophila dorsal 
da neurons by suppressing Rho1 activity [91]. The 
identity of a GEF partner of Cv-c in dendrites is not 
yet known.

Many more such GEF/GAP pairs that tightly regu
late specific Rho-GTPases may exist. An important 
advantage of these associations is that multiple pools 
of a Rho-GTPase could be simultaneously regulated at 

Figure 3. GEFs, GAPs, and multifunctional regulatory proteins tightly control Rho-GTPase activity. (A) The Tiam1/Bcr GEF/GAP 
complex regulates Rac1 activity during synaptogenesis. By forming a complex whose association can be modulated, the Rac1-GEF 
Tiam1 and the Rac1-GAP Bcr provide tight spatiotemporal regulation of Rac1 activation. (B) Tandem GEF/GAPs and GEF/GEF proteins 
contribute additional precise regulation to coordinated Rho-GTPase signalling. C2: protein kinase C conserved region 2, SEC14: 
domain in phosphatidylinositol transfer protein Sec14, SPEC: spectrin-like repeats, SH3: Src homology 3 domain, CC: coiled coil, Ig/ 
FN3: Ig/fibronectin III.
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distinct subcellular locations. Furthermore, a combina
tion of different GEFs, GAPs, effectors and variable 
interacting proteins could offer Rho-GTPases more 
flexibility to control distinct downstream pathways.

1C. Coordination of multiple Rho-GTPases by 
multi-functional Rho-GTPase regulatory proteins 
and complexes

Signals can also engage GEF/GAP or GEF/GEF composites 
that target multiple Rho-GTPases (Figure 3B). For example, 
Bcr contains a RhoA-GEF domain [92] in addition to its 
Rac1-GAP domain [93]. The synaptic role of Bcr’s RhoA- 
GEF function is currently unknown, but both Bcr’s RhoA- 
GEF and Rac1-GAP activities are essential for dendritic 
growth arrest in hippocampal neurons [80]. In addition to 
directly regulating neuronal development, Bcr loss also 
causes astrocytic hyperexcitabilty, hypertrophy, and Rac1 
hyperactivation [83,94]. As many excitatory synapses in the 
forebrain contain astrocytic processes (the so-called ‘tripar
tite synapse’) [95], Bcr’s multifunctional nature may also 
affect synapses through its regulation of astrocytes. Bcr is 
not unique. Activated Bcr-like (Abr) is a partial Bcr dupli
cation, including the GEF and GAP domains [96]. Abr 
plays roles similar to Bcr [50,81], and Bcr and Abr partially 
compensate for each other at synapses [50,81], though Abr 
is less enriched at synapses and cannot replace Bcr in 
dendrite growth arrest or polarized cell migration 
[80,81,83]. The Rac1/Cdc42-GEF β-PIX binds to the 
RhoA-GAP slit-robo GAP1 (srGAP1) [97], coordinating 
Cdc42 and RhoA signalling in collagen-stimulated fibro
blast membrane protrusion and migration [97]. While it is 
not yet known whether this GEF/GAP complex functions 
at synapses, both proteins are widely expressed in the brain 
and regulate neuron development individually [98,99].

What is the purpose of multi-GTPase GEF/GAP 
complexes? In all examples above, the GTPases inhib
ited by GEF/GAP complexes tend to oppose the activity 
of those that are activated. This suggests that, to reach 
some threshold, the signalling machinery requires both 
events to occur within a well-defined space. This 
requirement may be due to the magnitude of the sig
nalling change required, and complexes may also inte
grate signals if the GEF and GAP activities are 
regulated independently. For example, Bcr’s GAP activ
ity is activated by phosphorylation at Y177 by Fyn 
[100], but its GEF activity is activated by BAI1 [80].

Tandem GEFs also exist: Trio, whose GEF1 domain 
targets Rac1 and RhoG [101] and whose GEF2 domain 
targets RhoA [102], is an example (Figure 3B). Trio 
functions in neuronal migration [103], neurite exten
sion [104–106], and cerebellar parallel fibre formation 
[103], but also in Slit2-mediated axonal growth cone 

collapse [107,108]. Two splice variants of the KALRN 
gene, Kalirin-9 and Kalirin-12, possess a Trio-like GEF 
doublet [109]. Both proteins are expressed in neurons 
during early postnatal development, regulate dendrito
genesis, and have overlapping function [110,111]. 
Kalirin-9 also plays a role in cortical neurite extension 
[109]. Interestingly, Kalirin-9 is synaptic, where it colo
calizes with the postsynaptic scaffold PSD95 and pro
motes spinogenesis [110]. Besides RhoG/Rac1 and 
RhoA GEF tandems, endothelia possess a DOCK4/ 
DOCK9 complex [112], whose members possess Rac1- 
[112] and Cdc42- [113] GEF domains, respectively. 
This complex is critical for sprouting and tubule for
mation [112], but DOCK4 and DOCK9 expression 
strongly overlap in the forebrain [114,115] and 
DOCK4 functions in dendrite and spine development 
[115,116]. Finally, Ras-GRF2 has GEF domains for both 
Rac1 and H-Ras, a Ras-GTPase, and is located at hip
pocampal synapses where it regulates NMDAR- 
mediated synaptic plasticity [117–119].

The logic of GEF tandems is less clear than that of the 
GEF/GAP duets. What purpose do they serve? First, GEF 
tandems, by recruiting signalling molecules and creating 
molecular microenvironments for Rho-GTPase signals and 
bringing antagonistic Rho-GTPase signals into these mili
eus, create a localized and dynamic signal via mutual antag
onism, akin to that of the Tiam1/Bcr complex, but 
downstream of the GTPases (see section 1D), creating dis
tinct inhibitory dynamics better suited for some cellular 
processes. Second, activating one GEF could occlude the 
other, forcing pathways to choose between mutually exclu
sive outcomes. This scenario has been proposed in the 
telencephalon, with netrin-1 activating Trio’s Rac1-GEF 
domain and Slit2 activating its RhoA-GEF domain [107]. 
Third, when GEF tandems activate non-opposing path
ways, signal amplification may ensue. A potential example 
of this is the Pol II CTD phosphorylation code, a ‘shortcut’ 
between Rho-GTPases and transcription. Herein, DOCK4 
and DOCK9 activate Rac1 and Cdc42, which each target a 
specific phosphatase for degradation. This action prevents 
the dephosphorylation and inhibition of a major subunit of 
RNA polymerase, resulting in enhanced transcription 
[120]. Here, DOCK4 and DOCK9 are not known to be 
complexed, but since they do interact, it is a possibility. 
Finally, GEF tandems may determine the temporal 
sequences of signalling processes. For instance, DOCK9 is 
a Rac1 effector [112], so complexing it to the Rac1 activator 
DOCK4 would facilitate signalling through Cdc42, 
DOCK9’s target. Since complex formation is regulated 
[112], this pathway could operate in different sequential 
modes. Further, the Ras-GEF domain of Ras-GRF2 func
tions after its Rac1-GEF domain [117,119]. To wit, Rac1 is 
required for the initial steps of LTP, while H-Ras signalling 
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mediates the transition to stably potentiated synapses and 
spines. It is likely that all of these scenarios or some combi
nation thereof play out in synapses and elsewhere.

1D. Downstream effectors that regulate Rho- 
GTPase activity

Effectors and Rho-GDI dissociation. p21-activated kinases 
(PAKs) are highly conserved serine/threonine kinases that 
are well-described, multifunctional effectors of Rac1/ 
Cdc42. In addition to mediating the effects of Rac1/Cdc42 

on neuronal morphology, migration, and synapse develop
ment and function [121,122], PAKs provide feedback to 
modulate Rho-GTPase activity (Figure 4A). In fact, one of 
the most compelling regulatory mechanisms of Rho- 
GTPase/GDI complexes is through PAK [123]. PAK1 
phosphorylates Rho-GDI on Ser101 and Ser174, promoting 
dissociation from Rac1 but not RhoA [124]; Cdc42 stimu
lates Rac1 release from Rho-GDI in this manner [124]. On 
the other hand, RhoA dissociation is promoted by protein 
kinase C (PKC) phosphorylation of Rho-GDI at Ser96 
[125] or Ser34 [126], though this may not be regulated by 

Figure 4. Downstream effectors modulate Rho-GTPase activity. (A) PAK regulates the activity of Rac1. Activated PAK associates 
with the Rac-GEF βPIX, increasing its GEF activity. Additionally, active PAK promotes Rac1 activation by phosphorylating and 
inactivating Rho-GDI, resulting in the release of sequestered Rac1. (B) Downstream effectors mediate crosstalk between Rac1, Cdc42, 
and RhoA. Following activation, Cdc42 recruits members of the Par polarity complex (Par3, Par6, and PKCζ), which in turn associate 
with the Rac1-GEF Tiam1, promoting local Rac1 activation. Similarly, PAK, ROCK, and mDia mediate crosstalk between Rac1 and 
RhoA.
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Rho-GTPases. GEFs may also play a role in dissociation of 
Rho-GTPases from GDIs [127], but this remains to be 
determined.

Effectors balancing upstream Rho-GTPase signals. 
GEFs activate Rho-GTPases, but also assemble specific 
effectors and other signalling components (Figure 4A). 
For example, PIX proteins are Rac1- and Cdc42-GEFs 
that bind to group I PAKs and activate them through 
Rac1/Cdc42 and an independent T1 domain [128]. 
PAKs, in turn, promote PIX’s GEF activity, creating a 
positive feedback loop [129]. Both proteins form com
plexes with GIT proteins, and one such complex, con
sisting of GIT1, PIX, Rac1, and PAK, regulates spine 
and synapse formation, cell adhesion, migration, neur
ite extension, and synaptic plasticity [130,131]. PAK 
also cooperates with the CNS-specific β-Pix-d isoform 
[132] to phosphorylate Stathmin1, promoting tubulin 
acetylation and neurite morphogenesis during develop
ment [133]. This is not the only GEF/effector positive 
Rho-GTPase feedback loop. Tiam1’s association with 
the actin-related protein (Arp)2/3 complex promotes 
its localization at key sites and enhances its own 
Rac1-GEF activity; moreover, it promotes Arp2/3 
actin nucleation activity through Rac1 [134]. The 
recently proposed reciprocally activating kinase effector 
complex (RAKEC) involves Tiam1 and Ca2+/calmodu
lin kinase II α (CaMKIIα) activating Rac1 and down
stream actin regulators [64]. Here, Tiam1 binds to 
CaMKIIα, interrupting the autoinhibition of CaMKIIα 
and prolonging its activity. This, in turn, leads to pro
longed phosphorylation of Tiam1, stimulating its Rac1- 
GEF activity. Downstream effectors also confer specifi
city to Rho-GTPase signalling. Insulin receptor sub
strate protein of 53 kDa (IRSp53) is a scaffold and an 
effector of Rac1 and Cdc42. Tiam1/IRSp53 interactions 
promote the association of IRSp53 with both the scaf
fold WASP-family verprolin homologous protein 2 
(WAVE2) and activated Rac1 itself. This enhances 
Rac1 effects on actin, presumably at the expense of 
Cdc42-mediated effects [135].

Downstream effectors allowing crosstalk between Rho- 
GTPases. Collaborations between GEFs and GAPs with 
downstream effectors also mediates Rho-GTPase cross
talk. For example, activated Cdc42 binds to the PAR 
complex (PAR3/6-PKCζ) [136] and mediates its effects 
on the cytoskeleton through Rac1 activation by Tiam1, 
which is also recruited to the Par complex (Figure 4B). 
These proteins do not always work together, as Par6 
acts independently of Par3 in spines to negatively reg
ulate RhoA through p190RhoGAP [137], possibly 
through GAP-stimulating phosphorylation of 
p190RhoGAP by PKCζ. The aforementioned DOCK4/ 
DOCK9 complex may regulate crosstalk between Rac1 

and Cdc42. Rac1 inhibits RhoA via PAK phosphoryla
tion of RhoA-specific GEFs (Figure 4B). To wit, PAK- 
mediated phosphorylation of the RhoA-GEF GEF-H1 
sequesters it to microtubules and renders it inactive 
towards RhoA [138]. Other PAK-regulated RhoA- 
GEFs include ArhGEF1 [139], PDZ-GEF [140], and 
Net1 [141]. Another contributor to the antagonistic 
relationship between RhoA and Rac1 signalling is the 
RhoA effector Rho-associated protein kinase (ROCK), 
which suppresses Rac1 through phosphorylation and 
activation of the Rac1-GAP FilGAP [142] (Figure 4B). 
The RhoA effector myosin II triggers dissociation of β- 
PIX from adhesion proteomes, locally inhibiting Rac1 
[143]. Interestingly, RhoA also can stimulate the activ
ity of Rac1 through mDia, but the mechanism behind 
this is still unknown [144].

2. Outputs and consequences of Rho-GTPase 
activity

There would be little point in charting the intricate 
Rho-GTPase regulatory mechanisms if the resultant 
activation patterns didn’t matter. Fortunately, these 
patterns are deeply consequential for cognition and all 
other known functions of the nervous system. In this 
section, we look at both physiological and pathophy
siological consequences of Rho-GTPase signalling in 
the CNS. It is impossible to summarize this huge lit
erature here, but we will highlight key conceptual 
points and, where possible, avoid restating phenomena 
necessarily mentioned above.

2A. Rho-GTPases in neuronal development

By orchestrating actin and microtubule cytoskeletal 
dynamics in response to external stimuli, Rho- 
GTPases regulate key aspects of neuronal develop
ment, including migration, axonal/dendritic out
growth and guidance, and synapse development and 
remodelling [42,145]. This section looks at some of the 
effects of Rho-GTPases on neurodevelopment, touch
ing on some additional regulatory mechanisms. To 
illustrate the breadth of Rho-GTPase function, we 
consider many processes within the general heading 
of neurodevelopment, extending beyond synapses 
themselves.

RhoA. Unsurprisingly, RhoA plays important roles 
in many neurodevelopmental processes. For example, 
RhoA KO from neuroprogenitor cells (NPCs) impedes 
cerebellar morphogenesis, affecting foliation, lamina
tion and neuronal migration [146]. Likewise, in the 
developing cerebral cortex, RhoA KO disrupts neural 
progenitor adherens junctions and migration due to 
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alterations in radial glial morphology [147,148]. Prior 
to migration, nascent neurons undergo a critical multi
polar-bipolar transition. KD of the mammalian Ste20- 
like kinase 3 (Mst3), which normally inhibits RhoA 
through phosphorylation at Ser26, perturbs this multi
polar-to-bipolar transition and retards radial migration, 
and RhoA KD rescues these defects [149]. Additionally, 
RhoA inhibits neuronal process formation. KD of the 
RhoA-GEF ARHGEF1 or pharmacological blockade of 
RhoA signalling markedly enhances neurite outgrowth 
[150], whereas overexpression of ARHGEF1 restricts 
neurite formation [151]. RhoA also plays a key role in 
axon repulsion during development [152,153] and later 
on inhibits axon regrowth after CNS injury [154,155]. 
Extracellular β-amyloid (Aβ) promotes RhoA activa
tion, leading to growth cone collapse and neurite con
traction reminiscent of development, but with 
implications for Alzheimer’s disease [156]. These find
ings suggest a general role for RhoA as a brake on 
neuronal migration and development even prior to 
synaptogenesis.

As mentioned in Sec. 1A, RhoA limits dendritic 
spine and excitatory synapse formation during devel
opment. Many lines of evidence support this canonical 
RhoA function; in addition those already mentioned, 
increases in RhoA function caused by KO or KD of 
negative regulators, such as hnRNP-Q1 [157], Par6C 
[158], Rnd3 [158], LGI1 (which inhibits Nogo receptor 
1) [159], PKCε [160], and the RhoA-GAPs oligophre
nin-1 [161] and ARHGAP10 [162], all associate with 
decreases in spine and excitatory synapse density, most 
of which are reversed by inhibition of RhoA signalling 
[157,158,160,161]. Elimination of hippocampal spines 
as a result of exposure to the stress-related corticotro
pin-releasing hormone requires RhoA [163]. 
Conversely, KD or inhibition of the RhoA-GEF GEF- 
H1/Lfc increases spine density in hippocampal neurons 
[164]. Besides these postnatal RhoA signalling events, 
recent studies have looked at prenatal development and 
observed a similar inhibitory role for RhoA at these 
earliest stages of synaptogenesis in both rabbits [165] 
and organoids derived from human induced pluripo
tent stem cells [166]. However, it is possible to over
generalize from these results. To wit, loss of the RhoA- 
GAP oligophrenin-1 has no effect on spine density, 
though it does cause spine shortening due to RhoA 
overactivation [161]. Further, loss of or mutations in 
the kinase TAOK2 leads to decreases in cortical and 
hippocampal spine densities that are rescued by phar
macologically activating RhoA [167]. Thus, RhoA plays 
various roles in spine and synapse development that 
may vary depending on the context provided by speci
fic signalling pathways.

Rac1. Rac1 also plays a fundamental role in many 
neurodevelopmental processes. During development, 
the transition of neurons from a multipolar to a bipolar 
morphology requires precisely regulated actin and 
microtubule dynamics. Both constitutively active and 
dominant-negative (DN) Rac1 inhibit radial migration 
of cortical neurons and cause ectopic accumulation of 
multipolar neurons, suggesting that the multipolar-to- 
bipolar transition requires Rac1 turnover [168], in 
addition to RhoA inhibition [149]. Overexpression of 
the Rac1-GEF P-Rex1 inhibits this transition, leading to 
abnormal neuronal migration [169]. Rac1 KD also dis
rupts F-actin assembly and perturbs neuronal migra
tion [170]. Moreover, Rac1 is a critical regulator of 
cytoskeletal dynamics in multiple neuronal types. 
Rac1 KO causes axon growth defects in sensory and 
motor neurons of the central and peripheral nervous 
systems, and these cell-autonomous defects are related 
to neuron loss in motor neurons and retinal ganglion 
cells [171], consistent with neuron survival-dependent 
axon targeting. Rac1 also regulates axon guidance. In 
Caenorhabditis elegans, a single mutation in the switch 
1 region (G30E) in Rac1/CED-10 resulted in an axonal 
growth defect [172,173]. In contrast, other mutations of 
Rac1/CED-10 in the switch 2 region (G60R) or mem
brane targeting region (V190G) showed defects in axon 
guidance, but not growth, indicating that different Rac1 
regions endow context-sensitive functions, and specific 
molecules interact with these domains to drive distinct 
developmental processes [172,173]. KO of Rac1/CED- 
10 also prevents growth cone formation, which in turn 
causes circuit defects [174]. Rac1 is also involved in 
dendritic arbour formation. For example, the Rac1- 
GEF DOCK4 regulates axon-dendrite polarity and den
drite arborization through Rac1 and actin dynamics 
[175]. Importantly, DOCK4 plays a more prominent 
role in dendritic branching than dendrite elongation, 
which may explain its association with autism and 
dyslexia [175].

Section 1A illustrates several examples of Rac1 play
ing a positive role in spine and synapse development. 
These are only part of a relatively large literature point
ing to such a role for Rac1. Rac1 expression in neurons 
increases throughout synaptogenesis, and its early ecto
pic expression drives spine formation and AMPAR 
recruitment thereto [176]. Increasing Rac1 activation, 
either through the activation of the Rac1-GEFs 
Kalirin-7 [58,177], β-PIX [131,178] or Tiam1 [52,62] 
or the KO or KD of the Rac1-GAPs Bcr/Abr [50], 
srGAP2 [179], RICH2 [180,181], or p250GAP [182] 
drives spino- and synaptogenesis during postnatal 
development. On the other hand, suppressing Rac1 
activation using dominant negative Rac1 [183], the 
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small molecule inhibitor EHT 1864 [184], Rac1-GAP 
overexpression [50,184], or Rac1 KO (see below) 
decreases spine density and synaptic function. 
Specific Rac1 inhibition also serves as a developmen
tal brake. For instance, the spine-localized Rac1-GAP 
ArhGAP12 in developing CA1 pyramidal neurons 
inhibits Rac1 early in development, maintaining 
silent synapses, i.e. excitatory synapses lacking 
AMPARs [185]. ArhGAP12 KD prompts premature 
synaptic un-silencing, high levels of immature spines 
and synapses, increased AMPAR currents, and 
increased frequency and amplitude baseline electrical 
events without affecting NMDAR currents [185]. 
Interestingly, G-actin occludes Rac1 binding to 
ArhGAP12 [186], suggesting another feedback 
mechanism between Rho-GTPases and the actin 
cytoskeleton.

Despite all of these results, the relationship between 
Rac1 activation and spine formation is not a simple 
linear one. Rac1 overactivation due to constitutively 
active Rac1 expression or mutation of the Rac1-GAP 
α2-chimaerin does not lead to proportionally higher 
spine densities, but to abnormal spine morphologies 
[183,187]. Even more surprisingly, spine density is 
increased by KO of the Rac1-GEF α-PIX, which lowers 
Rac1 activation [188]. Moreover, KO of the arginine 
methyltransferase Prmt8 leads to increased Rac1 activa
tion in neurons, but blocks spine maturation [189]. 
Thus, like RhoA, Rac1 function in spine and synapse 
formation and maturation is complex and cannot be 
reduced to one simple rule.

In addition to its role in excitatory synapse develop
ment, Rac1 mediates the formation of inhibitory 
synapses, as evidenced by increased numbers of inhibi
tory synapses in L2/3 cortical pyramidal neurons when 
the Rac1-GAP srGAP2A is knocked down [190]. 
Interestingly, srGAP2A KD also leads to increased den
dritic spines and excitatory synapses in the same neu
rons [179,190], and the effects on both synapse types 
require srGAP2A’s Rac1-GAP activity [190]. This raises 
the interesting possibility that the same pool of Rac1 
regulates the formation of both synapse types, espe
cially as srGAP2A interacts with the excitatory scaffold 
Homer1 and the inhibitory scaffold gephyrin by differ
ent domains [190], suggesting that this pool of Rac1 is 
involved in setting up the excitatory/inhibitory (E/I) 
balance required for proper brain function. It is also 
intriguing that srGAP2A is inhibited by the product of 
the human-specific gene duplication srGAP2C 
[179,190,191], which binds to the former and causes 
its degradation [191], suggesting that tight regulation of 
the srGAP2A-regulated Rac1 pool plays a role in spe
cifically human intellect.

Rac3. Rac3 is usually coexpressed with Rac1 in the 
brain; compared to Rac1 single knockout (KO), dKO of 
Rac1 and Rac3 causes stronger reductions of spines 
[192], cortical GABAergic interneuron migration and 
microtubule dynamics [193], and cortical–hippocampal 
GABAergic interneuron motility [194], indicating a 
functional overlap between Rac1 and Rac3. 
Interestingly, re-expression of Rac3 or Rac1 in dKO 
hippocampal neurons causes distinct effects: Rac1 
restores spine density, whereas Rac3 restores spine 
size [195]. Similarly, in the cortical–hippocampal 
GABAergic interneuronal network, loss of either Rac1 
or Rac3 leads to a moderate loss of parvalbumin-posi
tive interneurons, but has different effects on the devel
opment of hippocampal circuits [196]. These 
differences may underlie the obvious behavioural and 
neurological differences observed in Rac1 DN and Rac3 
KO mice. Compared to the Rac3 KO, the Rac1 mutants 
show higher excitability and reduced spontaneous inhi
bitory currents in hippocampal pyramidal neurons 
[196]. Interestingly, cannabinoid receptor 1-positive 
terminals are increased in the hippocampal CA1 region 
of the Rac1 mutants, and incubation with cannabinoid 
receptor antagonists partially normalized spontaneous 
currents in pyramidal cells [196]. Thus, though one 
Rho-GTPase may compensate for another, both may 
retain specific functions.

Cdc42. In many ways, the developmental functions 
of Cdc42 resemble those of Rac1. Conditional KO of 
Cdc42 in cerebellar granule cell precursor (GCPs) leads 
to abnormalities in the cerebellar lobe, including folia
tion defects, loss of columnar tissue in the external 
germinal layer, and disordered parallel fibre organiza
tion at the molecular layer [197]. Notably, GCPs lack
ing Cdc42 have a multipolar morphology and fail to 
form migration junctions with glial fibres. Altered 
phosphorylation of Cdc42 regulators and effectors, 
including PAK1/2/4, cytoskeletal proteins Pxn, Fmn2, 
Dbn1 and Map2, and polar regulators Numbl and 
Scrib, suggest that changes in cytoskeletal structure 
may be the basis of the change in GCP polarity, while 
the change in cell-cell adhesion may lead to defects in 
the axon fasciculation and migration of GCPs lacking 
Cdc42 [197].

Likewise, Cdc42 is generally regarded as playing a 
role similar to that of Rac1 in spine and synapse devel
opment. For example, Cdc42 activity is required for 
spino- and synaptogenesis in hippocampal neurons 
[198], including in adult born neurons of the dentate 
gyrus [199]. However, as described below (Sec. 2B), one 
reason for this dual GTPase requirement is that the two 
proteins affect actin polymerization in different ways, 
both of which are required for spinogenesis. 
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Accordingly, Cdc42 function cannot be replaced by 
Rac1 in these processes [199–201]. In a mouse with a 
chromosomal deletion similar to that observed in schi
zophrenia, it was reported that the neuron-specific 
palmitoylated splice variant of Cdc42 is required for 
the stabilization of spines already formed [202]. 
Determining the precise role of Cdc42 vis-à-vis Rac1 
signalling and the roles that its splice variants play will 
be an interesting challenge in the future.

Cdc42 is also thought to play a role in inhibitory 
synaptogenesis. Much of this story revolves around a 
Cdc42-GEF encoded by ARHGEF9 known as collybis
tin (CB) in rodents [203] and hPEM-2 in humans 
[204]. CB/hPEM-2 localizes to a subset of inhibitory 
synapses that vary in prevalence depending on brain 
region, ranging from 40–80% [205]. While it is clear 
that CB/hPEM-2 can help to drive gephyrin and inhi
bitory neurotransmitter receptor clustering 
[203,206,207], conflicting results as to whether [207] 
or not [206] its Cdc42-GEF activity is required have 
been reported. Moreover, depending on alternative 
splicing, CB may or may not possess an N-terminal 
SH3 domain that contributes to Cdc42 regulation 
[207]. Both dominant negative and constitutively active 
mutants of Cdc42 drive increasing size of gephyrin 
clusters in hippocampal neurons, suggesting that 
Cdc42 turnover stipulates inhibitory synapse size 
[207]. Uncovering the precise role of Cdc42 in inhibi
tory thus presents yet another interesting challenge.

Other Rho-GTPases. Besides the canonical Rho- 
GTPases, atypical Rho-GTPases also contribute to 
axon guidance. For instance, CHW-1 and CRP-1, 
related to Cdc42, work redundantly with Cdc42 in 
axon pathfinding and neuronal migration in 
Caenorhabditis elegans [208]. Overexpression of 
CHW-1 or CHW-1 GTPase mutants alters axon gui
dance, indicating that appropriate levels of CHW-1 
expression and activities are critical for this process 
[208]. KD of Rho-BTB, another Rho-GTPase, reduced 
dendrite numbers in Drosophila dendritic arborization 
neurons, suggesting a role in dendritic development 
[209]. Rnd3 KD in the embryonic cerebral cortex inter
feres with interactive nuclear migration of radial glial 
stem cells, disrupting their apical attachment and chan
ging the orientations of their cleavage planes. These 
defects were rescued by co-expression of the active 
form of cofilin (see below) [210]. RhoG promotes neu
ronal migration [211] and neurite outgrowth 
[104,211,212], opposes dendritic branching [213], and 
is required for spinogenesis in hippocampal neurons 
[214]. The roles of the non-canonical Rho-GTPases are 
likely underappreciated and much work remains in this 
area.

2B. Spine and synapse remodelling

Spine structure is supported chiefly by actin filaments, 
and Rho-GTPases play an essential role in regulating 
the actin dynamics that underlie spine and synapse 
formation, maintenance, plasticity, and elimination 
[215]. Rho-GTPases regulate actin assembly and disas
sembly through effectors, many of which are men
tioned above (Figure 2A). In this section, we will treat 
additional aspects of Rho-GTPase signalling at spines 
and synapses.

Direct effects on the F-actin regulatory machinery in 
spines. The critical regulator cofilin severs F-actin, pro
ducing new barbed ends for polymerization or causing 
actin disassembly [216,217]. Actin control by cofilin is 
necessary for proper mature spine density and mor
phology [218], changes in spine morphology related to 
LTD of hippocampal synapses in mature (but not juve
nile) mice [219], and spine loss in CA1 pyramidal 
neurons in response to sleep deprivation [220]. 
Moreover, cofilin is a nexus downstream of multiple 
signals [220,221], including Rho-GTPases. RhoA inhi
bits cofilin function by stimulating phosphorylation of 
Ser3 on LIM kinase (LIMK) by ROCK; LIMK then 
phosphorylates and inhibits cofilin [222] (Figure 2A). 
Activation of the serotonin receptor 5-HT4R locally 
activates RhoA and stimulates cofilin phosphorylation, 
ultimately driving spine and synapse maturation [223]. 
RhoA/ROCK may also mediate synaptoxicity in pri
mary cortical neurons via cofilin phosphorylation 
downstream of Aβ [224]. Interestingly, Rac1 and 
Cdc42 also activate LIMK via PAK1, inhibiting cofilin 
activity [225] (Figure 2A). However, Rac1 counteracts 
PAK1/LIMK-mediated cofilin inhibition by activating 
the cofilin phosphatase slingshot 1 (SSH1) [226], sug
gesting a modulation of cofilin turnover. Disruption of 
Rac1/cofilin signalling leads to spine and synapse loss 
in Fragile X Syndrome, the most common genetic cause 
of intellectual disability [227], and in aluminium toxi
city [228].

The Arp2/3 complex is a seven-protein complex and 
one of the most important cellular actin nucleators, 
creating branched actin networks and capping pointed 
ends of actin filaments [229–231]. Arp2/3 is required 
for the formation and remodelling of the dense, highly 
branched actin cytoskeleton that controls spine mor
phology and function [215,229]. In all contexts, Arp2/3 
requires activation through nucleation promoting fac
tors (NPFs) such as Wiskott-Aldrich Syndrome protein 
(WASP) or the WAVE1/2 complex [232,233] 
(Figure 2A). Cdc42 activates Arp2/3 through WASP 
and the closely related N-WASP to drive actin poly
merization and spine and synapse development in 
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hippocampal neurons [53,198,234]. Likewise, Rac1 reg
ulates Arp2/3-mediated branched actin polymerization 
in spines through WAVE activation via Cdk5 or 
IRSp53 [234–237]. Thus, though both Rac1 and 
Cdc42 relay positive synaptogenic signals through 
F-actin, they do so via distinct mechanisms with differ
ing effects.

Diaphanous formins (mDia1 and 2) are Rho-GTPase 
effectors that contain formin homology 1 and 2 
domains (FH1/2), the latter binding to the barbed end 
of F-actin and driving unbranched actin polymerization 
[238] (Figure 2A). mDia’s FH1 domain interacts with 
profilin-bound actin monomer and other species, facil
itating actin polymerization [238]. mDias are well-posi
tioned to affect the spine cytoskeleton, though the data 
remain incomplete. mDia2-mediated elongation of 
F-actin is essential for filopodial formation and elonga
tion in the initial phase of spinogenesis and ultimately 
for normal mature spine density; this is regulated by 
the Rho-GTPase RhoF/Rif [218]. mDia1/2 are also 
RhoA effectors, though the implications of this axis in 
spines are not well understood. Protein kinase A 
(PKA)-mediated phosphorylation of RhoA at Ser188 
occludes its activation of ROCK, shunting RhoA acti
vation elsewhere, including mDia1 [239]. Further 
afield, Aβ-mediated RhoA activation leads to mDia1- 
mediated ectopic stabilization of neuronal microtubules 
and precipitates spine loss [240].

In addition to actin dynamics, Rho-GTPases regulate 
actin function in spines. For example, myosin IIB is a 
cytoskeletal motor protein essential for actomyosin 
contractility that is necessary for spine maintenance. 
In primary neurons, myosin IIb KD or inhibition 
caused spine heads to elongate and become more filo
podia-like and mediated synapse loss [241]. Myosin is 
downstream of RhoA in at least two ways: ROCK 
phosphorylates the myosin light chain, increasing its 
ATPase activity [242] and phosphorylates and inacti
vates myosin light chain phosphatase [243]; both may 
play a role in CA1 spine loss caused by chronic 
restraint stress [244]. Interestingly, the two ROCK iso
forms phosphorylate myosin light chains differently, 
leading to differing outcomes: ROCK1 targets Thr18 
and drives the formation of actomyosin bundles that 
confer spine polarity, while ROCK2 targets Ser19 and 
regulates contractile force in the spine head by attenu
ating Rac1 activity at this site [245]. Furthermore, Rac1 
activation is required for proper spine localization of 
myosin II and normal retrograde actin flow through 
spines [246], and can cause protein kinase C (PKC)- 
dependent phosphorylation of the heavy chain of myo
sin IIa, regulating its subcellular localization in tissue 
culture cells [247].

Rho-GTPases in glutamatergic receptor trafficking. As 
noted above, the ultimate consequences of LTP and 
LTD are the insertion and removal, respectively, of 
surface AMPARs from excitatory synapses. AMPAR 
traffic requires actin and its regulators [248–250], so it 
is not surprising that Rho-GTPases, too, play a critical 
role (Figure 5). Rac1 is required for synaptic AMPAR 
insertion [176] during development and in NMDAR- 
mediated LTP in the hippocampus and nucleus accum
bens [63,251–256]. Depending on the context and neu
ron type, this occurs downstream of several Rac1-GEFs, 
including DOCK4 [251], Trio [254], and Kalirin-7 [63]. 
Paradoxically, Rac1 activation is also required for hip
pocampal AMPAR endocytosis and resultant LTD, also 
downstream of NMDARs [253,257–261]. This Rac1 
activation requires the Rac1-GEFs P-Rex1 [259] and 
Tiam1 [257], and is mediated by both Rac1’s canonical 
actin regulatory proteins [261] and Jun N-terminal 
kinase 1 (JNK-1) [258]. Less is known about the role 
of Cdc42 in AMPAR traffic, but it functions to increase 
synaptic AMPAR levels downstream of EphB2 [262] 
and NMDARs [263]. As in the case of Rac1, the role 
of RhoA in AMPAR traffic is complex. RhoA over
activation through KD of negative regulators produces 
the expected decreases in surface AMPARs [260,264] 
and, accordingly, the RhoA-GAP oligophrenin-1 is 
required for LTP formation in CA1 neurons [265]. 
However, oligophrenin-1 KO inhibits LTD formation 
and AMPAR endocytosis, effects reversed by pharma
cologic RhoA signalling inhibition [266]. Furthermore, 
RhoA activity affects AMPAR subunit composition, 
increasing GluA3 at the expense of GluA1 [267].

Despite the role that Rho-GTPases play in transdu
cing NMDAR-mediated signalling, less is known about 
the role they play in regulating NMDAR traffic. Rac1 
overexpression rescues lowered surface NMDAR 
expression in DOCK4 KO mouse neurons [251], but 
perturbation of Bcr localization in hippocampal neu
rons causes hyperactivation of both Rac1 and RhoA 
and leads to a loss of NMDARs from synapses [260]. 
More work is required to understand the role that Rho- 
GTPases play in this process.

Rho-GTPases in heterosynaptic plasticity. 
Heterosynaptic plasticity refers to phenomena in 
which plasticity at one synapse affects that of nearby 
synapses. Excitatory synaptic activity leads to a spread 
of activated RhoA and Rac1 into the dendritic shaft and 
neighbouring spines, while active Cdc42 remains in the 
stimulated spine [43,56]. Diffusion of RhoA and Rac1 
alone to the nearby spines does not induce plasticity 
[56], but it is necessary for synaptic crosstalk in which 
spines near an activated spine undergo expansion in 
response to subthreshold inputs [56,268], discussed in 
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[269]. Although the precise mechanism of RhoA- and 
Rac1-mediated potentiation of nearby spines needs 
further investigation, it is possible that these GTPases 
exert their effects by increasing tonic levels of their 
target signalling cascades, decreasing the activation 
energy for LTP in response to further stimuli. It is 
easy to imagine how this pattern of diffusing Rho- 
GTPases might also play a role in heterosynaptic 
depression, in which activated spines causes shrinkage 
and/or retraction of nearby unstimulated spines [270], 
but this is not yet known.

Rho-GTPases in memory. Memory comprises a cri
tical cognitive domain, and, as key synaptic regulators, 
Rho-GTPases play prominent roles therein. In addition 
to its role in spine and synapse formation, Rac1 plays a 
key role in LTP, a cellular process thought to underlie 
learning and memory [271]. KO of Rac1 from forebrain 
neurons impedes LTP formation [252], as does inter
fering with Rac1 signalling downstream of BDNF by 
preventing Tiam1 recruitment to TrkB receptors with a 
TrkB mutant [70]. Other manipulations that alter Rac1 
signalling, including disrupting its spine localization 
[272], suppressing its activation through iodine defi
ciency [273], or inducing exaggerated signalling 
through KO of Rac1-GAPs [81] also strongly inhibit 
the formation of LTP. Critically, these and other dis
ruptions of Rac1 signalling greatly impair spatial 

learning, working memory, object recognition memory, 
and fear memory in mice [70,81,252,274]. In addition, 
Rac1 KO in the dentate gyrus inhibits adult neurogen
esis, which also impairs working memory [275]. 
Moreover, Rac1 controls the association between 
Cdk5 and p35 in the hippocampus and functions to 
prevent memory extinction therein, though this extinc
tion can be stimulated by direct action of Cdk5 on the 
Rac1-effector PAK1 [276]. In addition to its role in the 
hippocampus in regulating LTP and memory, Rac1 is 
also required for auditory fear memory formation in 
the basolateral amygdala (BLA) [277].

As is often the case with Rho-GTPases, it is not that 
simple: Rac1 also opposes memory formation and plays 
a critical role in active forgetting. In mice, selective Rac1 
activation in spines recently potentiated by motor 
learning erases the motor memory [278]. Similarly, 
retrograde interference introduced 22 hr post-training 
increases Rac1 levels and induced forgetting [279] and 
dominant negative and constitutively active Rac1 in the 
CA1 enhanced and diminished fear memory, respec
tively, at 24 h, but not 1 h, after training [280]. Rac1 
inhibition through pharmacology or targeted expres
sion of DN mutants in excitatory hippocampal neurons 
extends object recognition memory and contextual fear 
memory, whereas Rac1 activation via drugs or stimula
tion of photoactivatable Rac1 shows the opposite effect 

Figure 5. Rac1-GEFs differentially coordinate synaptic AMPAR insertion (LTP) and endocytosis (LTD) through Rac1-mediated 
actin cytoskeletal modifications. The surface expression of AMPARs during development and in response to LTP relies on Rac1 
activity. Rac1-GEFs like DOCK4, Trio, and Kalirin-7 can activate Rac1 following LTP-inducing NMDAR activity. Subsequent Rac1- 
mediated actin cytoskeletal remodelling promotes the synaptic insertion of AMPARs. Conversely, Rac1 activity can also drive the 
downregulation of AMPAR surface expression in conditions promoting LTD. NMDAR-mediated signalling of Tiam1 and P-Rex1 
activate Rac1 to promote synaptic AMPAR endocytosis.
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[279,281]. Likewise, in CA1, Rac1 is regulated by the 
Rac1-GAP α2-chimaerin, whose expression is triggered 
by learning tasks. KD of α2-chimaerin increases Rac1 
activation and impedes LTP and memory formation, 
while overexpression of α2-chimaerin suppresses Rac1 
activity, promoting LTP and memory formation [280]. 
Further, loss of the Rac1-GEF Tiam1 in dentate granule 
cells facilitates contextual fear learning [79]. Social iso
lation accelerates forgetting in mice through Rac1 activ
ity [282]. Rac1 also mediates active forgetting in the 
nucleus accumbens [283] and in Drosophila [284]. 
Interestingly, Rac1 is hyperactive in humans with 
Alzheimer’s Disease and animal models thereof [285], 
and memory in both mouse and Drosophila models can 
be improved through pharmacological Rac1 inhibition 
[285]. Similarly, pharmacological inhibition of Rac1 
signalling also improves contextual memory in a 
mouse model of Fragile X Syndrome [286]. Thus, 
Rac1 promotes both formation and dissolution of 
memories, though perhaps on different time scales.

Intriguingly, Cdc42, despite its generally similar 
functions and effectors, exhibits the opposite effects. 
To wit, Cdc42 conditional KO mice have impaired 
remote memory recall after fear conditioning and 
Morris water maze training [287]. This striking differ
ence in function might arise from the differing methods 
of KO, local vs. global, of Rac1 and Cdc42 in the 
models used. Among Rho-GTPase effectors, cofilin 
and WAVE complex-formin activity in Rac1-mediated 
forgetting and WASP-Arp2/3 activity in Cdc42- 
mediated forgetting is reported in Drosophila 
[288,289]. In mice, Arp2/3 and vasodilator-stimulated 
phosphoprotein (VASP) function in the lateral amyg
dala is important for long-term memory mainte
nance [290].

Despite its role in opposing spine and synapse for
mation in development (Sec. 2A), RhoA can also play a 
role in the formation of memories. RhoA is involved in 
the formation of conditioned aversive memories in the 
hippocampus in mice [291], and also of spatial working 
memory in the dorsal striatum of rats [292]. BDNF 
stimulates RhoA synthesis at spines in the CA1 and 
CA3 regions of the hippocampus via mTOR, and 
blocking this synthesis impairs LTP consolidation 
[293]. Interestingly, this memory-initiated RhoA signal 
is transient, as it is degraded by calpain-1 [293]. RhoA 
is also implicated in the formation of addiction, due to 
its role in the formation of conditioned place prefer
ence for morphine in rats [294]. Clearly, the precise 
role of Rho-GTPases, including downstream pathways 
in different brain regions, and their mutual interactions 
in both memory and active forgetting needs further 
clarification.

2C. Rho-GTPase signalling associated with 
neuronal injury

Traumatic brain injury. Traumatic brain injury (TBI) 
induces pathological changes, including inflammation, 
neural circuit disruption, and neuronal and glial death, 
that lead to long-term cognitive, motor and emotional 
disabilities [295,296]. TBI causes immediate necrotic 
damage to the brain, including neurons, but also patho
logical signalling. Strikingly, RhoA activation increases 
for hours to months after TBI [297–299]. This activates 
a ROCK and phosphatase and tensin homolog (PTEN)- 
pathway that inactivates the pro-survival protein Akt, 
further decreasing neuronal survival [300]. Moreover, 
RhoA activation can provoke apoptosis via p38 or JNK 
by activating pro-apoptotic members of the Bcl-2 
family [301]. These injuries are unlikely to be reversi
ble, and thus necessitate immediate action, so the con
nection between TBI and RhoA is potentially very 
important. One approach to exploiting this connection 
is by inhibiting RhoA/ROCK signalling with Fasudil or 
Y-27632. Indeed, fasudil treatment rescues TBI-induced 
motor, cognitive, and synaptic deficits in the cortical 
contusion model of rodent TBI, similar to the effects 
seen with neuronal RhoA ablation [302]. Since TBI 
induces synapse loss [303] and Rac1 promotes process 
growth and synapse formation and maintenance, Rac1 
is positioned to potentially enhance regeneration and/ 
or recovery following TBI [145,304]. Moreover, by sig
nalling through PAK, Rac1 is poised to oppose RhoA’s 
effects on neuronal survival through activation of mito
gen activated protein kinase (MAPK) pathways that 
inhibit pro-apoptotic Bad and Bax and increase the 
expression of pro-survival Bcl-xL members of the Bcl- 
2 family [305–308]. Rac1 also stimulates the pro-survi
val PI3K/Akt pathway, enhancing neuronal survi
val [145].

Neuropathic pain. Emerging evidence suggests that 
Rho-GTPase-regulated spine remodelling in the spinal 
cord plays important roles in the development of 
chronic pain, which may explain why pain can persist 
for months or years after injury [309,310]. After spinal 
cord or peripheral nerve injury, animals exhibit symp
toms of thermal hyperalgesia and tactile allodynia, 
accompanied by increased spine density, rearrangement 
of dendritic spines, and enhanced mEPSCs in spinal 
cord dorsal horn neurons located in lamina IV–V 
[311,312]. Meanwhile, NSC23766, an inhibitor of Rac1 
activation, can normalize the morphology of spines 
after injury, reduce traumatic hyperexcitability, and 
increase pain thresholds [311,312]. Similar phenomena 
were observed in the STZ-induced diabetic neuropathic 
pain and burn injury models [313,314]. Further studies 
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have shown that superficial dorsal horn neurons 
located in lamina II are also involved in pain memory 
after spinal cord injury. Although the total density of 
dendritic spines on lamina II neurons after spinal cord 
injury does not change, thin spine density decreases 
and mushroom spine density increases; NSC23766 
reduces these changes and attenuates neuropathic pain 
[315,316]. KD of the Rac1-GAP srGAP3 during the 
maintenance phase enhances Rac1 activity, promotes 
maturation of spines, and increases the persistence of 
neuropathic pain [317]. These observations suggest that 
Rac1 signalling pathways regulate dendritic spine 
remodelling and may explain pain analgesia after spinal 
cord injury or peripheral injury.

RhoA signalling may also contribute to the develop
ment of neuropathic pain. Activation of RhoA/ROCK2 
and increased plasma membrane levels of RhoA are found 
in the spinal cord of neuropathologic pain model animals, 
and the ROCK2 inhibitor Fasudil abrogated pain hyper
sensitivity and increased levels of phosphorylated RhoA 
and ROCK2 [318,319]. Injury-induced overactivation of 
the RhoA/LIMK/cofilin pathway has been suggested to 
yield a cytoskeletal scaffold for the increased trafficking of 
nociceptive signalling factors, resulting in chronic neuro
pathic pain [320]. Indeed, treatments that reduce RhoA 
signalling, such as the Rho kinase inhibitor Y-27632, 
prevent actin filament disruption in the dorsal root gang
lion and attenuate chronic constriction injury-induced 
neuropathic pain [320].

Cdc42 could also have a key role in proposed thera
pies for neuropathic pain. Neural stem cells (NSCs) 
have considerable ability to self-renew and generate 
neurons in mammalian brains, and NSC transplanta
tion may promote peripheral nerve regeneration and 
provide a new method for the treatment of peripheral 
nerve injury [321]. It has been reported that mRNA 
and protein levels of Cdc42 and the number of myeli
nated axon fibres per nerve in animals that underwent 
sciatic nerve injury are significantly less than in unin
jured animals [322]. Cdc42 mRNA and protein levels 
and the myelinated fibres/nerve ratio increased in ani
mals that received NSC transplants, suggesting that 
NSCs promoted myelination in regenerated nerves 
[322]. Furthermore, overexpression of Cdc42 promoted 
myelination of the regenerated nerve and neural stem 
cells migration and proliferation, whereas suppression 
of Cdc42 by miR-7 had the opposite effects, suggesting 
that Cdc42 expression influences peripheral nerve 
injury repair through the proliferation and migration 
of NSCs [322]. Together, these observations suggest 
that Rho-GTPases, including Rac1, RhoA and Cdc42, 
play key roles in the induction of and in strategies for 
the treatment of neuropathic pain.

2D. Diseases associated with Rho-GTPase 
dysfunction

As would be expected from the critical roles enumer
ated above, dysfunctions of Rho-GTPase signalling 
pathways underlie a number of neurodevelopmental 
and neurodegenerative diseases. Here, we highlight 
recent developments in Rho-GTPase signalling impact
ing diseases that exact high clinical burdens.

Schizophrenia. Schizophrenia is a psychiatric disease 
characterized by defects in cortical network circuitry. 
Cellularly, schizophrenia consistently associates with 
decreases in spine density [323–326]. Rho-GTPase 
abnormalities are implicated in the neuropathology of 
schizophrenia, such as reduced pro-spinogenic Cdc42 
signalling [327]. Genetic analyses of schizophrenia cases 
revealed mutational burdens on cytoskeleton regulating 
genes, including that which encodes IRSp53, BAIAP2 
[328,329]. Hypomethylation of BAIAP2 is associated 
with reduced spine density in the superior temporal 
gyrus observed in schizophrenia patients [330]. IRSp53 
regulates Rac1 and Cdc42 in dendrites during synapto
genesis by anchoring GEFs, GAPs, and other regulators 
on its SH3 domain (Figure 6A), including Tiam1, BAI1, 
WAVE2, Kalirin-7, and Bcr/Abr [331,332], and its dele
tion in mice recapitulates decreased spine densities and 
abnormal behaviours observed in schizophrenic humans, 
including hyperactivity and cognitive dysfunction 
[333,334]. Additionally, a 50% reduction in IRSp53 levels 
upregulates NMDAR function, an effect partially amelio
rated by the NMDAR antagonist memantine to some 
therapeutic benefit [333,335,336]. Restricted KO of 
IRSp53 in dorsal telencephalic neurons increases the 
ratio of evoked excitatory and inhibitory synaptic trans
mission in male, but not female, mice [337]. The combi
nation of altered GEF/GAP and NMDAR function 
upstream of Rac/Cdc42 activity may account for the 
defects observed in some schizophrenia patients. Further 
support for this idea is provided by the evidence that 
Kalirin mRNA, which encodes several Rho-GEFs, is 
decreased in schizophrenia post-mortem analyses, along 
with increased Kalirin-9 and decreased Kalirin-7 protein 
levels [338]. Notably, Kalirin-7 has also been shown to 
interact with the schizophrenia risk factor Disrupted-in- 
Schizophrenia 1 (DISC1), which controls spine size by 
restricting the duration and intensity of Rac1 activation 
by Kalirin-7 in response to NMDAR activation [339].

Intellectual Disability and Autism Spectrum 
Disorder. Perhaps the most significant link between 
Rho GTPase dysfunction and neurological pathology 
is in intellectual disability (ID) [340–342]. ID is a 
heterogeneous neurodevelopmental disorder that 
adversely affects intellectual, adaptive, and social 
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Figure 6. Dysregulation of Rho-GTPase signalling is involved in the pathologies of numerous neuropsychiatric disorders. (A) 
IRSp53 serves as a scaffold to mediate the interactions of Rac1 and Cdc42 with regulatory proteins. Under normal conditions, IRSp53 
promotes actin stabilization and synaptic maturation by promoting Rac1 and Cdc42 activity. Loss of IRSp53 activity through 
mutation or hypomethylation of BAIAP2, the gene encoding IRSp53, is associated with the development of schizophrenia. The 
reduction in IRSp53 levels limits the activity of GEFs to activate Rac1 and Cdc42, thereby diminishing pro-spinogenic Rho-GTPase- 
mediated actin cytoskeletal changes and reducing dendritic spine density. Additionally, diminished levels of Kalirin-7 at the protein 
and mRNA levels have been observed in schizophrenia patients. This reduction can directly lead to decreased size and density of 
dendiritic spines. (B) Numerous Rho-GEFs and -GAPs are implicated in the pathophysiology of intellectual disability (ID). For example, 
multiple mutations in the Rac-GEFs TRIO and α-PIX have been found in individuals with ID. Loss-of-function of these proteins 
diminish Rac1 activation and the downstream signals associated with its activity. Likewise, DOCK4 is one of many Rho-GEFs that may 
be linked to the pathogenesis of autism spectrum disorder. The dysregulation of DOCK4 protein levels or activity reduces Rac1- 
mediated actin stabilization in addition to NMDAR subunit translation. This results in the reduction of both excitatory synapses 
through spine loss and LTP by the reduction in available NMDARs.
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functioning. While some aetiologies like lissencephaly 
and microcephaly cause gross structural brain altera
tions, a significant number of cases present without 
these changes. Given the cognitive deficits associated 
with ID, synaptic dysfunction appears to be the most 
likely cause [343]. Genetic studies have supported this 
by linking a majority of the hundreds of mutations 
associated with ID to the pre- and post-synaptic com
partments, including Rho-GTPase family members 
such as oligophrenin-1, PAK3, ARHGEF9, TRIO, and 
β-PIX among many others [344–346]. The confluence 
of Rho-GEF and -GAP mutations and aberrations of 
synaptic development and/or plasticity leading to def
icits in information processing in ID has placed Rho- 
GTPase dysfunction at the molecular centre of this 
disorder [347].

There has been much attention given to the evident 
relationship between Rho-GTPases and ID and it has 
been extensively reviewed [340,346]. The relationship 
between Rho-GTPase function and autism spectrum 
disorder (ASD), while often coincident with ID, has 
received less attention and can provide further insight 
into the role of Rho-GTPases in synaptic dysfunction 
[348]. ASD arises from disruptions in neurodevelop
ment, leading to impaired communication and social 
interaction and repetitive behaviours and interests, 
often with significant comorbidities. The genetic causes 
of ASD are very complex due to its polygenism: nearly 
2,000 genes are linked to ASD aetiology [349]; many of 
these genes are involved in synapse development and 
maturation [350,351]. Between 8–12% of Rho-GEFs, 
Rho-GAPs, and Rho effectors are included in ASD 
susceptibility gene databases [349]. By focusing on the 
Rac1-GEF DOCK4 (Figure 6B) [352], it is possible to 
see how Rho-GTPase dysfunction may be involved in 
ASD pathogenesis. There are many documented SNPs, 
microdeletions, and duplications of the DOCK4 gene in 
autism patients [353,354]. In fact, both homozygous 
and heterozygous KOs of this gene in mice revealed 
altered social, anxiety, and memory functioning [355]. 
In addition to decreased dendritic spine density, these 
mice exhibited decreased CA1 mEPSCs, primarily 
NMDAR-mediated, and impaired LTP. Both the beha
vioural and cellular dysfunctions are Rac1-dependent, 
as Rac1 overexpression increased NMDAR subunit 
protein synthesis, restored dendritic spine density, and 
corrected behavioural symptoms [355].

Alzheimer’s Disease. Alzheimer’s disease (AD) pre
sents with progressive decline in cognition and is asso
ciated with the formation of amyloid plaques 
(aggregates of Aβ) and neurofibrillary tangles (aggre
gates of tau). Cognitive decline is more strongly asso
ciated with the dysfunction and loss of excitatory 

synapses associated with learning and memory than 
aggregate build-up and neuronal atrophy [356–358]. 
Zhao et al. first reported that PAK1 and PAK3 were 
significantly lost in neurons of AD patients and in 
animal models [359]. Downregulation of either PAK1 
or PAK3 does not dramatically affect neuronal mor
phology or function, but loss of both leads to significant 
decreases in mature spine and synapse density and 
synaptic plasticity (Figure 7A) [360]. This effect is 
related to Aβ by an abnormal activation and subse
quent loss of cytoplasmic PAK1 and PAK3, leading to 
the loss of F-actin and spines themselves [361–363]. 
Greater reductions in both cytoplasmic and synaptic 
PAK have indeed been associated with more severe 
presentations of AD [361,363].

Aberrant RhoA signalling is also implicated in AD- 
associated synaptic loss (Figure 7A). It has long been 
appreciated that RhoA plays a role in AD pathology 
via the therapeutic use of NSAIDs that inhibit RhoA 
signalling [364], and to the reduction of Aβ aggregates 
in the brain by the ROCK1/2 inhibitor Y-27632 [364– 
366]. Excessive RhoA activation drives ROCK hyper
activation, leading to pathologic processing of amyloi
dogenic APP into toxic Aβ [367]. Additionally, as 
ROCK phosphorylates LIMK, aberrant RhoA activa
tion leads to F-actin dysregulation. The E3 ligase 
Ube3A regulates RhoA protein levels and is down
regulated in AD [368]. Ube3A also regulates the 
RhoA-GEF Ephexin-5 [51]. Aβ-triggered depletion of 
Ube3A leads to RhoA accumulation and overactiva
tion and its deleterious downstream signals [368,369]. 
Thus, Rac1, Cdc42, and RhoA dysfunction all contri
bute to the synaptic loss and progressive cognitive 
decline observed in AD.

Amyotrophic lateral sclerosis. Amyotrophic lateral 
sclerosis (ALS) is a neurodegenerative disease that pre
sents with progressive and severe muscle atrophy sec
ondary to loss of neurons along the corticospinal tract, 
usually leading to respiratory failure and death. Of the 
10% of cases with genetic aetiologies, ~20% are caused 
by mutations in the gene encoding superoxide dismu
tase 1 (SOD1), an enzyme that detoxifies superoxide 
free radicals. The roles of Rho-GTPases in ALS have 
emerged, with decreased Rac1 and increased RhoA 
activity being implicated in neuronal death 
(Figure 7B). In neurons with mutant SOD1, constitu
tively active Rac1 prevents, whereas dominant negative 
Rac1 induces, neuronal apoptosis [370]. Moreover, 
loss-of-function mutations in alsin, a Rac1-GEF, cause 
juvenile-onset ALS [371,372], and hypermethylation 
and downregulation of the Rac1-GEF-encoding 
ARHGEF16 are seen in patients with sporadic ALS 
(Figure 7B) [373]. Conversely, Rho/ROCK signalling 
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Figure 7. Aberrant Rho-GTPase signalling is also implicated in neurodegenerative diseases. (A) Both Rac1 and RhoA 
dysregulation are implicated in the pathogenesis of Alzheimer’s disease. A reduction in the ubiquitination and degradation of 
RhoA leading to an increase in ROCK1/2 activity promotes the aggregation of Aβ. This in turn further downregulates Ube3A- 
mediated ubiquitination of RhoA, propagating the aberrant signalling and increased amyloid plaque development. Rac1 signalling is 
also dysregulated due to reduced levels of the Rac1 effectors PAK1 and PAK3. The decrease in LIMK activation disinhibits cofilin, 
promoting actin cleavage and spine loss. (B) Rac1 activity is also implicated in several aetiologies of amyotrophic lateral sclerosis 
(ALS). Loss-of-function or downregulation of Rac1-GEFs such as Alsin and ARHGEF16 are associated with both juvenile- and adult- 
onset ALS. Mutations in SOD1, strongly associated with ALS development, also affect Rac1. Mutant SOD1, as well as an increased 
oxidative environment found in ALS, inhibit Rac1 by promoting GTP hydrolysis.
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is increased in diseased spinal cord neurons [374–376]. 
In mice expressing mutant SOD1, active GTP-bound 
Rac1 is significantly decreased in motor neurons at 
disease onset but not prior [377]. While the amount 
of active RhoA in ALS mouse spinal cord was not 
different from healthy controls, RhoB was redistributed 
to neuronal processes of the diseased neurons [377]. 
Pharmacological inhibition of RhoB signalling through 
ROCK inactivation significantly increased neuronal 
survival [378,379].

3. Conclusions

Despite decades of progress, much remains unknown 
about both the exquisite regulatory mechanisms and 
expansive and spatiotemporally precise downstream 
signals and outputs of Rho-GTPases. The extent to 
which this complicated and daunting puzzle can be 
solved will determine much about our knowledge of 
neurons, glia, and other cell types. Since Rho- 
GTPases play such pivotal roles in the cognitive and 
emotional processes that distinguish our species, this 
quest has much to teach about ourselves but will also 
provide tools for improving human health. To this 
end, it will be useful to have more tools with clinical 
potential that target specific Rho-GTPase pathways, 
rather than globally targeting the multifunctional 
GTPases themselves. GEFs and GAPs have more 
inherent specificity in terms of expression patterns 
than Rho-GTPases and are potential targets for this 
enterprise. Additionally, while we have mentioned a 
few Rho-GTPases besides RhoA, Rac1, and Cdc42, 
relatively little is understood about the at least 19 
remaining Rho-GTPases. Improving technologies 
for monitoring the spatiotemporal dynamics of 
Rho-GTPases, their regulators, and their downstream 
signalling pathways make this challenge a thrilling 
one, with the promise of many more exciting 
discoveries.
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