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Abstract

Multi-atlas segmentation has been widely used to segment various anatomical structures. The success of this technique
partly relies on the selection of atlases that are best mapped to a new target image after registration. Recently, manifold
learning has been proposed as a method for atlas selection. Each manifold learning technique seeks to optimize a unique
objective function. Therefore, different techniques produce different embeddings even when applied to the same data set.
Previous studies used a single technique in their method and gave no reason for the choice of the manifold learning
technique employed nor the theoretical grounds for the choice of the manifold parameters. In this study, we compare side-
by-side the results given by 3 manifold learning techniques (Isomap, Laplacian Eigenmaps and Locally Linear Embedding)
on the same data set. We assess the ability of those 3 different techniques to select the best atlases to combine in the
framework of multi-atlas segmentation. First, a leave-one-out experiment is used to optimize our method on a set of 110
manually segmented atlases of hippocampi and find the manifold learning technique and associated manifold parameters
that give the best segmentation accuracy. Then, the optimal parameters are used to automatically segment 30 subjects
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). For our dataset, the selection of atlases with Locally Linear
Embedding gives the best results. Our findings show that selection of atlases with manifold learning leads to segmentation
accuracy close to or significantly higher than the state-of-the-art method and that accuracy can be increased by fine tuning
the manifold learning process.
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Introduction

Multi-atlas segmentation is an automated segmentation method

that shows good robustness and accuracy in segmenting various

anatomical structures [1–4]. In this framework, a segmentation of

a target image is obtained through the propagation and fusion of

multiple atlas images by mean of registration. As demonstrated by

[5], propagation of atlases similar to the target image significantly

improves the quality of the segmentation. As a result, it is crucial to

develop strategies for selecting the best atlases in the framework of

multi-atlas segmentation in order to achieve optimal accuracy.

Several approaches for atlas selection have been proposed over

the past few years [2,3,5–11]. For instance, in the multiple-atlas

propagation and segmentation method (MAPS) [7], the most

similar atlases are selected based on intensity similarity after rigid

registration. In [12], manifold learning is used to select atlases

which are located in the neighbourhood of the target on the

manifold. This novel approach gives promising results. However,
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some aspects in that study have not been investigated thoroughly

such as the type of manifold learning or optimal manifold

parameters. Therefore, our paper investigates further the usage of

manifold learning for atlas selection in the framework of multi-

atlas segmentation.

Manifold learning has been successfully used in multiple

medical imaging applications including segmentation [13], regis-

tration [14,15], classification [16] and statistical population

analysis [17,18]. The most popular manifold learning techniques

used in medical imaging are Isomap [19], Locally Linear

Embedding (LLE) [20] and Laplacian Eigenmaps (LEM) [21].

For instance, Laplacian Eigenmaps is used by [22] to reduce the

computational complexity in multi-modal registration and by [23]

for biomarker discovery in MR imaging. Isomap is used by [14] to

tackle the problem of performing large deformation registration

and by [24] to parametrize cardiac MRI images. [25] investigates

the detection of seizures in EEG signals with Locally Linear

Embedding.

Each manifold learning technique attempts to preserve a

different geometrical property of the underlying manifold. Isomap

is a global approach that attempts to preserve pairwise metrics. In

contrast, LLE and LEM aim to preserve the local geometry of the

data. Since each manifold learning technique is associated with a

different objective function, it is legitimate to assume that, for a

given data set, the associated embeddings are also different.

Previous studies [14,22–25] only included a single technique in

their design and manifold parameters appeared to have been

chosen arbitrarily. To our knowledge, no studies have investigated

(i) the effect of different manifold learning algorithms and (ii) the

computation of optimal manifold parameters for a given

application. This paper addresses these two points. In the context

of atlas selection for multi-atlas segmentation, we investigate the

appropriate choice of manifold learning technique and manifold

parameters that result in optimal atlas selection and subsequently

achieve optimal segmentation accuracy.

Methods

1.1 Ethics Statement
This study was conducted in accordance with the ethical

standards stated in the Declaration of Helsinki using publicly

available imaging data.

1.2 Overview
This paper aims to qualitatively and quantitatively assess the

selection of atlases to combine in the framework of multi-atlas

segmentation using 3 different manifold learning techniques. We

consider Isomap [19], Locally Linear Embedding (LLE) [20] and

Laplacian Eigenmaps (LEM) [21] since those techniques are the

most widely used in medical imaging.

Our method can be summarized in 3 steps. First, a low-

dimensional manifold is learned from the space spanned by the set

of atlases using the 3 different techniques (} 1.3). The neighbour-

hood relationship on the manifold is derived from non-rigid

transformations that align atlases to each other in the high-

dimensional space (} 1.4). Second, a new target image is embedded

onto the previously computed manifold by means of the out-of-

sample extension [26] (} 1.5). Third, the target image is segmented

using atlases that are within its vicinity on the manifold (} 1.6).

For each manifold learning technique, we investigate the effects

of (i) the number of dimensions of the resulting embedding, (ii) the

number of neighbours used to build the k-nearest neighbour graph

in the high-dimensional space, and (iii) the number of atlases used

during the combination process.

An atlas data set composed of 110 manually segmented images

of hippocampi from the MIRIAD public data set (www.ucl.ac.uk/

drc/research/miriad) is used to optimize each manifold learning

technique on a leave-one-out experiment (} 2.1). Segmentation

accuracy is then validated on an independent set of 30 manually

segmented images from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI, www.loni.ucla.edu/ADNI/) (} 2.2). The MIR-

IAD data set is described in } 1.7. The ADNI data set is described

in } 1.8.

1.3 Manifold Learning
Given a set of n atlases A~(ai,:::,an)[RD, the goal is to identify

atlases that are most similar to a target image x[RD using

manifold learning. It has been suggested that the set of brain

images has an intrinsic dimensionality meaning that points in data

set A and image x are lying on or near a manifold with

dimensionality d which is embedded in the D-dimensional space

[17]. By using manifold learning, data set A[RD is transformed

into a new dataset Y~(y1,:::,yn)[Rd with dvvD, while

preserving the non-linear geometry and neighbourhood informa-

tion of the high-dimensional data in the low-dimensional space.

The atlases that are nearest to x are identified on the low-

dimensional manifold and used for segmentation.

Variation in brain images is best described by non-linear

dimensionality reduction models compared to linear ones like

Principal Component Analysis (PCA) or Multi-Dimensional

Scaling (MDS) [17]. In our study, low-dimensional embeddings

are computed with 3 different non-linear techniques: Isomap [19],

Locally Linear Embedding (LLE) [20] and Laplacian Eigenmaps

(LEM) [21]. The differences between those 3 techniques are

emphasized by their unique objective functions. For Isomap, the

objective function is:

Table 1. Subject demographics in control and probable AD
subjects used for parameter optimization. Mean (SD) unless
specified otherwise.

Control (n = 19) AD (n = 36)

Age, years 68.7 (7.0) 69.6 (7.3)

Gender male (%) 9 (47%) 14(39%)

MMSE at baseline, /30 29.5 (0.7) 19.4 (4.1)

doi:10.1371/journal.pone.0070059.t001

Table 2. Subject demographics in set of 30 labelled randomly
selected subjects used for method validation.

Control (n = 10) MCI (n = 10) AD (n = 10)

Age, years 78.6 (5.4) 75.3 (8.8) 77.2 (6.8)

Gender male (%) 6 (60%) 7 (70%) 7 (70%)

MMSE, /30 29.5 (0.7) 27.4 (1.8) 27.0 (2.7)

Mean (SD) unless specified otherwise.
doi:10.1371/journal.pone.0070059.t002
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w(Y )~
Xn

i~1

Xn

j~1

(g2
ij{Eyi{yjE2)

where gij represents the geodesic distance between ai and aj in the

high-dimensional space. For LLE, the objective function is:

w(Y )~
Xn

i~1

Eyi{
X

j[Nk (i)

wijyijE2

where Nk(i) are the k-nearest neighbours of ai and weight wij is

the contribution of aj in reconstructing ai in the high-dimensional

space. As demonstrated by [20], the optimal weights wij are

obtained through minimization by solving a least-squares problem.

Finally, the objective function associated with LEM is:

w(Y )~
Xn

i~1

Xn

j~1

Eyi{yjE2e{Eai{ajE
2=s

All 3 techniques require the construction of a connected graph

in the high-dimensional space using the k-nearest neighbour

algorithm. The number of neighbours used to build this connected

graph is defined as kD.

Unlike PCA, the embedding produced by these techniques is a

function of a metric which determines the kD-nearest neighbours

in the high-dimensional space and subsequently the neighbouring

images on the low-dimensional manifold. We use the metric

presented in } 1.4 to find those kD-nearest neighbours.

1.4 Distance between Pairs of Images
We derive the metric from the method presented by [27]. An

atlas a and target image x are similar when the non-rigid

transformation that aligns them produces a small deformation.

Similarity is based on the displacement field Fx?a of the non-rigid

transformation Tx?a. In order to avoid the computational load of

performing registrations between all atlases and every new unseen

target image, an average atlas M is built from the atlases in the

data set using the iterative groupwise registration scheme

described by [28]. This enables M to lie near the center of the

space of all atlases. From the average atlas M, a displacement field

FM?a (resp. FM?x) is derived from the non-rigid transformation

TM?a (resp. TM?x) for each atlas a (resp. new target x). The

similarity is then evaluated with:

s(x,a)~
XV

l~1

EFM?a(l){FM?x(l)E2

where E:E2 is the L2 norm and V is the number of voxels in each

atlas.

In this framework, the similarity between x and any atlases a

can be evaluated by registering x to M. Since M lies near the

center of the space of all atlases, the manifold resulting from the

approximation of Fx?a with FM?a{FM?x minimizes the error in

estimating the neighbourhood relationship when compared to the

manifold resulting from the direct computation of Fx?a.

The non-rigid transformation T is performed using an efficient

implementation [29] of the free-form deformation algorithm [30].

The transformation model is parameterized using a cubic B-Spline

scheme and the transformation T is driven by the normalised

mutual information.

1.5 Extending a Manifold with a New Target Image x
For Isomap, LLE and LEM, the out-of-sample extension is

performed using the Nyström approximation [26]. Experiments

on real high-dimensional data have demonstrated the accuracy of

out-of-sample extension in positioning an out-of-sample point on a

low-dimensional manifold [26]. The metric presented in } 1.4 is

also used for extending the manifold.

Since the low-dimensional manifold is embedded in a Euclidean

space, the L2 distance is used to determine the kd -nearest

neighbours of x on the manifold. Those kd -nearest neighbours are

subsequently used for label propagation.

Figure 1. Mean Dice’s similarity index computed for kD[½3,25�, d[½1,25�, kd[½1,25�. Locally Linear Embedding is in blue, Isomap is in red and
Laplacian Eigenmaps is in black. Solid lines represent the mean Dice’s similarity index, doted lines represents the standard deviation. Mean Dice’s
similarity index against: (a) the number of atlases fused in STAPLE (d and kD fixed to best parameters), (b) the neighbourhood size kD in computing
the manifold (d and kd fixed to best parameters), and (c) the manifold dimension d (kD and kd fixed to best parameters).
doi:10.1371/journal.pone.0070059.g001

Table 3. Mean Dice’s similarity indexes DS (SD) obtained with manifold learning selection (LLE, ISO, LEM) and plain selection
(BASE).

LLE ISO LEM BASE

d = 11, kD = 23, kd = 7 d = 21, kD = 23, kd = 9 d = 13, kD = 21, kd = 19 kd = 9

Mean DS 0.9077 0.8995 0.8971 0.8756

(SD) (0.0211) (0.0228) (0.0245) (0.0219)

p-value LLE vs. ISO vs. LEM vs. BASE vs.

ISO, p = 0.0216 LLE, p = 0.0216 LLE, p = 0.0275 LLE, p = 0.0056

LEM, p = 0.0275 LEM, p = 0.3250 ISO, p = 0.3250 ISO, p = 0.0137

BASE, p = 0.0056 BASE, p = 0.0137 BASE, p = 0.0204 LEM, p = 0.0204

p-values comparing each approach with each other are reported.
doi:10.1371/journal.pone.0070059.t003
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1.6 Segmentation by Fusion Strategy
STAPLE [31] is used to combine multiple segmentations

generated from the most similar atlases. We found in our previous

study [7] that STAPLE gives better results compared to a voting

rule or shape-based averaging method when using the MIRIAD

data set. It simultaneously computes a probabilistic estimate of the

true segmentation and a measure of the performance level

(sensitivity and specificity) represented by each segmentation in

an expectation-maximization framework. An iterative Markov

random field optimized with mean field approximation is used to

provide spatial consistency in the probabilistic estimate of

neighbouring voxels. The STAPLE algorithm is solved only in

the non-consensus area in order to reduce bias as suggested by

[28]. We denote by kd the number of atlases used for label

propagation.

1.7 Atlas Data Set of 110 Hippocampi
The MIRIAD data set is used as the atlas data set. It is a

database of volumetric MRI brain scans of patients suffering from

Alzheimer’s disease and healthy elderly people. The data set is

publicly available (www.ucl.ac.uk/drc/research/miriad) in anon-

ymised form to aid researchers in developing new techniques for

the analysis of serially acquired MRI. The atlas data set consists of

55 subjects who were recruited from the Cognitive Disorders

Clinic at The National Hospital for Neurology and Neurosurgery,

into a longitudinal neuroimaging study. All subjects underwent

clinical assessment including the Mini-Mental State Examination

(MMSE) [32]. All subjects gave written informed consent to take

part in this study. Imaging data were used to create an average

atlas using the groupwise registration algorithm described in } 1.4

and in the parameter optimization process in } 2.1. Subjects

included 36 clinically diagnosed probable AD patients and 19 age-

matched healthy controls. All patients fulfilled standard

NINCDS/ADRDA criteria [33] for the diagnosis of probable

AD. Subject demographics can be seen in Table 1. T1-weighted

volumetric MR brain scans were performed on the same 1.5-T

Signa unit (General Electric, Milwaukee), using an inversion

recovery prepared fast SPGR sequence and a 2566256 image

matrix with the field of view being 18 cm (acquisition parameters:

repetition time = 15 ms; echo time = 5.4 ms; flip angle = 15u;
inversion time = 650 ms). The volumetric scans were reconstruct-

ed as 124 contiguous 1.5-mm coronal images. T1-weighted

volumetric scans were evaluated by one rater. All scans were N3

corrected [34] and bias correction was performed.

The left and right hippocampal regions were manually

segmented by an expert segmentor S. The segmentation protocol

is presented in the Appendix S1. The intra-rater variability

measured by an ICC is 0.98. The left hippocampal segmentations

from all 55 subjects are flipped along the mid-sagittal plane. This

flipping effectively doubles the size of the data set by allowing, for

example, the left hippocampus of a target image to be matched to

the right hippocampus in the atlas data set. Therefore, the final

atlas data set consists of 110 hippocampal images.

1.8 ADNI Data Set of 30 Subjects
Data used in the preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(www.adni.loni.ucla.edu). ADNI was launched in 2003 by the

National Institute on Aging (NIA), the National Institute of

Biomedical Imaging and Bioengineering (NIBIB), the Food and

Drug Administration (FDA), private pharmaceutical companies

and non-profit organizations, as a 5-year public-private partner-

ship. The aims of ADNI included assessing the ability of imaging

and other biomarkers to measure the progression of mild cognitive

impairment (MCI) and early Alzheimer’s disease (AD).

The Principal Investigator of this initiative is Michael W.

Weiner, MD, VA Medical Center and University of California -

San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and

Figure 2. Bland-Altman plot. Each point corresponds to an hippocampal segmentation. The difference between automatic and manual estimates
is plotted against their average. The solid horizontal line corresponds to the average difference, and the dashed lines are plotted at average +/21.96
standard deviations of the difference.
doi:10.1371/journal.pone.0070059.g002
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private corporations, and subjects have been recruited from over

50 sites across the U.S. and Canada. The initial goal of ADNI was

to recruit 800 adults, ages 55 to 90, to participate in the research,

approximately 200 cognitively normal older individuals, 400

people with MCI and 200 people with early AD. For up-to-date

information, see www.adni-info.org.

The 30 ADNI subjects (10 AD, 10 MCI and 10 controls) used

for method validation consist of preprocessed baseline volumetric

T1-weighted MR images acquired using 1.5T scanners (GE

Healthcare, Philips Medical Systems or Siemens Medical Solu-

tions) at multiple sites from the ADNI website. Representative

imaging parameters were TR = 2400 ms, TI = 1000 ms,

TE = 3.5 ms, flip angle = 8u, field of view = 2406240 mm and

160 sagittal 1.2 mm-thick slices and a 1926192 matrix yielding a

voxel resolution of 1.2561.2561.2 mm3, or 180 sagittal 1.2 mm-

thick slices with a 2566256 matrix yielding a voxel resolution of

Figure 3. Hippocampal segmentation: automated (blue) vs manual (red). Overlapping area in purple. Row: (i) High case (Dice = 0.9398), (ii)
Typical case (Dice = 0.9073), (iii) Low case (Dice = 0.8614). Column: (a) Coronal view, (b) Sagittal view, (c) Axial view.
doi:10.1371/journal.pone.0070059.g003

Manifold Learning for Atlas Selection
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0.9460.9461.2 mm3. The details of the ADNI MR imaging

protocol are described in [35], and listed on the ADNI website

(www.loni.ucla.edu/ADNI/Research/Cores/). Each scan under-

went a quality control evaluation at the Mayo Clinic (Rochester,

MN, USA). Quality control included inspection of each incoming

image file for protocol compliance, clinically significant medical

abnormalities, and image quality. The T1-weighted volumetric

scans that passed the quality control were processed using the

standard ADNI image processing pipeline, which included post-

acquisition correction of gradient warping [36], B1 non-uniformity

correction [37] depending on the scanner and coil type, intensity

non-uniformity correction [34] and phantom based scaling

correction [38] with the geometric phantom scan having been

acquired with each patient scan.

Table 2 shows the clinical and demographic data of the 30

ADNI subjects. The same expert segmentor S as previously

mentioned manually delineated the left hippocampus of those

subjects. A segmentor S2 also manually delineated the left

hippocampus on the same baseline images. The segmentation

protocol is presented in the Appendix S1. The inter- and intra-

rater reliability correspond to a Dice’s similarity index of 0.93 and

0.96 respectively.

Experiments

2.1 Optimizing Manifold Learning Parameters Using a
Manually Segmented Data Set of 110 Atlases

A leave-one-out approach that excludes both the left and right

hippocampi of the target image from the library of 110 atlases is

used to optimize the parameters for each manifold learning

technique. The following 4-step procedure is repeated for each

atlas aout in the library. (i) After excluding aout and its flipped

image from the library, an average atlas M is built from the

remaining 108 images in the data set. Distances between

remaining atlases are computed based on the non-rigid transfor-

mations that align them to M as described in } 1.4. (ii) A manifold

is computed from the remaining 108 atlases. (iii) The embedding is

extended with aout. Distances between aout and the remaining

atlases are derived by registering it to M and performing

Table 4. Mean (SD) of the volumes (in mm3) in the left
hippocampus in the baseline images of the atlas library of 110
images used to assess optimal methods and parameters.

Control
(n = 19) AD (n = 36)

Manual (SD) 2749 (273) 2054 (424)

Automated (SD) 2722 (249) 2066 (387)

Man vs Auto mean of difference (p-value) 27 (p = 0.19) 212 (p = 0.14)

SD of differences 129 150

doi:10.1371/journal.pone.0070059.t004

Figure 4. Average Dice’s similarity index for NC, MCI and AD group obtained by fusing top 7 atlases with STAPLE. Atlases were
selected with manifold learning.
doi:10.1371/journal.pone.0070059.g004
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subtraction of displacement fields. (iv) Its kd -nearest neighbours

are identified on the manifold using the L2 norm and combined in

STAPLE to yield an estimated segmentation of aout.

Dice’s similarity index [39] is used for evaluation and is

computed by measuring the overlap between the estimated

segmentation and the manual segmentation. Dice’s similarity

index is defined as DS(A,B)~2DA\BD=(DADzDBD), where A is the

set of voxels in the automated region and B is the set of voxels in

the manual region. A Dice’s similarity index is calculated for each

aout and a mean Dice’s similarity index DS is calculated by

averaging all 110 scores.

There is no defined procedure to establish the number of

dimensions d of a learned manifold, and the number of neighbours

kD to build the connected graph in the high-dimensional space is

often determined empirically. Results are evaluated for 3 different

techniques: Isomap, LLE and LEM with dimension d[½1,25� and a

neighbourhood number of kD[½3,25� for each manifold technique.

Using STAPLE with a MRF strength of 0.2, segmentations are

generated by combining the closest kd[½1,25� neighbours to aout in

the lower dimensional space. For LEM, s is set to 1. A 4D matrix

of mean Dice’s similarity indexes is then computed with the

following axes: manifold type [fISO,LLE,LEMg, d[½1,25�,
kD[½3,25�, and kd[½1,25�. The coordinates in this matrix that

give the highest DS indicate the best manifold learning technique

with optimized parameters for this data set.

In order to compare atlas selection with manifold learning to

atlas selection without manifold learning, we also compute the

results given by a plain kd -nearest neighbour selection in the high-

dimensional space D. For each aout, its kd -nearest neighbours in

the high-dimensional space D are computed using the metric

defined in } 1.4 and combined in STAPLE to yield an estimated

segmentation. As before, a Dice’s similarity index is calculated for

each aout and a mean Dice’s similarity index DS is calculated by

averaging all 110 scores. We refer to this selection method as

BASE and results are computed for kd[½1,25�.

2.2 Method Validation Using a Manually Segmented Data
Set of 30 ADNI Subjects

For method validation, the left hippocampus in the baseline

images of 30 randomly selected subjects in the ADNI database (10

AD, 10 MCI and 10 controls) were segmented. Those images

differ from the MIRIAD data set of atlases used for parameter

optimization. The atlas data set of 110 images is used to segment

each of the ADNI target images. The optimal parameters

determined in } 2.1 are used to generate left hippocampal regions.

Since the right hippocampus segmentations for this set of 30

subjects were not available, we only evaluate the accuracy of our

method on the left hippocampus.

Results

3.1 Results from Method Optimization Using a Manually
Segmented Data Set of 110 Atlases

The best combination of manifold learning technique and

parameters is Locally Linear Embedding with a manifold

dimension of d~11, a neighbourhood size kD~23 and combining

the top kd~7 matches in STAPLE, giving a mean (SD) Dice’s

similarity index DSmax of 0.9077 (0.0211). In contrast, Isomap and

Laplacian Eigenmaps resulted in Dice’s similarity indexes of

0.8995 (0.0228) and 0.8971 (0.0245) with d~21, kD~23 and

kd~9 and d~13, kD~21 and kd~19 respectively. Each graph in

Figure 1 shows the mean Dice’s similarity index for each manifold

learning technique when d , kD and kd are fixed to their respective

optimal parameters. It is interesting to note that all 3 manifold

learning techniques result in a very high mean Dice’s similarity

index (.0.89). Using a 2-tailed paired t-test, Locally Linear

Embedding gives a significantly (p~0:0216v0:05 and

p~0:0275v0:05) higher average Dice’s similarity index com-

pared to Isomap and Laplacian Eigenmaps, whereas the difference

between Isomap and Laplacian Eigenmaps is not statistically

significant (p~0:3250w0:05). The accuracy achieved by fusing

multiple segmentations quickly rises to a maximum and then

gradually declines as the number of segmentations increases. This

is in line with results published in [5] and [7] : the gradual decline

corresponds to adding dissimilar images into the combination

process, resulting in segmentation errors. The accuracy also

flattens out for manifolds of 3 or more dimensions. This suggests

that our data set of hippocampi can be described mostly by 3 main

modes of variation, and this is consistent across all manifold

learning techniques presented. The number of neighbours kD used

to build the connected graph has little effect on the accuracy when

using Isomap and Laplacian Eigenmaps. In contrast, increasing kd

increases the accuracy achieved with Locally Linear Embedding.

Table 3 compares the mean Dice’s similarity index (SD)

obtained by selecting atlases with manifold learning and using the

BASE method. The results show that all 3 manifold learning

selection methods significantly outperform (pv0:05) the plain

selection method.

Table 4 shows the mean (SD) of the manual and automated

hippocampal volumes. The automated volumes were computed

using Locally Linear Embedding with the optimized parameters.

Table 5. Mean (SD) of the volumes (in mm3) in the left hippocampus in the baseline images of the labelled ADNI data set of 30
images for method validation.

Control (n = 10) MCI (n = 10) AD (n = 10)

Manual (SD) 2531 (336) 2331 (410) 1994 (478)

Automated (SD) 2642 (360) 2334 (431) 2018 (387)

Man. vs Auto. mean of diff. (p-value, paired t-test) 2111 (p = 0.33) 23 (p = 0.47) 224 (p = 0.29)

SD of differences 168 155 130

doi:10.1371/journal.pone.0070059.t005

Table 6. Effect size.

ESAD ESMCI

Manual (SD) 21.124 20.490

Automated (SD) 21.614 20.720

doi:10.1371/journal.pone.0070059.t006
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The mean (SD) of differences between the manual and automated

hippocampal volumes by baseline diagnostic group was 27 (129)

mm3 (automated,manual) for controls and 212 (150) mm3

(automated.manual) for AD subjects. In order to test the validity

of our method, we compare the proposed method to a state-of-the-

art method for hippocampus segmentation based on a similar atlas

library approach [7]. Using the same library of 110 hippocampus

images and optimal parameters defined in [7], a similar leave-one-

out method is performed. The mean Dice’s similarity index was

0.8955 (0.0172) compared to 0.9077 (0.0211) in our method. Even

though these values differ by 0.01 point only, the difference is

statistically significant (p,0.001). Figure 2 plots the volume

correlation between the manual segmentation and our automatic

segmentation method. The volume differences between manual

segmentation and automatic segmentation are similar to zero-

mean random noise. Figure 3 shows an example of segmentation

obtained with our method.

Overall, these results show that registering atlases that have

been selected by manifold learning (i.e. selection in the lower-

dimensional space) produces accurate and robust segmentation in

the framework of multi-atlas based segmentation and gives better

results compared to atlas selection without manifold learning (i.e.

selection in the high-dimensional space). Also, given our data set of

atlases, Locally Linear Embedding gives significantly better results

than Isomap and Laplacian Eigenmaps.

3.2 Results from Method Validation Using a Manually
Segmented ADNI Data Set of 30 Subjects

We use Locally Linear Embedding with the optimal parameters

found in } 3.1 to generate automatic segmentation of the 30 ADNI

subjects. The mean (SD) Dice’s similarity indexes of the left

hippocampus segmentations of the baseline ADNI images are

0.887 (0.020) for controls, 0.886 (0.025) for MCI, 0.878 (0.038) for

AD and 0.883 (0.028) across the three groups. These are

summarized in Figure 4. The difference in accuracy compared

to the previous experiment can be explained by the fact that the

atlases and the 30 ADNI subjects belong to different data sets. Also

the high shape variability and the possible presence of cysts in the

hippocampus can explain lower scores in AD subjects. Table 5

shows the means (SD) of the manual and automated hippocampal

volumes. The mean (SD) of differences in the manual and

automated hippocampal volumes by baseline diagnostic group are

2111 (168) mm3 for controls, 23 (155) mm3 for MCI, and 224

(130) mm3 for AD subjects with automated volumes higher than

manual volumes in all the three groups. Overall, the mean (SD) of

differences in the manual and automated hippocampal volumes is

245 (154) mm3. We also calculate the effect size

ESAD~(mAD{mC)=sAD and ESMCI~(mMCI{mC)=sMCI in

Table 6, where mC , mMCI , mAD are the average volumes in the

control, MCI and AD groups respectively, and sMCI , sAD are the

standard deviations in the MCI and AD groups respectively.

Conclusions
We compared Isomap, Locally Linear Embedding and

Laplacian Eigenmaps for the selection of atlases to use in multi-

atlas segmentation of the hippocampus of normal controls and

patients with Alzheimer’s disease in MR images.

We found that Locally Linear Embedding generated the best

hippocampal segmentation (DS~0:9077) on a leave-one-out

experiment using our data set of 110 atlases. The mean volumes

and SDs of the generated segmentations were similar to those

produced using manual segmentation. Overall, the mean differ-

ence between our automated volumes and the manual measure-

ments was 7.5 mm3 or around 0.01% of the mean of all volumes.

We found good accuracy of our method on unseen data, achieving

a mean Dice’s similarity index of 0.883 (0.028) when comparing

the automated and manual segmentations of a set of 30 subjects

(10 AD, 10 MCI and 10 controls). Overall, the mean (SD) of

differences in the manual and automated hippocampal volumes

was 45 (154) mm3 with manual,automated.

Our results are consistent with those in [40]. They found that

large number of kd -nearest neighbours leads to higher Dice’s

similarity index for large database size M and that Dice’s similarity

index decreases as kd approaches the value of M. In our study, the

Dice’s similarity index quickly rises to a maximum when the

number of kd -nearest neighbours increases for all the manifold

learning techniques. The Dice’s similarity index then gradually

declines as the number of kd -nearest neighbours increases.

Not only is the choice of manifold learning important but also

the parameters used to compute the embedding. For instance,

most studies have represented the embedding with 2 or 3

dimensions as it enables spacial visualization of the embedding.

However the optimal embedding could have been of higher

dimensions. Indeed, in our study, we found that the best results

arose when using 11 dimensions. Also all manifold learning

techniques presented in this paper require the choice of a

neighbourhood size either for the calculation of the geodesic

distance in Isomap, or reconstructing a data point with its closest

points in Locally Linear Embedding or Laplacian Eigenmaps. The

choice of the optimal dimension and best parameters is often made

empirically.

The results showed that selection of atlases with manifold

learning is beneficial in the framework of multi-atlas based

segmentation. The optimal accuracy can be found by fine tuning

the manifold learning process. It also turned out that our atlas data

set of hippocampi can be described by 3 main modes of variation

regardless of the manifold learning technique used.

We found that Locally Linear Embedding gave best results for

our data set of the hippocampus but it might not yield optimum

results for a different anatomical structure. There is no consensus

on which manifold learning technique to use for a given data set. A

legitimate question that arises is which manifold learning

algorithm is best suited for which data set. As demonstrated in

this study, different manifold learning techniques produce different

low-dimensional embeddings even for the same data set. This can

be explained by the fact that the cost function to optimize

associated with a manifold learning technique differs from one

method to another.

The lower Dice’s similarity index obtained when segmenting the

10 AD subjects from the ADNI data may also illustrate the issue of

manifold sampling. Since the manifold is directly learned from

points (i.e. images) in the data set, the sampling of the manifold is

highly correlated with the density of points in the high-dimensional

space. For example, if certain areas in the high-dimensional space

are too sparse, the resulting manifold is likely to be a poor

approximation of the true manifold structure. Since the atlas data

set did not contain any MCI subjects, the manifold derived from

this atlas data set is not representative of a population containing

NC, MCI and AD subjects. It would have been preferable to

derive a manifold from NC only subjects in the atlas data set to

segment the 10 NC from the ADNI data set, and similarly for the

10 AD in the ADNI data set.

An important aspect in manifold learning is the metric used to

relate pairs of images in the high-dimensional space. The most

commonly used metrics are based on voxel intensity such as the

Euclidean distance, cross correlation or mutual information.

Similarly to [17] and [14], we used a metric derived from non-

rigid transformation. In theory, the metric used should reflect the
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information relating pairs of images [24,41]. However, there is

currently no research investigating the influence of the metric on

the resulting embedding. In the future, we are planning to

compare the effects of several metrics such as the geometric

median and the geodesic estimation proposed by [42] and [43]

respectively on low-dimensional embeddings.

We have obtained one of the best accuracies reported to date for

automated hippocampal segmentation when compared with gold

standard manual segmentations from a set of 30 randomly chosen

subjects (10 AD, 10 MCI and 10 controls) from ADNI. Our Dice’s

similarity index is equal to 0.88 with the previous highest Dice’s

similarity indexes (N = number of hippocampi in the study) being

0.86 (N = 14) [44], 0.83 (N = 60) [45], 0.81 (N = 100) [46], 0.86

(N = 54) [47], 0.87 (N = 30) [48], 0.88 (N = 5) [49] (from a cohort

of 2 year old children), 0.86 (N = 40) [50], 0.85 (N = 30) [51], 0.86

(N = 40) [52], 0.83 (N = 550) [5], 0.89 (N = 160) [53], 0.89 (N = 30)

[7], 0.89 (N = 120) [8] and 0.85 (N = 364) [12]. Our intra-rater

variability corresponds to a Dice’s similarity index of 0.96.

Comparing this to the results from using our automatic method

with different training and test data (0.88) suggests that the method

has not been over-trained, and that there is potential to improve it

further.

Overall, our technique is most similar to that reported by [12].

However it fundamentally differs in the following ways: (i) [12]

used a similarity measure derived from voxel intensities, whereas

we used a metric derived from registration. (ii) We embedded

target images using the out-of sample extension instead of

embedding all images in a single manifold. This method effectively

scales with the number of atlases and not the number of images to

segment. (iii) We used STAPLE as a fusion method, whereas

statistical voxel classification and graph cuts was used in [12].

We developed a suitable method for segmenting large data sets

by extending the manifold with an out-of-sample image. Indeed, in

our method: (i) the low-dimensional manifold learned from the

space spanned by the set of atlases, (ii) the average atlas M and (iii)

the registrations between the atlases and M are precomputed and

stored, thus making our method very computationally efficient.

We only need to perform one non-rigid registration between M

and a new unseen target image x to select its most similar images

from the atlases. This method is therefore scalable and extremely

computationally efficient, making it suitable for segmenting large

data sets and for clinical use. For instance, in the context of

radiotherapy treatment, we are planning to apply our method to

CT images of head and neck, where segmentations of tumor

regions and organs at risk (such as the parotid glands and lymph

nodes) show low agreement within and between raters due to poor

boundary definition on CT images.

To conclude, manifold learning produces accurate segmenta-

tion in the framework of multi-atlas segmentation by improving

atlas selection. Our method shows that Locally Linear Embedding

gave better results in our experiments, however using a different

atlas data set with a different density distribution will probably

require the re-computation of the optimized parameters and

manifold for segmentation.

Supporting Information

Appendix S1 Hippocampus segmentation protocol.

(PDF)
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