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Abstract: Cystic fibrosis (CF) lung transplant recipients (LTRs) exhibit a disproportionately high rate
of life-threatening invasive aspergillosis (IA). Loss of the cystic fibrosis transmembrane conductance
regulator (CFTR-/-) in macrophages (mϕs) has been associated with lyosomal alkalinization. We
hypothesize that this alkalinization would persist in the iron-laden post-transplant microenvironment
increasing the risk of IA. To investigate our hypothesis, we developed a murine CF orthotopic
tracheal transplant (OTT) model. Iron levels were detected by immunofluorescence staining and
colorimetric assays. Aspergillus fumigatus (Af ) invasion was evaluated by Grocott methenamine silver
staining. Phagocytosis and killing of Af conidia were examined by flow cytometry and confocal
microscopy. pH and lysosomal acidification were measured by LysoSensorTM and LysotrackerTM,
respectively. Af was more invasive in the CF airway transplant recipient compared to the WT
recipient (p < 0.05). CFTR-/- mϕs were alkaline at baseline, a characteristic that was increased with
iron-overload. These CFTR-/- mϕs were unable to phagocytose and kill Af conidia (p < 0.001).
Poly(lactic-co-glycolic acid) (PLGA) nanoparticles acidified lysosomes, restoring the CFTR-/- mϕs’
ability to clear conidia. Our results suggest that CFTR-/- mϕs’ alkalinization interacts with the
iron-loaded transplant microenvironment, decreasing the CF-mϕs’ ability to kill Af conidia, which
may explain the increased risk of IA. Therapeutic pH modulation after transplantation could decrease
the risk of IA.

Keywords: cystic fibrosis; airway transplantation; invasive aspergillosis; macrophage alkalinization

1. Introduction

Aspergillus fumigatus (Af ) is a ubiquitous mold that grows in decaying organic matter,
releasing airborne spores that results in an estimated 20 million cases of respiratory and si-
nus diseases worldwide [1]. Aspergillus-related respiratory diseases include severe asthma,
tracheobronchitis, chronic necrotizing Aspergillus pneumonia and invasive pulmonary
aspergillosis (IPA) [2–10]. These diseases occur in immune-suppressed persons and in
those with underlying pulmonary comorbidities such as cystic fibrosis (CF), asthma and
chronic obstructive pulmonary disease (COPD) [10–13]. These infections are particularly
common among lung transplant recipients (LTRs), with one-in-three persons suffering
from an Af -related pulmonary disease [14,15]. In addition to IPA, CF-lung transplant
recipients (CF-LTRs) are at a highest risk for Af infections of the tracheal anastomosis,
resulting in serious complications including fatal hemorrhage, airway stenosis and bron-
chomalacia [16,17]. In invasive disease, Af spores germinate into filamentous hyphae and
invade and destroy tissues and organs, with mortality rates as high as 60% [18]. There
are only a limited number of antifungal treatments and there is growing Af resistance
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to these medications [19–21]. The development of successful therapeutics to fight these
infections requires a more comprehensive understanding of the interplay of immune mech-
anisms that control Af in vivo.

In CF-LTRs, the incidence of invasive Af exceeds that seen for transplants undertaken
for non-CF-related pulmonary diseases [22,23]. Putative factors such as fungal colonization
prior to transplantation do not completely explain this increased risk [24]. One factor
that has been suggested to increase the risk of infections in persons with CF is innate
immune defects caused by the loss of the cystic fibrosis transmembrane conductance regu-
lator (CFTR−/−) [25,26]. CFTR is a cellular receptor that mediates Cl- entry and functions
as counter-ion conductase to balance the H+ influx to maintain an acidified lysosomal
environment [27]. CFTR is highly expressed by several types of lung epithelial cells, as
well as neutrophils, monocytes and macrophages, underlying the potential importance
of CFTR deficiency in the innate immune response [28]. Mϕs are central to the host de-
fense of Af through phagocytosis and killing of conidia as well as by directing the host
pro-inflammatory response that recruits neutrophils to the site of infection [29]. Mϕs can
recognize Af conidia by pattern recognition receptors such as Toll-like receptor (TLR)-2,
TLR-4 and dectin-1 [30,31] and engulf them. The conidia are then transferred into the
phagolysosome (mature phagosome that has been acidified by lysosomes), where the coni-
dia are broken down by enzymes that are active only in an acidic microenvironment [32].
Several studies have shown that CFTR-deficiency alters mϕs’ signaling pathways, and
directly controls CF-mϕs’ lysosomal pH and microbicidal function [33–41]. Other studies
have failed to replicate these findings possibly due to differences in experimental pro-
cedures, including methods used to measure pH and the use of live organisms versus
opsonized particles [27,42,43]. In this study, our goal was to clarify the relationship between
the loss of CFTR and the mϕ’s ability to clear Af conidia in the setting of transplantation,
using a murine orthotopic tracheal transplant (OTT) model [17,44].

We and others have previously shown that the human transplanted lung is character-
ized by iron-overloaded mϕs [44–46]. In addition to their anti-microbial role, mϕs play a
crucial role in iron recycling [47]. Mϕ lysosomes are the first organelles to receive extracel-
lular iron and are responsible for its reduction into the ferrous (Fe2+) form for translocation,
transportation for iron recycling or storage. The activity of the iron-processing enzymes
in the lysosomes depends on an acidic lysosomal pH [47,48]. Studies have suggested
that CFTR plays role in lysosomal pH homeostasis and that CFTR−/− leads to alkaliniza-
tion [34,36,49–53]. This CFTR−/−-related alkalinization could cause an increase in mϕ
intracellular iron, which could be further increased by the iron overload observed in the
transplant microenvironment [44]. At present, little is known about the functional sequelae
that can result from mϕs overloaded with iron. We hypothesized that the CFTR−/−-related
mϕ impairment in lysosomal acidification would interact with the iron-overloaded lung
transplant microenvironment to contribute to the higher rates of invasive Af infections in
CF-LTRs. To study the transplanted CF host–Af relationship, we studied Af infection in
our OTT model using a CFTR−/− mouse as the transplant recipient compared to wild type
(WT) control transplant recipients. We examined the impact of pH alkalinization in mϕ’s
ability to clear Af conidia and evaluated the contributory role of iron. By elucidating the
role of pH modulation in mϕ’s ability to clear Af conidia this model has the potential to
facilitate the development of novel therapeutic concepts for the treatment of invasive Af
infections in CF-LTRs.

2. Materials and Methods
2.1. Aspergillus Culture

Dr. David Stevens provided the Aspergillus fumigatus 10AF strain and Dr. To-
bias Hohl provided the Aspergillus fumigatus Af293 dsRed fluorescent Aspergillus reporter
(FLARE) strain. The FLARE strain was developed to trace conidial fate and enable func-
tional analysis of conidiacidal activity [54]. Aspergillus fumigatus conidia were grown in
potato dextrose agar plates at 37 ◦C. Conidia were harvested by washing the surface of the
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agar plate with 0.05% Tween 80 in saline (v/v). The conidial suspension was vortexed to
disperse clumps of conidia and stored at 4 ◦C overnight (14–16 h). The suspension was
then diluted to the desired number of conidia per ml. For in vitro assays, the cell to FLARE
conidia ratio used was 1:5 and for in vivo experiments 108 10AF conidia/ml were used.

2.2. FLARE Conidia AF633 Tagging

To generate a fluorescent cover to the FLARE conidia, 5 × 108 Af 293-dsRed conidia
were rotated in 0.5 mg/mL Biotin XX, SSE (B-6352; Invitrogen) in 1 mL 50 mM carbonate
buffer (pH 8.3) for 2 h at 4 ◦C, washed in 0.1 M Tris-HCl (pH 8), labeled with 0.02 mg/mL
AF633-streptavidin (S-21375; Invitrogen) in 1 mL PBS for 30 min at RT, and resuspended in
PBS and 0.025% Tween 20 for experimental use [54].

2.3. Orthotopic Tracheal Transplantation Model

Five-week-old male C57BL/6, BALB/c and Cftrtm1Unc Tg(FABPCFTR)1Jaw (CFTR−/−)
mice were purchased from the Jackson Laboratory. Mice were randomly assigned to groups
that consisted of ≥5 transplanted mice in all experiments. The OTT model was used,
as previously described [17,44]. Animals were inoculated intratracheally with 4 × 106

A. fumigatus conidia on day 7 posttransplant, after which all infected animals received a
single dose of corticosteroid (1 mg of triamcinolone acetonide) subcutaneously. At day 3
post infection, all mice were euthanatized using CO2 asphyxia and cervical dislocation. The
animal protocol used for this study has been approved by Stanford University Research
Compliance Office (RCO) Administrative Panel on Laboratory Animal Care (APLAC),
active protocol # 32936.

2.4. Tissue Preparation, Grading of Fungal Invasion

The extent of fungal invasion was semiquantitatively graded, as previously de-
scribed [44]. All tracheal samples were cut longitudinally in 5 µm sections through the
entire tracheal segment and stained with Grocott’s methenamine silver (Histo-Tec Lab-
oratories). Tracheal sections were graded for depth of fungal invasion. The degree of
fungal burden was determined using the following scoring system: 0, no fungal elements;
1, fungal hyphae present in the epithelial layer; 2, hyphae present in the subepithelial layer;
3, hyphae present in the tracheal ring area; and 4, hyphae growth beyond the tracheal ring.

2.5. Lung Macrophages Isolation

To isolate lung mϕs we used a well-established protocol described elsewhere [55].
Briefly, mice were sacrificed, and lungs were isolated and minced with a scalpel to <1 mm
pieces. Minced lung tissue was incubated with Collagenase I (300 µg/mL) and DNase I
(5 U/mL) at 37 ◦C incubator for 25 min. The dissociated lung tissue was passed through
a 100 µm cell strainer. The strainer was washed using a tissue wash buffer (PBS, 2% FBS,
2 mM EDTA). To obtain monolayers of mϕs, the cell concentration is adjusted to 2–3 × 106

total nucleated cells/mL in DMEM medium. The cells were allowed to adhere to the
substrate by culturing them for 1 to 2 h at 37 ◦C. Non-adherent cells were removed by
gently washing three times with warm PBS. At this time, cells should be greater than 90%
mϕs [56].

2.6. Tracheal Tissue Staining

Fresh tracheal cryosections from mice infected with Af -GFP were fixed with 4%
paraformaldehyde in PBS pH 7.4 for 15 min at room temperature. Tissue was then perme-
abilized with 0.1% Triton X-100 in PBS for 10 min at room temperature. Then, tracheas
were then incubated with 1% BSA, 22.52 mg/mL glycine in PBST (PBS + 0.1% Tween 20) for
30 min to block unspecific binding of the antibodies. Tissue was incubated with primary
antibody ferritin (ab69090; Abcam, Cambridge, UK) in 1% BSA in PBST for 1 h at room tem-
perature. Following the tissue was incubated with secondary antibody goat anti-Rabbit IgG
Texas Red (ab6719; Abcam, Cambridge, UK) in 1% BSA for 1 h at room temperature in the
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dark. Tracheas were then mounted using ProLong Gold (P10144; InvitrogenTM,,Waltham,
MA, USA). Images and z stacks were taken using a confocal microscope (Leica Stellaris 8).
Fluorescence was quantified by ImageJ.

2.7. Conidial Ingestion and Clearance Detection Imaging

Lung mϕs were seeded in sterile coverslips. Mϕs were allowed to adhere by incubat-
ing at 37 ◦C with 5% CO2 overnight. Iron-dextran (D8517; Millipore Sigma, Burlington,
MA, USA) in complete media treatments were added for 16 h. FLARE-AF633 conidia were
added to each well (cell–conidia ratio 1:5) and samples were incubated for 30 min and
6 h at 37 ◦C with 5% CO2 for the ingestion and clearance assessments, respectively. Cells
were then washed 4 times with PBS to remove any unbound conidia and fixed using 4%
paraformaldehyde in PBS for 10 min at room temperature. Cells were permeabilized using
0.1% Triton X-100 for 10min at room temperature. Finally, samples were then mounted
using ProLong Gold with DAPI (P36941; InvitrogenTM, Waltham, MA, USA). Images and z
stacks were taken using a confocal microscope (Leica Stellaris 8, Leica, Wetzlar, Germany).

2.8. Flow Cytometry Methods

Lung mϕs were seeded in 6-well plates. Mϕs were allowed to adhere by incubating
at 37 ◦C with 5% CO2 overnight. Iron-dextran in complete media treatments were added
for 16 h. FLARE-AF633 conidia (cell–conidia ratio 1:5) were added to each flask and
samples were incubated for 6 h at 37 ◦C with 5% CO2. Cells were then detached using
mϕs detachment solution DXF (C-41330; PromoCell, Heidelberg, Germany). Cells were
washed 3 times with PBS and analyzed immediately by flow cytometry (BD LSR II or
FACSymphony, Becton, Dickinson and Company, Franklin Lakes, NJ, USA). After the
exclusion of doublets and debris, initial gating was done using the forward-scatter and side-
scatter dot plot. Cells were then gated for dsRed+ AF633+ (live conidia) and AF633+ (dead
conidia) (Figure A1). Analyses were performed with FlowJo v10.6.2 (FlowJo, Ashland,
OR, USA).

2.9. Determination of Lysosomal Alkalinization

Lung mϕs were seeded in sterile coverslips. Mϕs were allowed to adhere by incu-
bating at 37 ◦C with 5% CO2 overnight. To detect lysosomal acidification in live cells
LysoTrackerTM Green DND-26 (L7526, Invitrogen, Waltham, MA, USA) 75nM was added
to each sample. Cells were then incubated for 30 min at 37 ◦C with 5% CO2. Cells were
then washed and analyzed by flow cytometry (BD LSR II or FACSymphony). Analyses
were per-formed with FlowJo v10.6.2 (FlowJo, Ashland, OR, USA).

2.10. Cellular pH Measurement

For cellular organelles pH measurements, we used LysoSensorTM Yellow/Blue dextran
(L22460; Invitrogen, Waltham, MA, USA) probe. To form a standard curve, murine lung
mϕs were treated with media with increasing pH from 4 to 8 for 1 h at 37 ◦C. Then,
LysoSensorTM probe 5 mg/mL was added in each sample and cells were incubated at
37 ◦C for 1 h. Cells were then washed with PBS and images were taken using a confocal
microscope (Leica Stellaris 8, Leica, Wetzlar, Germany) at excitation 405 nm and 450 nm and
emission 505 and 530 nm, respectively, or fluorescence was detected using a plate reader
(Synergy LX Multi-Mode Plate Reader, BioTek, Winooski, VT, USA). pH was calculated
based on the standard curve (Figure A2).

2.11. Iron Assay

Iron levels were detected using a colorimetric assay (Iron Assay Kit ab83366; Abcam,
Cambridge, UK). Tracheas were harvested and washed thoroughly with PBS. Tissue was
minced and homogenized using a homogenizer. Tissue homogenate was centrifuged at
16,000× g for 10 min, and supernatant was used in this assay according to manufacturer’s
instructions (Figure A3).
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2.12. pH Modulation Treatments

Chloroquine diphosphate (CQ) (41-095-0, Tocris Bioscience™, Bristol, UK) powder
was diluted in PBS and used to increase lysosomal pH in primary lung mϕs. CFTR−/− and
WT mouse lung mϕs were treated with increasing concentrations of CQ (20 µM, 40 µM
and 80 µM) for 2 h. To decrease lysosomal pH we used Poly(lactic-co-glycolic acid) (PLGA)
nanoparticles (NPs) with size ~100 nm (805092, Millipore Sigma, Burlington, MA, USA).
PLGA NPs were diluted in PBS. CFTR−/− and WT mouse lung mϕs were treated with
0.5 mg/mL NPs for 1 h. After treatments cells were washed three timeswith Dulbecco’s
phosphate-buffered saline 1×.

2.13. Statistics

GraphPad Prism version 9.0 (GraphPad, San Diego, CA, USA) was used for statistical
analysis. Differences in ferritin levels and iron levels were evaluated using Student’s
t test. All t tests were two-tailed. Histologic differences in the depth of fungal invasion,
fungal burden and Prussian blue staining for iron content in the graft were evaluated by
a nonparametric Mann–Whitney U test. Results from ingestion and phagocytosis assays
were analyzed by one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test
for multi-ple comparisons. PLGA studies were evaluated by Student’s t test. Significance
values were set at p < 0.05.

3. Results

3.1. In the CF-OTT Model Both Tracheas and CFTR-/- mϕs Had Higher Levels of Iron Compared to
WT Control

In order to investigate the risk factors that lead to Af invasion in CF-LTRs, we devel-
oped a CF-OTT model by transplanting a trachea from a Balb/c mouse into a CFTR−/−

recipient mouse (Cftrtm1Unc Tg(FABPCFTR)1Jaw on a C57Bl/6 background). Balb/c mouse
tracheas were also transplanted into WT (C57Bl/6) mice and studied as controls. We first
evaluated the iron content indirectly by staining the tracheal tissue with an anti-ferritin
antibody (Ab) (Figure 1A,B) and directly via an iron detection colorimetric assay (Figure 1C)
in non-transplant and transplanted mice. CFTR−/− trachea had a significantly higher tissue
iron content than WT trachea (p < 0.05). This finding was also seen in explanted trachea
from CF-transplant recipients compared to WT controls (p < 0.05). To characterize the levels
of iron in lung mϕs we measured iron levels in CFTR−/− mϕs compared to WT mϕs.
In these studies, we found that iron, particularly in its ferric (Fe3+) form was elevated in
CFTR−/− lung mϕs (Figure 1D). Together, these data suggest that CFTR−/− was associated
with high iron levels and that this baseline aberrancy in iron handling persisted in the
CF-OTT recipient.
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Figure 1. In the CF OTT model, both CF tracheas and macrophages had higher levels of iron
compared to WT control. (A) Representative image of explanted tracheal transplant tissue from
wild type (WT) transplant recipient (left) and CF-transplant recipient (right), stained for ferritin.
(B) Quantification of detected fluorescence in trachea from non-transplanted WT and CF mice and
allotransplants in WT and CF recipients (**** p < 0.0001) (n = 5/group). (C) Quantification of total
tracheal iron in non-transplanted WT and CF mice and allotransplants in WT and CF recipients
(* p = 0.03, ** p < 0.005) (n = 5/group). (D) Quantification iron in mϕs isolated from mouse tracheas
(n = 3/group) (* p = 0.0308).

3.1.1. Af Was Significantly More Invasive in CF-OTT Recipients

To study Af invasion after airway transplantation, CF-OTT and WT transplants were
performed. OTT recipients were infected on day 9 post-transplantation with Af conidia, and
mice were sacrificed 3 days post-infection (Figure 2A). Explanted trachea were sectioned
and studied for Af invasion as previously described [17]. In these studies, Af consistently
demonstrated the highest level of invasion in CF-OTT compared to infections in WT-OTT
(p < 0.05, Figure 2B,C).
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Figure 2. Af was significantly more invasive in the CF orthotopic tracheal transplant (OTT) compared
to the WT-OTT model. (A) Representative picture of OTT surgery (right) and schematic picture (left)
of WT-OTT and CF-OTT model of Af infection. (B) Explanted tracheal tissue sections from WT-OTT
(top) and CF-OTT (bottom) stained with Grocott Methenamine Silver stain for fungal elements.
(C) Quantification of Af invasion in the WT-OTT and CF OTT models (n = 10/group) ** p = 0.0018)
(TL: tracheal lumen).

3.1.2. CFTR−/− mϕs Have Impaired Ability to Phagocytose and Kill Af Conidia and Are
Further Impaired by the Addition of Iron

Given the central role of mϕs in iron handling and control of Af invasion, we were
particularly interested in examining the role of the CFTR−/− iron laden mϕs in invasive
aspergillosis. To study CFTR−/− mϕs’ ability to phagocytose and kill Af conidia and the
impact of iron, we used the Af 293 DsRed strain, also known as fluorescent Aspergillus
reporter (FLARE) strain [54]. The FLARE strain was developed to trace conidial fate and
enable functional analysis [54]. The expressed DsRed is used as a viability indicator while
the attached fluorescent tracer (Alexa Fluor 633; AF633) allows the detection of conidia after
conidial death (Figure 3A). We discovered that in vitro CFTR-/- lung mϕs had a decreased
ability to phagocytose conidia (CFTR−/−: 66.5% vs. WT: 97.5%, p < 0.0001, Figure 3B,C).
Moreover, the ratio of live to dead, phagocytosed conidia at 6 h was significantly higher
in CFTR−/− lung mϕs (p < 0.05, Figure 3D,E). This dysfunction was impaired in a dose-
dependent fashion by the addition of iron (p < 0.0001, Figure 3B–E).
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Figure 3. CFTR−/− mϕs have an impaired ability to phagocytose and kill Af conidia. (A) Illustration
of DsRed expressing conidia labeled with AF633 and confocal images of labeled conidia. (B) Quan-
tification of WT and CFTR lung mϕ ability to phagocytose conidia as measured by flow cytometry
(** p = 0.002, *** p = 0.001). (C) Representative confocal microscopy image of mϕ phagocytosis of
FLARE conidia (D) Quantification of WT and CFTR lung mϕ ability to kill conidia as measured by
flow cytometry (*** p = 0.0002, **** p < 0.0001). (E) Representative confocal microscopy image of
FLARE conidia killing.

3.1.3. CFTR Deficiency, Iron and Treatment with Chloroquin Increase mϕ Lysosomal pH

The ability of lysosomes to achieve an acidic pH is essential for iron metabolism and Af
conidia killing [57–60]. Although the data are equivocal, studies have suggested that CFTR
deficiency may lead to mϕ lysosomal alkalinization. To evaluate this potential mechanism,
murine WT and CFTR−/− lung mϕs were isolated and pH measured using LysoSensor
Yellow/Blue dextran. In CFTR−/− mϕs, the pH was significantly higher (p < 0.05) than
the WT mϕs (Figure 4A). Moreover, the addition of iron in culture significantly increased
the pH of CFTR−/− mϕs (Figure A4). To examine the role of lysosomal alkalinization in
the CFTR−/− mϕs’ inability to clear Af conidia, we treated WT and CFTR−/− mϕs with
the lysosomal alkalinizing agent chloroquine (CQ) [58–60]. As expected, treatment with
CQ increased both WT and CFTR−/− mϕs’ pH (p < 0.05, Figure 4B). Poly lactic-co-glycolic
acid (PLGA) nanoparticles (NPs) were used to reverse lysosomal alkalinization, as NP are
phagocytosed, localize to the lysosome, degrade and release their acidic components [61,62].
Exposure of CFTR−/− mϕs to the PLGA NPs reversed the alkalinization caused by CFTR
deficiency (Figure 4C). PLGA NP treatments also reversed mϕs’ alkalinization caused by
CQ treatments (Figure A5).
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Figure 4. CFTR deficiency, iron and treatment with chloroquine (CQ) increase mϕ lysosomal pH.
(A) Measurement of pH in WT and CFTR lung mϕ by LysoSensorTM Yellow/Blue dextran staining
(** p < 0.003). (B) Measurement of pH in WT and CFTR lung mϕ treated with CQ by LysoSensorTM

Yellow/Blue dextran staining (* p = 0.02, ** p = 0.005). (C) Measurement of pH in WT and CFTR
lung mϕ by LysoSensorTM Yellow/Blue dextran staining in CFTR−/− and WT mϕs after poly
lactic-co-glycolic acid (PLGA) treatment (** p = 0.006).

3.1.4. CQ Treatment Increased Lysosomal pH in Both WT and CFT−/− mϕs and Lowering
Their Ability to Phagocytose Kill Af Conidia

Having identified reagents that can modulate mϕ pH in vitro, we investigated the im-
pact of mϕ pH modulation on Af conidia phagocytosis and killing. We measured lysosomal
acidification after the addition of CQ (20 µM, 40 µM and 80 µM) by LysotrackerTM Green
staining followed by flow cytometry analysis (Figure 5A). There was significant difference
in lysosomal acidification (p < 0.05) between CFTR−/− and WT mϕs at baseline (Figure 5A),
with no detectable acidic lysosomes in mϕs treated with 80 µM of CQ (Figure 5A). We then
tested CFTR−/− and WT mϕs’ ability to clear Af conidia before and after CQ treatments.
We show that both CFTR−/− and WT CQ alkalinized mϕs have a decreased ability to both
phagocytose (Figure 5B) and kill Af conidia (Figure 5C). The impact of CQ on CFTR−/−

mϕs’ ability to kill Af conidia was significantly higher (p < 0.05) compared to the WT mϕs
(Figure 5C).

3.1.5. PLGA NPs Restore CFTR−/− mϕ Lysosomal Acidity and Ability to Kill Af Conidia

Next, we examined if PLGA NPs treatments can improve CFTR−/− mϕ fungicidal
function. Treatment of CFTR−/− mϕwith PLGA NPs significantly increased (p < 0.0001)
and restored the percentage of CFTR−/− mϕs with acidified lysosomes (Figure 6A). Fur-
thermore, PLGA NPs significantly increased Af conidial phagocytosis (p < 0.0001) and
killing (p < 0.05) by the CFTR−/− mϕs (Figure 6B,C). Furthermore, PLGA NPs treatments
to WT macrophages did not impact their ability to phagocytose conidia, but significantly
(p < 0.05) increased conidial killing (Figure A6). Combined, these data support our hypoth-
esis that CFTR-related mϕs’ alkalinization could be critical factor in the increased risk of
invasive aspergillosis in CF-LTRs (Figure 7).
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Figure 5. CQ treatments increased lysosomal mϕ pH and decreased mϕ ability to phagocytose
and kill Af conidia. (A) Measurement of lysosomal acidity in WT and CFTR lung mϕ treated
with CQ, using LysotrackerTM (*** p = 0.0004). (B) Quantification of the ability of WT and CFTR
lung mϕs treated with CQ to phagocytose Af conidia as measured by flow cytometry (* p = 0.02).
(C) Quantification of the ability of WT and CFTR lung mϕs treated with CQ to kill Af conidia, as
measured by flow cytometry (* p < 0.05, ** p < 0.009).
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Figure 6. PLGA NPs restore lysosomal acidity and mϕ ability to clear Af conidia. (A) Measurement of
lysosomal acidity in WT and CFTR lung mϕ treated with PLGA, using LysotrackerTM (*** p < 0.0005).
(B) Quantification of the ability of WT and CFTR lung mϕs treated with PLGA to phagocytose Af
conidia as measured by flow cytometry (** p < 0.05, **** p < 0.0001). (C) Quantification of the ability
of WT and CFTR lung mϕs treated with PLGA to kill Af conidia, as measured by flow cytometry
(** p = 0.003, *** p = 0.0002).
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Figure 7. Graphical Conclusions. Loss of CFTR increased mϕs’ lysosomal pH. Iron overload seems
to have an additive effect to the CFTR−/− mϕs’ alkalinization. PLGA NPs can restore the pH acidity
and increase Af conidial killing.

4. Discussion

We identified that graft iron overload and CFTR−/−-related mϕ alkalinization drive
Af invasion in the CF-OTT model. We showed that (i) iron overload has an impact on
CFTR−/− mϕ alkalinization and antimicrobial function and (ii) that by correcting lysosomal
acidity in CFTR−/− mϕs, we can restore their ability to clear Af conidia.

Aspergillus-related pulmonary disease results in significant morbidity and mortality
worldwide [2,3]. Patients with CF are prone to invasive aspergillosis after lung transplanta-
tion, with particularly high rates of saprophytic fungal infections of the transplant airway
anastomosis [63–65]. Other than the risks associated with postoperative impairment of
mucociliary clearance after lung transplant and immune suppression little is known of the
risk factors that promote these infections in LTRs. Using the OTT model of Af infection,
we have shown that iron plays a determinant role in the switch from Af colonization to
invasion in transplantation [44]. Furthermore, we and others have shown that abnormal
airway iron homeostasis is a feature of CF lung disease [66–68]. It is known that CF patient’s
sputum has elevated iron levels [66] and we have identified iron-laden mϕs in the biopsies
of transplanted airways in CF patients [44].

In order to investigate the impact of the transplant microenvironment on CFTR−/−

mϕs, we developed a CF-OTT model. In this model the CFTR−/− trachea iron levels were
significantly higher (p < 0.05) compared to WT at baseline. After the allotransplantion
the trachea iron content was also significantly higher (p < 0.05) in explanted transplants
from CFTR−/− recipients compared to explanted tracheal grafts from the WT transplant
recipient. Together, these results suggest that CF-related defects in iron metabolism exist
at baseline and that these defects persist in the CF-transplant recipients. These results are
consistent with results of other studies suggesting that CFTR-deficiency leads to defects in
iron metabolisms and that the iron imbalance after transplantation is more severe in the
CFTR−/− airways [44].

Here, we have shown for the first time that CFTR−/− mϕs have a decreased ability
to kill Af conidia and that iron-overload contributes to this impairment. We hypothesize
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that this inability to clear Af is due to CFTR−/−-related mϕs’ alkalinization. While alkalin-
ization has been described in CFTR−/− mϕs and suggested to impair pathogen clearance,
other studies have failed to replicate these findings [69–72]. Mϕs act as the first line of
defense by recognizing and engulfing pathogens in phagosomes that subsequently mature
into phagolysosomes, where the microorganisms are cleared [73,74]. It has been reported
that alveolar mϕs from CFTR-null mice were unable to kill bacteria [71]. pH in phagolyso-
somes in alveolar mϕs from CFTR-null mice was ∼2 pH units more alkaline than those
from control mice and there was a defect in lysosomal acidification in CFTR-null alveolar
mϕs, with pH ∼ 6 in CF mϕs vs. ∼4.5 in control mϕs, which was proposed, by a delayed
phagolysosomal fusion mechanism, accounting for the defect in acidification [71]. Al-
though, there is contradicting evidence regarding the connection between CFTR deficiency
and mϕ lysosomal acidification, there is clear evidence that dysregulation of lysosomal
acidification in mϕs impairs their antimicrobial functions [70]. Our findings demonstrated
that CFTR−/− mϕs are more alkaline (pH ~ 7.9) than WT control mϕs (pH ~ 7, Figure 4A)
and that iron addition significantly increased this alkalinization. These data suggest that
increased iron overload could contribute to the alkalinization of the CFTR−/− mϕs.

To further investigate the role of pH modulation in mϕs anti-microbial function, we
treated WT and CFTR−/− macrophages with CQ a known lysosomotropic agent that in-
creases lysosomal pH by accumulating within lysosomes as a deprotonated weak base [75].
CFTR−/− and WT mϕs treated with CQ showed an inability to kill Af conidia in a dose-
dependent fashion and correlated with the loss of lysosomal acidification. These data
suggest that the increase in lysosomal pH could be a factor that promotes Af invasion. To
confirm these findings, we used PLGA NPs to acidify the lysosomes of the CFTR−/− and
the WT mϕs. PLGA is a biocompatible and biodegradable polymer that degrades in the
acidic environment of the lysosome and releases lactic and glycolic component carboxylic
acids with pKas of 3.86 and 3.83, respectively, resulting in lysosomal acidification [61]. In
our studies, PLGA NPs treatments restored CFTR−/− mϕs acidity and the ability to kill
Af conidia. These data strongly suggest that CFTR−/− mϕ pH is a key modulator of their
anti-microbial function.

One limitation of this study was an inability to quantify mϕ lysosomal pH in vivo
resulting from technical difficulties. In preliminary studies using flow cytometry, we
were not able to delineate between auto fluorescence of the transplant tissue and the
LysoSensor probes. However, we were able to isolate mϕs from the CFTR−/− mouse
lungs and measure their pH in vitro. Additionally, controversy currently exists regarding
the exact mode of Af invasion with in vitro studies demonstrating a variety of potential
pathways including: (i) damage of epithelial cells and direct hyphal invasion; (ii) induction
of epithelial cell damage by fungal proteases the result in disruption of tight junctions;
and (iii) internalization of fungal conidia and subsequent escape [76,77]. Such a limitation
may be overcome by studying serial time points after inoculation of Af conidia using
transmission electron microscopy [77]. However, as TEM is notoriously insensitive and
would require a high number of transplants, such studies were considered beyond the
scope of the current work. Furthermore, the effect of PLGA NPs treatment in Af invasion
was not examined in vivo since a detailed investigation of their route of administration,
absorption, distribution, metabolism and excretion (ADME) and toxicity in mice would be
necessary to adequately dose this medication. Future studies will examine the possibility
of PLGA NP treatment to decrease Af invasion in the CF-OTT model. In addition, we
recognize the central role of neutrophils in Af clearance. As CFTR is known to be present on
multiple immune cell subtypes, dendritic cells, monocytes/macrophages, neutrophils and
lymphocytes [28,37,76,77], future studies should also examine the role of CFTR deficiency
on neutrophil function in Af clearance.

For the first time, we show that iron-laden CFTR−/− mϕs are unable to kill Af conidia
as a result of CFTR−/−-related lysosomal alkalinization and suggest that the CFTR−/−

mϕs may be a critical effector cell in the Af graft invasion. Although limited to primary cell
culture, we have shown in a dose-dependent manner that both phagocytosis and the ratio
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of Af conidia that remained alive in CFTR−/− mϕs increased with iron or CQ treatment
addition. Together, our data suggest that in the lung transplant microenvironment, the
CFTR−/−-related mϕs’ lysosomal alkalinization is increased and leads to an inability to
clear Af conidia. These findings may be clinically significant as mϕ pH modulation could
represent an actionable therapeutic target against Af invasion.
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Figure A5. PLGA NPs treatments restored the alkalinization of mϕ caused by both the CFTR loss
and the CQ treatments.
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