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Interactions between Distant ceRNAs in Regulatory Networks
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ABSTRACT Competing endogenous RNAs (ceRNAs) were recently introduced as RNA transcripts that affect each other’s
expression level through competition for their microRNA (miRNA) coregulators. This stems from the bidirectional effects be-
tween miRNAs and their target RNAs, where a change in the expression level of one target affects the level of the miRNA regu-
lator, which in turn affects the level of other targets. By the same logic, miRNAs that share targets compete over binding to their
common targets and therefore also exhibit ceRNA-like behavior. Taken together, perturbation effects could propagate in the
posttranscriptional regulatory network through a path of coregulated targets and miRNAs that share targets, suggesting the ex-
istence of distant ceRNAs. Here we study the prevalence of distant ceRNAs and their effect in cellular networks. Analyzing the
network of miRNA-target interactions deciphered experimentally in HEK293 cells, we show that it is a dense, intertwined
network, suggesting that many nodes can act as distant ceRNAs of one another. Indeed, using gene expression data from a
perturbation experiment, we demonstrate small, yet statistically significant, changes in gene expression caused by distant
ceRNAs in that network. We further characterize the magnitude of the propagated perturbation effect and the parameters
affecting it by mathematical modeling and simulations. Our results show that the magnitude of the effect depends on the gen-
eration and degradation rates of involved miRNAs and targets, their interaction rates, the distance between the ceRNAs and the
topology of the network. Although demonstrated for a miRNA-mRNA regulatory network, our results offer what to our knowledge
is a new view on various posttranscriptional cellular networks, expanding the concept of ceRNAs and implying possible distant
cross talk within the network, with consequences for the interpretation of indirect effects of gene perturbation.
INTRODUCTION
MicroRNAs (miRNAs) play major roles in posttranscrip-
tional regulation of gene expression. This family of mole-
cules comprises ~22-nucleotide-long RNAs that mostly
function as negative regulators of protein expression. They
exert their regulatory function by basepairing with the
RNA transcripts of their targets when bound to the Argo-
naute (AGO) proteins, inhibiting translation and/or destabi-
lizing the RNA transcript (1). It was shown that various
RNA transcripts, such as lincRNAs, circRNAs, pseudogenes
and even mRNAs, may affect each other’s expression level
through competition for common miRNA regulators (e.g.,
(2–12); for review, see Tay et al. (13)). RNA transcripts
that are coregulated by a miRNA and exhibit such
mutual effects were termed competing endogenous RNAs
(ceRNAs) (14). It was demonstrated experimentally that
decreasing or increasing the expression level of a ceRNA
leads to a respective decrease or increase in other coregu-
lated ceRNAs (10,11,15). The response of ceRNAs to per-
turbations in coregulated ceRNAs was also characterized
computationally (11,16,17). ceRNAs were shown to play a
role in critical cellular pathways. For example, in Arabidop-
sis thaliana, it was shown that under phosphate starvation, a
mimic of miR-399 target was highly expressed and attracted
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most of the miR-399 molecules, relieving the repression of
its target PHO2, which is needed in relatively high levels
under this biological condition (2). Another example
regards the tumor suppressor PTEN, whose level decreases
in some cancer cells. It was shown that one of the mecha-
nisms leading to this decrease involves the depletion or dele-
tion of ceRNAs of PTEN (e.g., the transcript of the
pseudogene PTENP1) (4,10,15,18,19). The depleted
ceRNAs freed the common miRNA regulators to further
bind PTEN and decrease its level. This implies bidirectional
effects between miRNAs and their target RNAs, where a
change in the expression level of one target affects the level
of the miRNA regulator, which in turn affects the level of
other targets (Fig. 1 A).

Recently, ceRNAs were examined in the context of other
cellular networks, and were shown to be tightly integrated
within the transcriptional regulatory network (11). In gen-
eral, application of network analysis tools to biological
large-scale data has introduced a novel view to gene func-
tionality and has provided many new insights into the
structure of molecular pathways (e.g., (20–24)). Although
numerous such analyses were applied to the transcriptional
regulatory network, analysis of the posttranscriptional regu-
latory network (PTRN) of miRNA-target interactions was
much more limited. This stems from two main difficulties
that we overcome in this work. 1), Although there are ample
experimental data about transcriptional regulatory inter-
actions that can be analyzed, until recently such reliable
high-throughput data were lacking for the PTRN. A recent
http://dx.doi.org/10.1016/j.bpj.2014.03.040
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FIGURE 1 Propagation of perturbation effects through coregulation and target sharing. (A) Mutual effects between mRNAs competing for binding the

same miRNA regulator (competing endogenous mRNAs). R1 is a miRNA that negatively regulates its targets T0 and T2 (A a). Upon knockdown of T0

(A b), more R1 molecules are freed (A c). The freed R1 molecules interact with T2, exerting greater regulatory effect on T2. As a result, the level of free

T2 molecules is further decreased (A c). Thus, the change in T0 level affects T2 level through their common regulator. Rectangles correspond to miRNA

regulators and circles correspond to target mRNAs. The intensity of node color and the direction of the arrow within the node mark the direction of change

in expression. The thickness of the edge marks the strength of the regulation. (B) Mutual effects between miRNAs over binding to a shared target (competing

endogenous miRNAs). R0 and R2 are two miRNAs that negatively regulate T1 (B a). Overexpression of R0 (B b) leads to downregulation of T1 (B c). As a

result, the level of free R2 molecules increases (B c). (C) Propagation of perturbation effect. R1 and R3 are two miRNAs that negatively regulate (T0, T2) and

(T2, T4), respectively (C a). T2 is a shared target of R1 and R3. Knockdown of T0 (C b) increases the level of free R1 molecules (C c). The freed R1 molecules

bind T2, further downregulating T2 (C c). The decrease in T2 level frees more R3 molecules to focus on T4, which, in turn, is further downregulated (C d). In

such a case, there is a propagation of the effect of T0 knockdown to T4 through T2, the shared target of R1 and R3. Note that in rows A–C, the index of the

perturbed node (source) is 0 and regulator and target nodes are not indexed separately but interchangeably, by their distance from the source.
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source of experimental miRNA-target interactions, provided
by the cross-linking, ligation, and sequencing of hybrids
(CLASH) methodology (25), makes it possible for the first
time to construct a large-scale experimentally determined
network of direct interactions between miRNAs and their
target RNAs within a cell. 2), The high connectivity of the
transcription regulation network (due to chained transcrip-
tion regulation interactions) has enabled extensive analyses
of paths in the network and the identification of indirect and
long-range interactions (e.g., (21–23,26,27)). In contrast,
miRNAs are not known to extensively bind each other,
and therefore, the depth of connectivity and length of
possible paths that could be followed in the directed
network of miRNA-target interactions were very limited.
However, we suggest that due to the bidirectional effects
between miRNAs and targets, the miRNA-mRNA network
should be better represented as an undirected graph rather
than by the conventional directed graph representation,
as was indeed depicted in several recent works (e.g.,
(16,17)). This provides a different view of the PTRN con-
nectivity, which allows tracing paths and information flow
in this network (Fig. 1).

Here, we analyze the undirected network of miRNA-
target interactions deciphered experimentally in HEK293
cells. We demonstrate that it is a dense network, implying
short paths between most nodes. This suggests the
Biophysical Journal 106(10) 2254–2266
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occurrence of many ceRNAs that are not coregulated by the
same miRNA but appear along a path of alternating coregu-
lated target mRNAs and miRNAs with shared targets
(Fig. 1), implying that the effect of gene perturbation may
propagate and affect the expression levels of distant
genes, as noted also by Bosia et al (17). We study this
type of information flow between distant ceRNAs in the
network by mathematical modeling and simulation, as
well as by analysis of experimental perturbation data.
Cross talk between distant ceRNAs may provide possible
explanations for many previously inexplicable results,
including indirect effects of gene perturbations, off-target
effects of miRNAs, and side effects of drugs directed at
specific genes.
MATERIALS AND METHODS

Mathematical model

The model we present below describes the change over time of the levels of

miRNAs, their target RNAs, and their complexes. The wiring diagrams and

dynamical processes of the miRNA-target RNA interactions were translated

into a set of coupled ordinary differential equations under the assumption of

mass-action kinetics for all reactions. The equations were implemented in

MATLAB (MathWorks, Natick, MA) and integrated using its built-in solver

ode45.
Determination of the miRNA-mRNA interactome
and network analysis

The human miRNA-mRNA interactome we analyzed is based on results

using the CLASH methodology (25), a technique that ligates and sequences

miRNA-target RNA duplexes associated with human AGO1. The CLASH

methodology was applied to HEK293 cells and identified miRNA-mRNA

interactions in the 30UTR, as well as in the 50UTR and CDS of the targets.

In addition, miRNA interactions were found with other noncoding RNAs,

such as tRNA and lincRNA. Despite the wide scope of interactions

identified, it should be noted that the miRNA interactome identified by

the CLASH method likely samples only part of the complete miRNA

interactome.

For consistency with the miR-92a microarray data (see below), which

used Human Exon Array, we considered only miRNA-mRNA interactions

for all analyses in this study. Although the CLASH interactome lists

the reads of individual mRNA transcripts, for this analysis we summed

up the reads of all mRNA transcripts of the same gene. Since the

results using miRNA-mRNA interactions filtered for read number (>5)

were consistent with the results using all reads, we did not filter for

read number in our analysis. Unless otherwise specified, in all

analyses we used a set of high-confidence interactions, as determined by

Helwak et al. (25), i.e., miRNA-mRNA interactions with binding free

energy <�13.4 kcal/mole.

Network figures were created using Cytoscape (28), and the average

clustering coefficient (C) and average shortest path length (ASPL) were

analyzed using the Cytoscape Network Analyzer Plugin (29) and the

Python NetworkX package (30). The small world coefficient (s) for the

two bipartite projections was calculated according to the equation s ¼
(C/Crand)/(ASPL/ASPLrand), where Xrand refers to a property averaged

over instantiations of random Erd}os-Rényi networks. s > 1 indicates a

small world network (31). One hundred random Erd}os-Rényi networks

with number of nodes and edge probability equivalent to the bipartite

projections were created using NetworkX. C and ASPL of these random

networks were measured and averaged to calculate s.
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Microarray data and perturbation analysis

CEL files of the miR-92a depletion microarray experiment (25) were

downloaded from GEO (GSE46039) and analyzed using PARTEK and

the MATLAB Bioinformatics and Statistical Toolboxes. Log2 fold-change

values from the microarray data were normalized to set the median of the

total microarray data to 0. miR-92a is an abundant miRNA in HEK293,

and it was depleted by transfection of the anti-miR-92a oligonucleotides

(here termed source), which compete with miR-92a natural targets and

thus reduce its endogenous activity. To study the propagation of perturba-

tion effect, genes from the microarray study were divided into groups:

miR-92a targets separated by two edges from the perturbed source (2-sep

targets), targets separated by four edges from the source (4-sep targets),

targets separated by six edges from the source (6-sep targets), and control

genes, as described in Results. Note that in defining the groups we used

all CLASH data including low-confidence targets to avoid the assignment

of potential direct targets as distant ceRNAs. The perturbation analysis

was applied once to all the reported CLASH interactions and once to the

high-confidence interactions. For all reported CLASH interactions, the

size of the groups was larger (2-sep targets, n ¼ 168; 4-sep targets, n ¼
4905; and 6-sep targets, n ¼ 32) than for the high-confidence interactions

(2-sep targets, n ¼ 150; 4-sep targets, n ¼ 4545; and 6-sep targets, n ¼
25). It should be noted that the microarray data was missing some of the

mRNA targets from the CLASH data. Throughout the analysis, a two-sided

Kolmogorov-Smirnov test (K-S test) was used in comparing the log2 fold-

change values between groups, as mentioned in Results. The analysis

of transcription factor effects, classification of activators and repressors,

as well as their targets, was based on the Bioknowledge database (www.

biobase-international.com/transcription-factor-binding-sites). The defini-

tion of a control group of highly expressed genes in HEK293 cells was

based on the Human Protein Atlas (32).
RESULTS

Modeling miRNA-target RNA interaction

We first demonstrate by mathematical formulation the bidi-
rectional effects between a miRNA and its target RNA. We
described the temporal variation in the levels of a miRNA
and its target RNA by rate equations, similarly to previous
models (11,16,17), where the miRNA is a negative regulator
and the miRNA and target form a complex by diffusion-
mediated interaction, rendering the target RNA not func-
tional, either by destabilization or by inhibited translation
(in the case of mRNA targets). For simplicity, we refer to
miRNA-target interaction resulting in destabilization, man-
ifested as degradation, as elaborated below. In addition, it is
assumed that all miRNAs are bound to AGO and functional.

dR

dt
¼ gR � b R T þ uC Cþ ð1� aÞdC C� dR R

dT

dt
¼ gT � b R T þ uC C� dT T

dC

dt
¼ b R T � uC C� dC C:

(1)

In these equations, R represents the level of the miRNA
regulator free molecules (those not bound to the target), T

represents the level of free target RNA molecules, and C
represents the level of the miRNA-target complexes. Note
that we use roman letters when referring to molecular

http://www.biobase-international.com/transcription-factor-binding-sites
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entities (e.g., T0 in Fig. 1) and italic letters when referring to
the levels of these molecular entities (e.g., T in Eq. 1). The
parameters b and uC represent the miRNA-target binding
and unbinding rates, respectively. gR, dR, and gT, dT,
represent the generation and degradation rates of the
miRNA and target RNA, respectively. dC represents the
degradation rate of the miRNA-target complex. The param-
eter a (0% a% 1), termed the stoichiometric factor, repre-
sents the measure of the stoichiometricity of the miRNA
action on its target, ranging between the catalytic (a ¼ 0)
and the stoichiometric (a ¼ 1) case. For the catalytic case,
a single miRNA molecule can bind and lead to the sequen-
tial degradation of several target RNA molecules, whereas
for the stoichiometric case, both miRNA and target RNA
are degraded when bound in a complex. The steady-state
solutions,

T ¼ gT

dT þ b R

�
1� uC

uC þ dC

�

R ¼ gR

dR þ b T

�
1� uC þ ð1� aÞdC

uC þ dC

� (2)

demonstrate the bidirectional effects between regulator and

target, where the target RNA level increases as the miRNA
level decreases and vice versa. The recognition of these
bidirectional effects between miRNA and target implies
that the PTRN can be treated as an undirected network,
enabling the analysis of pathways and information flow,
which was inherently limited when relating to the PTRN
as directed.
The human miRNA-mRNA interactome is a highly
connected undirected network

To analyze the extent of connectivity within an experimental
miRNA-target RNA network treated as an undirected
network, we examined the human interactome of miRNAs
and their targets in HEK293 cells, identified by the CLASH
methodology (25). In this analysis, for technical consis-
tency, we included only mRNA targets, which comprise
the majority of targets (Materials and Methods). The
network included 379 miRNAs and 6323 highly confident
mRNA targets, represented as nodes, and 14,807 miRNA-
mRNA interactions, represented as undirected edges (see
Materials and Methods). A representative subnetwork is
shown in Fig. 2 (center). Our analysis showed that the
network is a scale-free network, as the node degree distribu-
tion highly correlates with a power law distribution (power
law coefficient¼ 2.57; r¼ 0.95). The shortest path distribu-
tion was found to be sharply concentrated around the value
of 4 (ASPL ¼ 3.894; Fig. S1 in the Supporting Material).
Thus, the miRNA-mRNA interactome is an extremely inter-
connected network. This network is in fact a bipartite graph,
composed of two sets of nodes, miRNAs and mRNAs,
where edges exist between, but not within, the two sets
(Fig. 2, center). To better characterize the two sets, we
examined two networks that represent complementary pro-
jections of the interactome. In the first network (Fig. 2,
right), the nodes represent mRNAs, and edges connect
mRNAs that are regulated by the same miRNA. In the sec-
ond network (Fig. 2, left), the nodes represent miRNAs and
edges connect miRNAs that share targets. The mRNA
network is a small world network (small world coefficient,
FIGURE 2 A representative subnetwork of the

human miRNA-mRNA bipartite network. (Center)

A schematic representation of the network based

on a sample of the CLASH data (25). Rectangles

correspond to miRNA regulators and circles corre-

spond to target mRNAs. An edge is placed between

a miRNA and a mRNA if the miRNAwas shown to

regulate the mRNA in the CLASH high-confidence

data. (Left) The miRNA-miRNA projection of the

schematic interactome bipartite network, in which

two miRNAs are connected by an edge if they

share a target. The edge width corresponds to the

number of targets shared by the miRNAs. (Right)

The mRNA-mRNA projection of the schematic

interactome bipartite network, in which two

mRNAs are connected by an edge if they are

both regulated by the same miRNA. The edge

width corresponds to the number of common

miRNA regulators. For each network, the ASPL

is specified; included as well are the average clus-

tering coefficient, C, and small world coefficient,

s, which by definition are relevant only for the pro-

jected networks. The reported values for the

various measures were computed for all the data

and not only for the subnetwork presented here.

To see this figure in color, go online.
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s ¼ 7.8; see Materials and Methods) that contains 6299
nodes and 1,997,581 edges, exemplifying the high connec-
tivity between nodes (average clustering coefficient, C ¼
0.8044). In a similar way, the miRNA network is a small
world network containing 355 nodes and 10,794 edges
(C ¼ 0.755, s ¼ 4.0). In correspondence with the
miRNA-mRNA network, the majority of node pairs in
both projected networks have shortest paths of length 2
(Fig. S1), indicating that they are separated by a single
node. Overall, the highly connected nature of the miRNA-
mRNA interactome implies the potential for information
flow between many pairs of nodes through many pathways
in the network.
FIGURE 3 Simulation results of the propagation of a perturbation effect

along a chain of miRNA-target interactions. (A) Schematic representation

of the chain of interactions comprising recurrent interacting miRNAs and

targets, denoted by R‘ and T‘, respectively. (B–E) The network in A is

perturbed out of steady state by decreasing the generation rate of one of

the targets in the chain, T0. Shown are the changes in miRNA levels

(B and D) and target RNA levels (C and E) over time. (B and C) Levels

are normalized by the maximal and minimal levels within each individual

RNA component. (D and E) Levels are normalized by the maximal level

of R1 (D) or T0 (E). A gradual increase and decrease in the levels of regu-

lator miRNAs and target RNAs, respectively, is clearly observed, consistent

with their distance from the perturbed source node, T0. Parameter values

used in the simulations are reported in Table S1.
Characterizing information flow

Recognizing the potential for information flow in the
experimentally determined miRNA-mRNA network, we
turned to characterize its properties and evaluate its signif-
icance. We expanded the basic model presented above and
followed the effect of gene expression perturbation through
a network of interacting miRNAs and targets (Fig. 2 and
Fig. 3 A). As a first step toward understanding a complex
network of interactions, we analyzed a chain model
(Fig. 3 A). Although the chain model is a simplified
representation of a real miRNA-mRNA network, lacking
much of its complexity, it is able to capture the cross
talk between distant ceRNAs and propagation of perturba-
tion effects along pathways of the PTRN. In addition, we
show that it is analytically tractable, thus allowing us to
characterize the magnitude of cross talk between genes
as a function of parameters and distance from the perturbed
node.

Consider a chain of 2N interacting RNA components:
NmiRNAs and their N target mRNAs, so that every miRNA
regulates two target mRNAs and each target mRNA is a
shared target of two miRNAs (except for the RNA com-
ponents at the boundaries). ‘ is an index representing the
position of the RNA component along the chain relative
to a source component (e.g., T0 in Fig. 3 A). C‘,‘51

represents the level of the complex composed of the ‘th

miRNA and (‘ 5 1)th target mRNA. We model this system
by a set of rate equations, following the notations presented
above:
dR‘

dt
¼ gR � b R‘ðT‘�1 þ T‘þ1Þ þ uCðC‘;‘�1 þ C‘;‘þ1Þ þ ð1�

dT‘

dt
¼ gT � b T‘ðR‘�1 þ R‘þ1Þ þ uCðC‘�1;‘ þ C‘þ1;‘Þ � dTT‘

dC‘;‘5 1

dt
¼ b R‘T‘5 1 � uCC‘;‘5 1 � dCC‘;‘5 1

Biophysical Journal 106(10) 2254–2266
For clarity, we first assigned the same parameter values
within each set of RNA components, as well as the same
binding constants to all miRNA-target RNA pairs (para-
meter values are reported in Table S1). We consider the
case where at time t ¼ 0 the system is in steady state. Using
the expanded model, it is possible to quantitatively follow
the temporal variation in expression levels of miRNAs and
target RNAs upon perturbation out of steady state of any
component of the chain presented in Fig. 3 A (overex-
pression or underexpression of either regulator or target).
aÞdCðC‘;‘�1 þ C‘;‘þ1Þ � dRR‘ ‘ ¼ 1; 3;.; 2N � 1

‘ ¼ 0; 2;.; 2N � 2

‘ ¼ 1; 3;.; 2N � 1;

(3)
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The RNA components presented in Fig. 3 A are embedded
within a longer chain, which yields an approximate shared
steady state for the different miRNAs, as well as a shared
steady state for the different target mRNAs. In general,
the perturbed RNA component was classified as the source.
For simplicity, we present the results for a subnetwork
comprising a chain of 11 RNA components originating
from the source. However, the perturbed source can be
located anywhere within the chain, implying information
flow in both directions. In the example demonstrated in
Fig. 3, we present the effect of a decrease in the generation
rate of T0 on the levels of the other RNA components over
time. Such a perturbation results in a lower level of T0,
which leads to an increase in the miRNA levels and a
decrease in the levels of the other target RNAs in a succes-
sive manner (Fig. 3, B–E). The effect of the perturbation is
delayed and decreases as the distance of an RNA component
from the source increases. The response time, the time
required for an RNA component to reach halfway to its
new steady state following the perturbation of the source, in-
creases with the distance of the RNA component from the
source (Fig. 4).

To characterize the extent of information flow, we exam-
ined how the distance of an RNA component from the
source affects the asymptotic change in its level. For
concreteness, we focused here on the target RNAs. Similar
analysis can be done for the miRNAs. To this end, we
computed the correlation function, C(‘), defined as the
normalized full derivative of the level of T‘ to the level of
the source, T0,

Cð‘Þ ¼ dT‘=T‘

dT0=T0

; ‘ ¼ 0; 2; 4;. (4)

Considering the full derivative, as opposed to the partial

derivative, accounts for indirect, as well as direct, interac-
FIGURE 4 Relative response time versus distance. The response time,

the time required for an RNA component to reach halfway to its new

steady-state level following the perturbation of the source, is presented,

normalized by the response time of the source. The relative response

time increases with the distance of the RNA component from the source.

Parameter values used in the simulations are reported in Table S1.
tions. This distinction is crucial when considering long-
range information flow and not merely nearest-neighbor
correlations (33). To analyze C(‘) numerically, we cal-
culated the change in T‘ following a small change in T0.
Specifically, we constructed a miRNA-RNA chain with
N ¼ 100 RNA components. At t ¼ 0, the system is in steady
state. Then, we decreased the generation rate of T0, located
in the middle of the chain, so that T0 / T0 � DT0, where
DT0 � T0. We then let the system relax to its new steady
state, denoting the change in the steady-state level of target
RNA ‘ by DT‘. The resulting correlation function is given by
C(‘) ¼ (DT‘/T‘)/(DT0/T0). Here, each parameter for
every RNA component was sampled from a suitable
Gaussian distribution, located within the biologically
relevant range (see Table S1). We repeated the simulations
multiple times with different instantiations of the para-
meters. In Fig. 5 A, we present the average over C(‘) values
obtained in all simulations. We found that the average C(‘)
can be approximated by exp(�‘/‘0), where ‘0 is defined as
the correlation length, the distance from the source at which
the correlation function decays to 1/e of its initial value. For
certain parameter samplings, the propagated perturbation
effect, as measured by C(‘), might be substantially larger
than the average, indicating amplification of the response
to a distant perturbation (see also below in the analysis of
the propagation of perturbation through a more elaborate
network structure).

In addition to the numerical study, we performed an
analytical calculation of C(‘) based on the mathematical
framework presented in Barzel and Biham (33). Consid-
ering the posttranscriptional chain described in Eq. 3, and
assuming that the chain has circular boundary conditions,
or that 2N >> 1, the steady-state solution for the system
components becomes

T ¼ 1

4 a ~bdT

�
� 2 ~bðgR � agTÞ � dRdT

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2 ~bðgR � agTÞ þ dRdT

�2 þ 8 a ~bgTdRdT

q �

R ¼ gR

dR þ 2 a ~b T

(5)

where ~b ¼ b dC=ðuC þ dCÞ. We find that the correlation

function for target mRNAs, C(‘) ¼ (dT‘/T‘)/(dT0/T0), which
depends on the distance (or the number of edges), ‘, be-
tween two target mRNAs in the chain, satisfies the equations

Cð0Þ ¼ 1

Cð‘Þ ¼ qp ½Cð‘þ 2Þ þ 2Cð‘Þ þ Cð‘� 2Þ�; ‘R2;
(6)

where ph� a ~b gR=ðdR þ 2 a ~b TÞ2, qh� ~b gT=ðdTþ
~ 2
2b RÞ . Looking for a solution for Eq. 6 of the form C(‘) ¼
exp(�‘/‘0), we find that ‘0 ¼ fcosh�1½1=ð2 ffiffiffiffiffi

qp
p Þ�g�1: This

solution is valid in the range of parameters for which the
Biophysical Journal 106(10) 2254–2266



FIGURE 5 The correlation function decays in a

near-exponential form as a function of the distance

from the source. (A) Shown are results for a

miRNA-target RNA chain in which the parameters

are sampled from a suitable Gaussian distribution,

located within the biologically relevant range.

Parameter values used are reported in Table S1,

with respective standard deviations that are each

equal to 1/10 of the respective parameter value.

The symbols represent the average value of the

correlation function, C(‘), over 50 instantiations

of the parameter values. The curve represents the

exponential fit to the data, where ‘0 ¼ 2.181.

(B–G) Symbols represent numerical results and

lines represent analytical results. The value of

C(‘) for RNA components along the chain in-

creases as the miRNA-target binding rate increases

(B), target RNA (C) and miRNA (D) degradation

rates decrease, RNA generation rate increases

(E), stoichiometric factor increases (F), and

miRNA-target RNA complex dissociation rate de-

creases (G). Parameter units for b, dT, dR, g, and uC
are s�1. The parameter a is unitless. Parameter

values used are reported in Table S1. To see this

figure in color, go online.
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condition qp< 1/4 is satisfied.A special case that satisfies the
above condition is one for which the generation rate of the
miRNAs is equal to that of the target RNAs, gR ¼ gT h g.
In this case, defining Xh~b g=ðdRdTÞ,

1ffiffiffiffiffi
qp

p ¼ 1

2
ffiffiffi
a

p
X

	
1þ 2Xð1þ aÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Xð1� aÞ þ 1Þ2 þ 8aX

q 

: (7)
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Overall, we find an analytical solution for the correlation
length, ‘0 ¼ f(a, X), where it is a monotonically increasing
function of X and a, independently. Therefore, it increases
with RNA generation rate and miRNA-target RNA binding
rate (as the generation and interaction processes become
dominant), and decreases with miRNA and target RNA
degradation rates (as the process of degradation becomes
dominant). In addition, the correlation length increases
with the stoichiometric factor and thus reaches its maximal
value for the stoichiometric case, a ¼ 1, and exhibits its



FIGURE 7 The correlation function for a subnetwork of the human

miRNA-mRNA interactome. Shown are the results of the effect of pertur-

bations for the sample of the CLASH-based subnetwork (Fig. 2). Each of

the 15 miRNA nodes in that subnetwork was computationally perturbed

by decreasing its transcription rate, and the correlation function was

computed for all miRNA nodes in the subnetwork. (A) Correlation function

values for individual miRNA nodes (circles) and the average correlation

function over all perturbations and all miRNA nodes (stars), shown for

2-sep and 4-sep miRNAs. (B) Histograms summarizing the correlation

function values for 2-sep and 4-sep miRNAs. The parameter values used

in the simulations are reported in Table S1. The average correlation function

values decrease from the source to 2-sep and 4-sep miRNA nodes. Although
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minimal value for the catalytic case, a ¼ 0. Finally, the
correlation length decreases with uC, exhibiting its maximal
value when no dissociation of the miRNA-target RNA
complex occurs (uC ¼ 0). The analytical result for the
correlation length fits well the numerical results, as shown
in Fig. 5, B–G. In addition, we found that the propagation
of the perturbation effect along the network strengthens as
the system approaches equimolar equilibrium of all RNA
components, exemplified by the increase in correlation
length as the difference in generation rates between
miRNAs and target RNAs, Dg ¼ gR � gT, decreases
(Fig. 6). Thus, as the unperturbed levels approach equilib-
rium, the correlation length approaches its maximum, mean-
ing that the perturbation effect may propagate and reach
farther parts of the miRNA-target RNA network.

Although the chain model illustrates the possible magni-
tude of the propagation of perturbation effects, it would be
very informative to analyze also a dense network, where
the same distant ceRNAs may be formed through various
paths. Thus, we extended our analysis beyond the linear
model to a subnetwork structure based on the experimen-
tally determined human miRNA-mRNA subnetwork
presented in Fig. 2 as an illustrative example. This subnet-
work includes 15 miRNAs and 6 mRNAs. We performed
15 computational perturbation experiments, where in each
experiment, the level of one of the miRNAs (source nodes)
was perturbed (its synthesis rate was decreased to 9/10 of its
original level), similar to the chain perturbation described
above. Note that here, for the purposes of generality, we
perturb the miRNA nodes, whereas for the chain analysis
we perturbed the target RNA nodes. For each such pertur-
bation, we computed the correlation function for all
miRNAs (obtaining a total of 15 � 15 correlation function
values). In Fig. 7, we present results for this system, where
the generation rates of RNA components were assigned to
be proportional to their respective number of neighboring
FIGURE 6 Correlation length versus normalized difference in the gener-

ation rates of RNA components. The correlation length increases as the dif-

ference between miRNA and RNA generation rates, Dg ¼ gR � gT,

decreases, i.e., as the system approaches equimolar equilibrium of all

RNA components. The parameter values used in the simulations are re-

ported in Table S1. Here, we kept gR constant and set gT ¼ gR � Dg.

these average values may be small (see also Fig. S2), there are individual

2-sep and 4-sep miRNA nodes that are highly affected. To see this figure

in color, go online.
RNA components in the network. In Fig. S2, we present
results for the same system, where the generation rates of
RNA components were assigned to be equal, resulting in
dampened correlation function values for the various
miRNA pairs. These analyses demonstrate several aspects
of the more complex network structure. Consistent with
the results obtained for the linear model, we found that
the value of the correlation function (averaged over all pairs
of miRNAs in the subnetwork) decreases with the distance
from the source, as demonstrated in Figs. 7 A and S2. How-
ever, many of both the 2-sep and 4-sep miRNA nodes were
only slightly affected by the perturbation (as exhibited in
Fig. S2), where the effect is diluted due to the subnetwork
structure. Still, although the average value of the correlation
function may be small, there are specific cases in both the
Biophysical Journal 106(10) 2254–2266
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2-sep and 4-sep nodes where the correlation function value
is substantially higher than the average (Figs. 7 and S2).
This signifies the notion that although the average effect
of cross talk between RNA components in the PTRN may
be mild, there could be certain RNAs that would be highly
responsive to specific perturbations.
FIGURE 8 Experimental evidence for distant ceRNAs. (A) A representa-

tion of the paths originating from oligonucleotide inhibitors of miR-92a

along the miRNA-mRNA human interactome based on the CLASH data

(25). To follow the perturbation effect, we classified the target groups:

targets (2-sep) of miR-92a (1-sep) (a); shared targets of miR-92a (1-sep)

and 3-sep miRNAs (b); targets (4-sep) of the 3-sep miRNAs (c); shared

targets of 3-sep and 5-sep miRNAs (d); and targets (6-sep) of 5-sep

miRNAs (e). A full list of the miRNAs and targets comprising each of

the groups is available in Table S2. In the experiment, miR-92a activity

was depleted by the transfection of anti-miR-92a oligonucleotides and

the change in expression was measured by microarray. We followed the

change in expression of genes in the 2-sep, 4-sep, and 6-sep target groups

(a, c, and e, respectively). It was shown that depletion of miR-92a was

followed by upregulation of most of its targets (25). The shared targets of

miR-92a (1-sep) and 3-sep miRNAs (b) are now expected to be more acces-

sible to the 3-sep miRNAs and attract them, weakening the regulation of the

4-sep targets by 3-sep miRNAs, and thus leading to their upregulation. In

turn, the shared targets of 3-sep and 5-sep miRNAs (d) are expected to

be more accessible to the 5-sep miRNAs and attract them, weakening the

regulation of the 6-sep targets by 5-sep miRNAs and leading to their upre-

gulation. Numbers of miRNAs given in 3-sep and 5-sep groups (starred in

the figure) are for total number of miRNAs that share targets with their pre-

vious respective miRNA group. The actual numbers of miRNAs considered

as regulators of 4-sep targets and 6-sep targets are smaller (264 and 21,

respectively), as many targets were removed from the analysis because

they were not uniquely targeted by the respective 3-sep/5-sep miRNAs.

(B) Cumulative distribution of expression changes after depletion of miR-

92a by adding anti-miR-92a oligonucleotides. The log2 fold change of

each of the target groups analyzed was compared to a control group of

genes not found to be targeted by miRNAs in the CLASH experiment

(25). Each of the target groups, the 2-sep targets (miR-92a targets) and

the 4-sep targets, were statistically significantly upregulated compared to

the control group of nontarget genes (K-S p-values of 5.6 � 10�4 and

1.93 � 10�72, respectively).
Proof of concept for cross talk between distant
ceRNAs

To validate the miRNA-mRNA interactions found by
CLASH, Helwak et al. (25) supplemented their interaction
data with a microarray expression analysis of HEK293 cells
in which miR-92a endogenous activity was depleted. This
depletion was achieved by the transfection of miR-92a
oligonucleotide inhibitors that compete with its natural
targets and thus reduce its endogenous activity. Indeed,
Helwak et al. found that miR-92a targets were upregulated
in the transfected cells. Thus, the oligonucleotide inhibitor
is a ceRNA of the endogenous miR-92a targets. This
experiment provided us with suitable data for testing the
effects of distant ceRNAs by enabling us to examine the
effect of miR-92a oligonucleotide inhibitors (the source)
on different RNA components located along pathways orig-
inating from it. Gene targets and miRNAs were classified
and referred to by their distance from the source node
(Fig. 8). miR-92a is termed 1-sep (as it is separated by
one edge from the source), and its targets are termed
2-sep. The miRNAs that share targets with miR-92a make
up the 3-sep group. 5-sep miRNAs and 4-sep and 6-sep tar-
gets were defined according to the same nomenclature
(Fig. 8, Table S2). Consistent with the linear model, and
to reduce noise, each of the target groups included only tar-
gets that are regulated either by a single miRNA (miR-92a
(1-sep)) or by multiple miRNAs that belong to the same
respective miRNA group (3-sep or 5-sep). In addition, we
defined a control group composed of the mRNAs included
in the microarray but not targeted by miRNAs according
to the CLASH interactome (10,899 mRNAs). According
to the premise that there is cross talk between distant
ceRNAs, perturbation of the source is expected to lead to
perturbation of miR-92a, a weaker perturbation of miR-
92a direct target group (2-sep), followed by a weaker pertur-
bation of the 4-sep target group relayed by its 3-sep miRNA
regulators, followed by yet weaker perturbation of the 6-sep
target group relayed by its 5-sep miRNA regulators. Since
miR-92a is depleted, and all miRNAs are negative regula-
tors of their targets, the 4-sep and 6-sep target groups are ex-
pected to be upregulated compared to the control group,
despite the lack of miR-92a binding sites in their sequences.
Analysis of the expression change of the three target groups
corroborated this hypothesis (Fig. 8 B). miR-92a targets
(2-sep) and 4-sep targets showed modest yet statistically sig-
nificant upregulation compared to the control group (K-S
test p-values of 5.6 � 10�4 and 1.93 � 10�72, respectively).
Biophysical Journal 106(10) 2254–2266
Interestingly, 4-sep targets that are regulated by more than
one 3-sep miRNAwere found to be statistically significantly
more upregulated than 4-sep targets that are regulated by
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only one 3-sep miRNA (K-S test p-value: 3.38� 10�5), sug-
gesting that the propagated effect is stronger when mediated
by more than one miRNA. The 6-sep target group showed
no statistically significant upregulation compared to the
control group, however, the 6-sep group size is very small
and all mRNAs in this group are each regulated by only a
single 5-sep miRNA. Expanding the analysis to include
low confidence targets (Materials and Methods) led to
consistent results for the 2-sep and 4-sep target groups
(K-S test p-values: 2.85 � 10�4 and 3.38 � 10�69, respec-
tively), and a trend of upregulation, although not statistically
significant, in the 6-sep target group. Also, the mathematical
model predicted that the average change in expression will
decrease gradually from miR-92a direct target group
(2-sep) to the 4-sep target group and from the 4-sep target
group to the 6-sep target group. Although the expected trend
is seen in Fig. 8 B, the differences between the distributions
were not statistically significant. We verified that our results
are not biased by indirect transcription regulation interac-
tions and low expression of the control group (see the Sup-
porting Text and Fig. S3). Altogether, our analysis provides
a proof of concept for the existence of distant ceRNAs that
affect each other’s expression through a path of coregulated
targets and miRNAs with shared targets.
DISCUSSION

Accumulating evidence supports a new layer of regulation
in the miRNA-target RNA regulatory network mediated
by ceRNAs (for review, see Tay et al. (13)). Originally,
ceRNAs were defined as target molecules of miRNAs
(mRNAs or other RNA molecules) that cross talk via
competition over binding to their common miRNA regula-
tors. However, by the same logic, miRNAs that share targets
compete over binding to their common targets and therefore
also exhibit ceRNA-like behavior, as we and others have
demonstrated computationally (16,17,34). Thus, the term
ceRNA should be expanded to encompass both types of
competing elements. This suggests that perturbations of
gene expression can potentially propagate in the network
through a cascade of coregulated target RNAs and miRNAs
that share targets, leading to mutual effects between distant
components in the network, i.e., distant ceRNAs. We
demonstrated the possible cross talk between distant
ceRNAs using an experimentally determined network of
miRNA-mRNA interactions comprised of the recently pub-
lished CLASH-derived human interactome (25) and charac-
terized both numerically and analytically its magnitude and
the parameters affecting it.

A testable prediction of the distant ceRNA hypothesis is
that downregulation of a specific miRNA will result not
only in the upregulation of its direct targets, but also in
the upregulation of distant genes in the network, residing
on a posttranscriptional path originating from that miRNA.
Indeed, we found that depletion of the hub miR-92a by
transfection of the anti-miR-92a oligonucleotides (25)
resulted in the upregulation of the 4-sep targets (and to a
lesser extent of the 6-sep targets), none of which is a direct
target of miR-92a. Furthermore, we demonstrated that the
propagated perturbation effect on 4-sep targets is more pro-
nounced for targets that have multiple miRNA regulators in
the 3-sep group, further supporting the conclusion that the
observed effect is miRNA-dependent. Although these obser-
vations support the distant-ceRNA hypothesis, it is still
plausible that the upregulation of 4-sep targets could be
attributed to other alternative mechanisms. For example, it
could be argued that some of the genes in the 4-sep group
are targets of transcription factor (TF) activators that are
directly regulated by miR-92a whose depletion led to an in-
crease in the TF levels and to a corresponding increase in
their target levels. We ruled out this possibility by excluding
from the analysis all direct targets of those TF activators and
the ceRNAs of those targets, demonstrating that the upregu-
lation of targets in the 4-sep group is still clearly observed.
Another plausible explanation for the upregulation of distant
ceRNAs regards competition over binding to Argonaute, an
auxiliary protein essential for miRNA function. When Argo-
naute is found in limiting amounts, competition may arise
between miRNAs over binding to Argonaute (35), reducing
their effectiveness and leading to upregulation of their tar-
gets. miR-92a depletion by the transfection of the anti-
miR-92a oligonucleotides utilizes cellular Argonaute and
thus could reduce its availability. However, as the experi-
ment was performed in HEK293 cells expressing AGO1
in excess, it is conceivable that AGO1 was not a crucial
limiting factor. Furthermore, even in the case of competition
over binding to Argonaute, the effect of miRNA competition
over their shared targets can still be observed (34). Alto-
gether, this suggests that the upregulation of genes along
the posttranscriptional path originating from miR-92a is
at least partially due to mutual effects between distant
ceRNAs.

To characterize the parameters affecting the propagation
of perturbation effects through the network we studied it
by mathematical modeling and simulation. To keep the
mathematical model tractable, we started by analyzing a
chain of miRNA-target interactions. The linear model is
amenable to analytical treatment, providing exact results
that can be used as a benchmark against which experimental
and numerical results or more complex networks can be eval-
uated. The linear model essentially describes the shortest
path between each pair of RNAs in the network. In this sense,
it is an approximation that neglects the dilution of the signal
due to branching of paths as well as its possible enhancement
due to reconnections. This approach allowed us to identify
and study the main factors affecting the propagation of
perturbation effect and to characterize its functional form,
as well as capture the general potential for cross talk between
distant ceRNAs in the miRNA-target RNA interactome.
Interestingly, the average path length of the CLASH-based
Biophysical Journal 106(10) 2254–2266
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miRNA-mRNA network is 4, well within the effective prop-
agation distance supported by the model. Our model demon-
strates that as the unperturbed levels approach equilibrium,
the perturbation effect propagates along longer paths in the
network. This finding is consistent with previous studies
that reported a miRNA dilution effect, where repression
becomes less substantial as the overall concentration of the
miRNA targets increases (11,16,17,36,37).Moreover, it con-
curs with recent theoretical studies reporting that the optimal
cross-regulation between coregulated ceRNAs occurs at a
near-equimolar equilibrium of all involved RNA compo-
nents (11,17). Since the fate of the miRNA-target RNA com-
plex is not yet fully deciphered and may vary in different
cellular setups between a catalytic and a stoichiometric inter-
action, the extent of miRNA recycling is not clear (38).
Nonetheless, in our model, we show that as long as the regu-
lation has a stoichiometric component, propagation and
mutual effects between distant ceRNAs still exist to a certain
level, and its magnitude will increase with the extent of the
stoichiometric component. This result is in agreement with
previous theoretical studies demonstrating that cross talk
among coregulated ceRNAs at steady state requires some
degree of stoichiometricity (11,16,17).

To further characterize the nature of the cross talk be-
tween distant ceRNAs within more realistic and complex
networks, we analyzed the mutual effects between RNA
components in a subnetwork structure based on the CLASH
human miRNA-mRNA network, as depicted in Fig. 2. The
highly connected topology of the experimental network re-
sults in many nodes being located within a short distance of
any source node. On the one hand, this implies that the prop-
agation of perturbation effects should be observed, but on
the other hand, the high connectivity may imply possible
dilution of the effect of source perturbations. Indeed, we
found that, in accord with the linear model, the correlation
function values decrease with distance between pairs of
RNA components. Although in general the magnitude of
distant cross talk may be small, it may be substantial for
certain RNA components depending on the features of the
network (Fig. 7). Thus, it would appear that distant ceRNA
cross talk depends both on the underlying dynamical param-
eters of the nodes and on the topology of the network.

The modest effects observed for the 4-sep group both by
the analysis of the experimental data and by the simulations
(Figs. 7, 8, and S2) challenge the biological relevance of
remote ceRNA regulation that propagates within the
network. On the one hand, it could be an inevitable conse-
quence of the network structure, too subtle to be of any sig-
nificant biological consequence. On the other hand, certain
RNA components may be highly responsive to specific per-
turbations, depending on the network topology and param-
eter values (as can be seen from the differences between
Figs. 7 and S2), suggesting a possible mechanism for
tunable selectivity. Selectivity in this context was also
recently discussed for interactions between coregulated
Biophysical Journal 106(10) 2254–2266
ceRNAs, which can be either missing, symmetrical, or
asymmetrical (16). Altogether, the average modest effects
between distant ceRNAs along with selectivity may guar-
antee network stability and dampening of perhaps harmful
remote effects. Still, in some cases, even small effects
caused by remote ceRNAs might be biologically meaning-
ful, as cells may be extremely sensitive to small changes
in expression of specific genes, such as in the case of the
tumor suppressor PTEN (4,39), highlighting the potential
impact of the small effects exerted by distant ceRNAs.
Finally, it has been observed often that the effect of miRNAs
on the expression level of their targets is quite mild (typi-
cally less than twofold) (40). Consequently, the various
interpretations as to the functional implications of the
mild effects exerted by miRNAs on their targets may be
relevant also to distant ceRNAs. These interpretations
include fine-tuning of gene expression, global coordinated
regulation of a group of genes, complete inhibition of spe-
cific key targets, possible buffering of key targets through
collective mild regulation of other targets and nonlinear
response due to a threshold effect (17,40–48).

The propagated perturbation effect demonstrated here
can initiate from any node, either miRNA or target RNA,
that is either up- or downregulated, and propagate to any
node connected to it in the undirected miRNA-mRNA
network. This type of information flow may underlie
inexplicable gene perturbation effects. It has been often
the case that after gene perturbation (e.g., of TF, miRNA,
or drug target), there were genes that changed their expres-
sion, whose connection to the perturbed gene could not be
traced in the cellular networks. By searching for the
ceRNA-mediated connectivity between the perturbed and
affected genes, previously unexplained connections be-
tween them may be revealed. For example, this hidden layer
of connectivity may provide novel insights into different
genes and pathways that are impaired in the same genetic
disease. Moreover, the ceRNA-mediated information flow
may provide an effective mechanism for a fast, yet gradual,
transmission of signals, which is programmed into the
regulatory networks of the cell. It should be illuminating
to revisit the cellular networks and molecular pathways
in health and disease while considering the proposed
ceRNA-mediated connectivity in the posttranscriptional
regulatory networks.

Although the focus of this study was on the miRNA inter-
actome in humans, ceRNA-like effects were reported for
other organisms and other posttranscriptional interactions.
In particular, bacterial small RNA (sRNA) molecules, which
also exert their regulatory function by basepairing with
mRNA targets, were shown to be subjected to ceRNA-like
regulation as well (44,49,50). One of the advantages of
our model is that its qualitative results are insensitive
to parameters and thus it can be applied not only to the
miRNA interactome but also, for instance, to sRNA-
mRNA networks. Indeed, in a model based on repressor
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sRNA-mRNA interaction parameters, we observed similar
propagation of perturbation effects through the bacterial
network (Fig. S4). Taking these findings one step further,
we would like to argue that other posttranscriptional cellular
networks in various organisms may underlie similar mecha-
nisms, provided that the interactions have a stoichiometric
component. Appealing candidates would be RNA binding
proteins and their targets, where the information flow could
be manifested either in changes in mRNA levels or changes
in their cellular localization. For each such network, given
its topology and specific parameter values, the model can
be used for precise prediction of dynamic and steady-state
behaviors, e.g., the magnitude of information flow. In addi-
tion, controllable experimental setups can be used to verify
the dependence of information flow on parameter values.
Finally, different posttranscriptional regulators, such as
miRNAs and RNA-binding proteins, can potentially join
forces in the generation of a ceRNA cascade.
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