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Abstract

Cryptococcus gattii is a capsular fungal pathogen, which causes life-threatening cryptococ-

cosis in immunocompetent individuals. This emerging pathogen is less likely to be recog-

nized by innate immunity compared to traditional Cryptococcus neoformans strains.

Previous studies indicate that C-type lectin receptors (CLRs), including dectin-1 and dectin-

2, play a role in recognizing cryptococcal cells; however, it remains to be elucidated whether

the receptors physically associate with C. gattii yeast cell surfaces. Based on the previous

findings, we hypothesized that culture conditions influence the expression or exposure of

CLR ligands on C. gattii. Therefore, in the present study, we first investigated the culture

conditions that induce exposure of CLR ligands on C. gattii yeast cells via the binding assay

using recombinant fusion proteins of mouse CLR and IgG Fc, Fc dectin-1 and Fc dectin-2.

Common fungal culture media, such as yeast extract–peptone–dextrose (YPD) broth,

Sabouraud broth, and potato dextrose agar, did not induce the exposure of dectin-1 ligands,

including β-1,3-glucan, on both capsular and acapsular C. gattii strains, in contrast to Fc

dectin-1 and Fc dectin-2 bound to C. gattii cells growing in the conventional synthetic dex-

trose (SD) medium [may also be referred to as a yeast nitrogen base with glucose medium].

The medium also induced the exposure of dectin-1 ligands on C. neoformans, whereas all

tested media induced dectin-1 and dectin-2 ligands in a control fungus Candida albicans.

Notably, C. gattii did not expose dectin-1 ligands in SD medium supplemented with yeast

extract or neutral buffer. In addition, compared to YPD medium-induced C. gattii, SD

medium-induced C. gattii more efficiently induced the phosphorylation of Syk, Akt, and

Erk1/2 in murine dendritic cells (DCs). Afterwards, the cells were considerably engulfed

by DCs and remarkably induced DCs to secrete the inflammatory cytokines. Overall, the

findings suggest that C. gattii alters its immunostimulatory potential in response to the

environment.
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Introduction

Cryptococcus gattii is an encapsulated fungal pathogen which infects to immunocompetent

individuals and causes cryptococcosis. Following a C. gattii infection outbreak in North Amer-

ica since 1999, several highly virulent C. gattii strains, including R265 and JP02, have been iso-

lated globally, and the relationship between their antigenic potential and their virulence has

been investigated [1–4].

We have previously demonstrated that C. gattii-encapsulated strains, R265 and PNG18, are

not engulfed by dendritic cells (DCs) and neutrophils without opsonization [5,6], and that the

strains do not induce the secretion of the inflammatory cytokines, such as IL-12p40 and

TNFα, by DCs [5]. In contrast to encapsulated wild type strains, capsular strain CAP60Δ
strongly stimulated DCs to produce inflammatory cytokines and the costimulatory molecules

and were efficiently phagocytized by DCs [5]. C. gattii is also less likely to be recognized com-

pared to Cryptococcus neoformans under in vivo situations because C. gattii induces lower

cytokines production and leukocyte recruitment in the lungs compared to C. neoformans [2–

4]. The findings above suggest that C. gattii wild type strains have lower antigenic potential in
vitro and in vivo.

In general, innate immune cells, such as DCs, recognize fungal pathogens via pattern recog-

nition receptors (PRRs), including C-type lectin receptors (CLRs), toll-like receptors (TLRs),

nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), and retinoic acid-

inducible gene-I (RIG-I)-like receptors (RLRs)[7,8]. The representative CLRs are dectin-1 and

dectin-2, which physically bind to fungal cell wall components β-1,3-glucan and α-mannan,

respectively [9–12]. Such PRR ligands are referred to as pathogen-associated molecular pat-

terns (PAMPs). The PAMPs induce the phosphorylation of Syk, Akt, and Erk1/2 in innate

immune cells, including DCs via CLRs [13] and then stimulate the production of inflamma-

tory cytokines by DCs [14]. Phagocytes also recognize the PAMPs, which facilitates the engulf-

ing of fungal cells [14].

Several studies have suggested interactions between dectin-1 and cryptococcal cells by

using dectin-1 deficient phagocytes [15,16], a dectin-1 expressing cell line [17], and a dectin-1

antagonist [18]. However, physical association has not been demonstrated between dectin-1

and yeast cells of cryptococcal cells. A recombinant fusion protein of mouse dectin-1 and IgG

Fc (Fc dectin-1) has been used to investigate the recognition pattern of mouse dectin-1 [19]. A

previous study has demonstrated that Fc dectin-1 binds to C. neoformans spores but not to

yeast cells [20], whereas another study reported contradictory findings where anti-β-glucan

antibodies bind to the yeast cells of capsular and acapsular C. neoformans [21].

A similar contradiction was also observed in the case of dectin-2. Compared to wild type,

dectin-2 deficient macrophages and DCs engulfed C. neoformans cells less efficiently and pro-

duced lower amounts of inflammatory cytokines following cryptococcal stimulation [15,22].

In addition, it has been demonstrated that cryptococcal cell wall mannoprotein MP98 as well

as Blastomyces dermatitidis glycoprotein Bl-Eng2, activate B3Z dectin-2 reporter cells and

induce the secretion of inflammatory cytokine Interleukin (IL)-6 in DCs but not in dectin-2

deficient DCs [23,24]. However, Fc dectin-2 does not bind to cryptococcal cells, and intact

cryptococcal cells do not activate dectin-2-NFAP-GFP reporter cells [12,22].

Because different studies have adopted varied culture conditions for cryptococcal cells, we

infer that the different culture conditions can be the reason for the inconsistent observations

described above. Although cryptococcal cells possess β-1,3-glucan and α-mannan in the steady

state cell walls [25–27], it has been shown that Fc dectin-1 and Fc dectin-2 do not physically

bind to the cryptococcal yeast cells [12,28]. Therefore, the exposure of such PAMPs is poten-

tially regulated in cryptococcal cells. Similarly, we hypothesized that cryptococcal cells can
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alter the antigenic potential, including the expression and exposure of PAMPs, in response to

the environmental conditions. Similar models in the previous studies have revealed that C.

neoformans mar1Δ and rim101Δ upregulate antigenic potential in tissue culture conditions

[29,30], and that Candida albicans masks its β-glucan based on the carbon sources of host

niches [31].

In the present study, we investigated whether culture conditions influence the immunosti-

mulatory ability of C. gattii capsular and acapsular strains. We mainly investigated the expo-

sure patterns of dectin-1 ligands, including β-1,3-glucan, on C. gattii cells, because β-glucan is

a target molecule in the diagnosis of invasive fungal diseases, although the sensitivity and spec-

ificity of β-glucan levels in serum are not adequate for the diagnosis of cryptococcosis [32]. In

addition, dectin-1 was first discovered as an anti-fungal immune-receptor [10], and the find-

ings of some recent studies suggest that dectin-1 can also recognize the endogenous ligands in

mammalian cells [33,34]. Here, we demonstrate that C. gattii can expose dectin-1 and dectin-2

ligands via a capsule-independent mechanism when cultured in synthetic dextrose (SD)

medium [may also be referred to as yeast nitrogen base (YNB) with glucose medium] and that

PAMP-exposed C. gattii cells are more effectively recognized by DCs compared to non-

exposed controls.

Materials and methods

Ethics

All animal experiments were approved by the ethical committee of the National Institute of

Infectious Disease, Japan (approval numbers 116019, 116025, 116124, and 117032) and were

performed in accordance with the approved guidelines and regulations.

Mice

C57BL/6J mice were purchased from Japan SLC, Inc., and maintained under specific-patho-

gen-free conditions at the National Institute of Infectious Diseases of Japan.

Fungi

C. albicans SC5314, C. neoformans H99, C. gattii R265, C. gattii PNG18, and derivative strains

were cultivated for 2 days at 30˚C in the following medium or agar plate: yeast extract–pep-

tone–dextrose (YPD) broth [1% (w/v) yeast extract, 2% (w/v) Bacto peptone, and 2% (w/v)

dextrose, premix powder purchased from BD Difco], SD medium [0.67% (w/v) YNB with

amino acids and ammonium sulfate (BD Difco), and 2% (w/v) dextrose], Sabouraud broth

[1% (w/v) polypeptone (BD Difco) and 2% (w/v) dextrose], and potato dextrose agar [0.4%

(w/v) potato starch, 2% (w/v) dextrose, and 1.5% (w/v) agar, premix powder purchased from

BD Difco] [2,5,35]. The fungal cells were also grown in SD medium containing 1% (w/v) Bacto

yeast extract (BD Difco) or 25 mM neutral buffer, 4-(2-hydroxyethyl)-1-piperazineethanesul-

fonic acid (HEPES). Fungal cells were washed three times with phosphate-buffered saline

(PBS) after cultivation.

CAP59 (GenBank accession: CGB_A8090W) is a gene associated with capsule biosynthesis

in C. gattii [36,37]. The CAP59 deletant (CAP59Δ) and revertant (CAP59C) were derived from

the parent strain, C. gattii PNG18, and they were constructed in a manner similar to the way

CAP60 deletant (CAP60Δ) and revertant (CAP60C) were constructed as described previously

[5]. In CAP59Δ, the open reading frame of CAP59 was replaced entirely by a disruption cas-

sette containing nourseothricin-resistant gene NAT1 via double homologous crossover,

whereas the complementation vector pJAF12-CAP59 was integrated into the CAP59 locus via
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a single homologous crossover to construct the revertant CAP59C. PCR was performed to

confirm appropriate integration events. The primers used for the strain construction and con-

firmation are listed in S1 Table. Capsule formation of PNG18, CAP59Δ, and CAP59C were

also confirmed using the conventional India ink method as described previously [5]. Capsule

polysaccharide-specific monoclonal antibody (mAb), 18B7 (Merk Millipore, #MABF2069),

bound to the cell surfaces of PNG18 and CAP59C, but not to that of CAP59Δ (S1 Fig).

A previous study indicated that heat-killed C. albicans increased β-glucan exposure on the

cell surface [38]; thus, a part of fungal suspension was boiled for 1 h to prepare the heat-killed

fungal cells as previously described [5].

SD medium-induced fungal cells were treated by 0.5 mg/mL Zymolyase-20T (Nacalai Tes-

que Inc.) in 0.1 M sodium phosphate buffer with a pH of 6.5 (BD Bioscience Cat#550536) for 1

h at 45˚C to lyse β-1,3-glucan in the fungal cells. After the digestion, fungal cells were washed

three times with PBS.

Bone marrow-derived dendritic cells (BMDCs)

BMDCs were prepared as described previously [5,39]. In brief, bone marrow (BM) cells were

harvested from the femurs and tibiae of C57BL/6J mice. After the lysis of erythrocytes, the BM

cells were cultivated in complete Roswell Park Memorial Institute (RPMI) 1640 medium, sup-

plemented with 10% (v/v) fetal bovine serum (FBS), 1% (v/v) streptomycin–penicillin solution,

44 μM 2-mercaptoethanol, and 10 ng/mL of mouse granulocyte-macrophage colony-stimulat-

ing factor (mGM-CSF). On day 6, non-adherent cells were collected and used as BMDCs.

Fc fusion proteins

We cloned cDNA encoding the carbohydrate recognition domain (CRD) of mouse dectin-1

from BMDCs from C57BL/6J mice using primers pDectin1-CRD-Fw1 (50-TTGCACTAAGT
CTTGCACTTGTCACatgccttcctaattggatcatgcatg-30) and pDectin1-CRD-Rv1

(50-GCTTACAACCACAATCCCTGGGCACcagttccttctcacagatactgtat-30). The

pCAG-Neo mIgG1-Fc plasmid (FUJIFILM Wako Pure Chemical Corp.) was digested with

XhoI–SpeI, and the cDNA fragment was inserted using the Gibson Assembly System (New

England Biolabs Inc.) to construct the expression vector pmDectin-1_mIgG1-Fc. Our dectin-1

CRD cDNA sequence was identical to that of Clec7a-202, as recorded in the Ensembl database

(http://www.ensembl.org/index.html, transcript ID: ENSMUST00000184581.2).

The expression vector pmDectin-1_mIgG1-Fc was transfected into HEK293T cells using

PEI-MAX (Polysciences Inc.) or GenePORTER2 (Gelantis Inc.), and cells were cultivated in

RPMI 1640 medium with 10% (w/v) FBS for 2 days at 37˚C, 5% CO2 to generate Fc dectin-1 in

the culture supernatant. Culture supernatant was stored at −80˚C prior to use in the Fc dectin-

1 deposition assay.

Fc dectin-2 was purchased from Enzo Life Science, Inc., was reconstituted with sterile

water, and was stored at −80˚C.

Binding assay

For the Fc dectin-1 deposition assay, the fungal cells were treated with culture supernatant

containing Fc dectin-1 for 30 mins at 37˚C as described previously [38,40]. To evaluate

whether Fc dectin-1 bound to β-glucan on fungal cells, the competitive soluble β-glucan, schi-

zophyllan (SPG, final concentration 500 μg/mL; Invivogen), was added to the culture superna-

tant, and the mixture of SPG and Fc dectin-1 was incubated for 60 min at room temperature

prior to the binding assay. Anti-β-1,3-glucan mAb (BioSupplies Australia, #400–2) was used to

evaluate β-1,3-glucan exposure. Fc dectin-1 and anti-β-1,3-glucan binding to the cells were
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labeled using Alexa Fluor488 anti-mouse IgG (Jackson ImmunoResearch Laboratories Inc.,

#115-545-071). FACS buffer [PBS containing 2 mM ethylenediaminetetraacetic acid, 0.5% (w/

v) bovine serum albumin, and 0.1% (w/v) sodium azide] was used for the cell treatment and

washing in these experiments.

To evaluate the exposure of dectin-2 ligands, the fungal cells were treated with 2.5 μg/mL Fc

dectin-2 solution for 60 mins at room temperature as described previously [12]. The deposi-

tion of Fc dectin-2 on the fungal cells was labeled with Alexa Fluor647 anti-human IgG (Jack-

son ImmunoResearch Laboratories Inc., #709-605-149). Hank’s Balanced Salt Solution

containing magnesium and calcium (Nacalai Tesque Inc.) was used for the cell treatment and

washing in this experiment.

Fluorescence intensity of the labeled fungal cells were evaluated via flow cytometer and the

analysis software. Fungal cells were also observed using a confocal laser-scanning microscope

LSM 700 (Carl Zeiss), and the images were analyzed using ZEN software (Carl Zeiss).

Immunoblotting

All procedures were performed as described previously [6,41]. In brief, BMDCs (1 × 106 cells)

and heat-inactivated fungal cells (2 × 106 cells) were placed in 96-well round bottom plates

containing 200 μL of the complete RPMI1640 medium supplemented with mGM-CSF. After

10 min of stimulation, BMDCs were washed with PBS and fixed for 60 mins with 10% (w/v)

trichloroacetic acid. The fixed cells were treated with a lysis buffer containing urea, Triton X-

100, and lithium dodecyl sulfate. The protein disulfide bonds in lysates were reduced with

1,4-dithiothreitol solution. Finally, the protein solution was neutralized using a tris(hydroxy-

methyl)aminomethane solution, and a neutral pH was confirmed by adding bromophenol

blue solution.

PVDF Blocking Reagent (Toyobo) and Can Get Signal Immunoreaction Enhancer Solution

(Toyobo) were respectively used for the blocking and antibody treatments respectively. The

following antibodies were used in the experiment: Syk pY525/pY526 monoclonal antibody

(1:1000 dilution, clone C87C1; Cell Signaling Technology), Akt pS473 monoclonal antibody

(1:1000 dilution, clone M89-61; BD Bioscience), ERK1/2 pT202/pY204 (1:1000 dilution, clone

20A; BD Bioscience), anti-mouse α-tubulin rabbit polyclonal antibody (1:5000 dilution, 2144S;

Cell Signaling Technology), anti-mouse immunoglobulin G (IgG), Fcγ fragment specific per-

oxidase AffiniPure (1:5000 dilution, 115–035–071; Jackson ImmunResearch), and anti-rabbit

IgG (H + L) peroxidase AffiniPure (1:5000 dilution, 111-035-003; Jackson ImmunResearch).

Phagocytosis

Fluorescent labeling of fungal cells and a phagocytosis assay were performed as described pre-

viously [6,28]. In brief, fungal cells were labeled with AlexaFluor488 NHS Ester (final 1 μg/mL,

1:10000 dilution; ThermoFisher Scientific) for 30 min at 37˚C. BMDCs (4 × 106 cells) and the

AF488-labeled fungal cells (1.2 × 107 cells) were placed in 12-well flat-bottom plates containing

1 mL of the complete RPMI1640 medium supplemented with mGM-CSF, and the suspension

was centrifuged for 5 min at 320 × g at room temperature before being incubated for 3 h. All

cells were harvested using a cell scraper and used for flow cytometry analysis.

Flow cytometry

BMDCs were labeled with CD11b (M1/70; BioLegend) and CD11c (N418; BioLegend) anti-

bodies after blocking Fc receptors using anti-CD16/32 mAb (clone 93; BioLegend). FACS

buffer was used to stain and wash the cells. Data on the fungal cells and BMDCs were acquired
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using a BD FACSCalibur (BD Bioscience) and a BD FACSCanto II flow cytometer (BD Biosci-

ence), respectively. Data were analyzed using FlowJo software (Tree Star, Inc.).

Cytokines

BMDC cytokine production was measured as described previously [5,39,42] In brief, BMDCs

(2 × 105 cells/200 μL) were stimulated by heat-killed fungal cells in 96-well flat-bottom plates

for 24 h. Culture supernatants were collected, and cytokine amounts were measured using

enzyme-linked immunosorbent assay (ELISA). A MaxiSorp plate (Thermo Fisher Scientific), a

BD OptEIA ELISA set for IL-6 (BD Bioscience), and a DuoSet ELISA kit for IL-23 (R&D Sys-

tems) were used according to the manufacturers’ instructions.

Statistical analysis

Prism7 software (GraphPad Software, Inc.) was used for all statistical analyses. P-values less

than 0.05 were considered statistically significant.

Results

Dectin-1 ligands are induced on C. gattii cells growing in SD medium

Although dectin-1 and dectin-2 generally recognize fungal cell wall components, soluble

recombinant receptors, Fc dectin1 and Fc dectin-2, do not physically bind to the yeast forms

of capsular or acapsular C. neoformans strains [12,20]. Based on the previous studies, we

hypothesize that culture conditions influence the exposure of PAMPs in C. gattii cells.

We first investigated the exposure of dectin-1 ligands on C. gattii growing in the common

fungal culture media, compared to C. neoformans and C. albicans (Figs 1 and 2). Fc dectin-1

and anti-β-1,3-glucan mAb bound to the cell surface of live and heat-killed C. albicans culti-

vated in any medium (Fig 1A–1C), and the binding of Fc dectin-1 to C. albicans was decreased

in the presence of competitive soluble β-glucan SPG (Fig 1D). The Fc dectin-1 did not bind to

C. albicans treated by β-1,3-glucanase, Zymolyase (S2 Fig). The binding of Fc dectin-1 to the

cell surface of C. albicans was also confirmed by confocal microscopy (Fig 2A and 2B). These

findings are consistent with a previous study showing that the Fc dectin-1 binds to the β-glu-

can on fungal cells [38] and suggest that the experiment system is functioning correctly.

In contrast to C. albicans, Fc dectin-1 and anti-β-1,3-glucan mAb bound to the cell surface

of C. gattii and C. neoformans cultivated in SD medium but not in YPD medium (Figs 1A–1C,

2A, and 2B). A previous study indicated that heat-killed C. albicans increased β-glucan expo-

sure on the cell surface [38]; however, heat inactivation did not affect the exposure of dectin-1

ligands on C. gattii and C. neoformans cells growing in YPD medium (Figs 1A, 1B, 2A, and

2B). The yeast extract in SD medium negatively affected the exposure of dectin-1 ligands on C.

gattii and C. neoformans cells (Figs 1A, 1B, 2A, and 2B), and the binding of Fc dectin-1 to C.

gattii was significantly inhibited in the presence of SPG (Fig 1D). The deposition of Fc dectin-

1 was also decreased on C. gattii treated by Zymolyase (S2 Fig). These results suggest that Fc

dectin-1 binds to the dectin-1 ligands, including β-glucan, on yeast form of C. gattii cells grow-

ing in SD medium and that culture condition affect the antigenic potential of C. gattii.

C. gattii acapsular strain CAP59Δ does not always expose dectin-1 ligands

In contrast to the capsular wild type strain, C. gattii acapsular mutant was instantly recognized

and engulfed by BMDCs in the absence of opsonization [5]. The capsular components poten-

tially masked PAMPs, including dectin-1 ligands, in cryptococcal cells. Therefore, we subse-

quently compared the exposure of dectin-1 ligands among C. gattii acapsular mutant CAP59Δ,

C. gattii exposes PAMPs in SD medium
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Fig 1. SD medium induces dectin-1 ligands on cryptococcal cells. Deposition of Fc dectin-1 was measured on live fungal cells (A and D) and

heat-killed fungal cells via flow cytometry (B). In a similar manner, β-glucan exposure on heat-killed fungal cells was evaluated using anti-β-

1,3-glucan mAb (C). The flow cytometry profile and bar graphs of the mean fluorescence intensity (MFI) or median fluorescence intensity

(MedFI) are depicted. Representative data (mean ± SDs) from three independent experiments are shown. �: P< 0.05 as determined via an

unpaired t-test, P: C. gattii PNG18, R: C. gattii R265, H: C. neoformans H99, S: C. albicans SC5314.

https://doi.org/10.1371/journal.pone.0220989.g001
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the parent strain PNG18, and the revertant strain CAP59C (Fig 3A). The experiment revealed

that CAP59Δ also required SD medium, not PDA, YPD, and Sabouraud medium, to induce

dectin-1 ligands, and the deposition of Fc dectin-1 on CAP59Δ cells was higher than on capsu-

lar strains PNG18 and CAP59C cultured in SD medium (Fig 3A). Although it has been shown

that the tissue culture media such as RPMI1640 medium containing FBS, can induce cell wall

remodeling in cryptococcal cells [29], dectin-1 ligands were not strongly induced in cryptococ-

cal cells cultivated in the tissue culture medium (S3 Fig). The findings suggest that a unique

environment is required to induce PAMPs, including dectin-1 ligands, even though capsular

components are deficient.

It has been previously reported that the cell walls of C. neoformans are reconstructed in SD

medium via suicide autolytic activity [27]. The study also demonstrated that β-1,3-glucan and

chitin contents significantly increased in C. neoformans cells cultured in SD medium as well as

the erosion of capsular cell wall and aberrant cell shape in C. neoformans cells under electron

and light microscopy [27] The reported abnormal cell shapes of C. neoformans were consistent

with the microscopic images presented in Fig 2. We subsequently observed the binding sites of

Fc dectin-1 and anti-β-1,3-glucan mAb under a confocal microscope using the conventional

India ink method (Fig 3B and 3C). It revealed that Fc dectin-1 and anti-β-1,3-glucan mAb

bound to the erosion sites in the capsules of PNG18 and CAP59C cells, while they were uni-

formly exposed on the surfaces of CAP59Δ cells (Fig 3B and 3C). In addition, Fc dectin-2

bound to C. gattii cells cultured in SD medium but not to that in YPD medium, and the depo-

sition of Fc dectin-2 on CAP59Δ cells was higher than in capsular strains, including PNG18

and CAP59C (Fig 3D). The results suggest that cell wall remodeling in SD medium is likely

associated with the alteration of antigenic potential in C. gattii.

Acidification of SD medium is a key factor inducing dectin-1 ligands on C.

gattii
A previous study reported that the acidification of SD medium is a key signal inducing cell

wall remodeling in C. neoformans [27]. We hypothesized that the acidification of SD medium

was also required for antigenic alteration, including the exposure of dectin-1 ligands on C. gat-
tii. Therefore, we tested whether HEPES-buffered SD medium (SD + HEPES) minimized the

exposure of dectin-1 ligands on C. gattii (Fig 4). The initial pH of the SD medium was approxi-

mately 5.0, whereas after 2 days of C. gattii and C. neoformans culture, the pH of the SD

medium was 1.9–2.1. The pH values of the before and after the culture in SD + HEPES

medium was in the range 7.0–7.3. Consequently, Fc dectin-1 bound to C. albicans cells cul-

tured in SD + HEPES medium but not to C. gattii PNG18, CAP59Δ, and CAP59C strains (Fig

4). SD + HEPES medium-induced cryptococcal cells exhibited a darker fluorescent signal than

the SD medium-induced controls after chitin and chitooligomer staining with calcofluor white

(S4 Fig). Additionally, we tested whether dectin-1 ligands in cryptococcal cells were reversibly

suppressed in SD + HEPES medium after induction in SD medium (S5 Fig). This test revealed

that the exposure of dectin-1 ligands was completely suppressed again in cryptococcal cells

that were sequentially cultivated in SD + HEPES medium after induction in SD medium (S5

Fig). The findings suggest that acidic environments are likely to alter the antigenic potential of

C. gattii.

Fig 2. Soluble dectin-1 binds to cell surface of cryptococcal cells. Deposition of Fc dectin-1 on live fungal cells (A) and heat-killed

fungal cells (B) was observed using a confocal laser-scanning microscope, and differential interference contrast (DIC) images and merge

fluorescent images (DIC + AF488) are shown. Bar = 10 μm.

https://doi.org/10.1371/journal.pone.0220989.g002
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Fig 3. C. gattii acapsular strain CAP59Δ also requires SD medium to induce dectin-1 and dectin-2 ligands. Deposition of Fc dectin-1 (A and

B), anti-β-1,3-glucan mAb (C), and Fc dectin-2 (D) on fungal cells were evaluated as described in Fig 1 and Fig 2. Live fungal cells (B and C) and

heat-killed fungal cells (A and D) were used for the deposition assay. The fluorescent signal was detected by flow cytometry (A and D) and confocal

laser-scanning microscopy (B and C). Capsule formation was observed using the conventional India ink method. Arrow heads indicate the capsule

erosion sites on C. gattii cells. Bar = 10 μm. Representative bar graph (mean ± SDs) from three independent experiments are shown. �: P< 0.05 as

determined via an unpaired t-test, W: C. gattii PNG18 (parent strain), Δ: C. gattii CAP59Δ (CAP59 deletant, acapsular strain), C: C. gattii CAP59C

(CAP59 revertant, capsular strain).

https://doi.org/10.1371/journal.pone.0220989.g003

C. gattii exposes PAMPs in SD medium

PLOS ONE | https://doi.org/10.1371/journal.pone.0220989 August 9, 2019 10 / 18

https://doi.org/10.1371/journal.pone.0220989.g003
https://doi.org/10.1371/journal.pone.0220989


BMDCs were strongly activated by C. gattii cells cultured in SD medium

Dectin-1 and dectin-2 ligands were exposed on C. gattii PNG18, CAP59Δ, and CAP59C strains

cultured in SD medium, but not in most common fungal culture medium YPD medium (Fig

3). Therefore, we subsequently evaluated the actual immunostimulatory ability of C. gattii
PNG18, CAP59Δ, and CAP59C cultured in SD medium (Fig 5). In the experiment, we used

BMDCs to analyze innate immune responses to SD medium-induced C. gattii cells as

described in a previous study [5] because BMDCs express dectin-1 and dectin-2 [16,22].

It has been demonstrated that phospho-Syk, -Akt, and -Erk1/2 increase in BMDCs after

10–30 min-stimulation with C. albicans [43,44], and our experiment revealed that both YPD

and SD medium-induced C. albicans cells similarly induced phosphorylation in BMDCs for 10

min (Fig 5A). The phosphorylation did not increase in BMDCs stimulated with C. gattii capsu-

lar strains PNG18 and CAP59C growing in YPD, whereas SD medium-induced C. gattii
strains, CAP59Δ particularly, increased the phosphorylation in BMDCs greatly (Fig 5A). The

results suggest that BMDCs instantly recognize capsular C. gattii cultured in SD medium.

We have previously demonstrated that BMDCs and neutrophils do not phagocytize unop-

sonized capsular cryptococcal cells cultured in YPD [5,6]. Therefore, we tested whether

BMDCs phagocytize capsular C. gattii cells cultured in SD medium (Fig 5B). The experiment

revealed that BMDCs more efficiently engulfed SD medium-induced PNG18 and CAP59C

than their YPD-induced control counterparts (Fig 5B). In contrast to capsular strains, both

YPD and SD medium-induced acapsular CAP59Δ strains were comparably engulfed by

BMDCs (Fig 5B).

In general, BMDCs secrete substantial amounts of inflammatory cytokines after fungal rec-

ognition and phagocytosis [14]. Therefore, we measured the amounts of IL-6 and IL-23 in cul-

ture supernatants of BMDCs stimulated by C. gattii and C. albicans cultured in YPD and SD

(Fig 5C). BMDCs produced IL-6 and IL-23 after stimulation with C. albicans regardless of cul-

ture conditions, whereas SD medium-induced C. gattii strains induced significantly greater

production of IL-6 and IL-23 by BMDCs than YPD medium-induced C. gattii strains (Fig 5C).

Despite the fact that SD and YPD medium-induced CAP59Δ were comparably engulfed by

BMDCs (Fig 5B), SD medium-induced CAP59Δ more effectively induced the protein phos-

phorylation (Fig 5A) and the production of inflammatory cytokines (Fig 5C). Overall, the find-

ings demonstrate that immunostimulatory potential in C. gattii capsular and acapsular strains

is upregulated in SD medium.

Fig 4. HEPES-buffered SD medium does not induce dectin-1 ligands on C. gattii. Deposition of Fc decin-1 on live fungal cells were evaluated via

flow cytometry as described above. Representative bar graph (mean ± SDs) from three independent experiments are shown. �: P< 0.05 versus

counterparts of SD medium without HEPES using an unpaired t-test.

https://doi.org/10.1371/journal.pone.0220989.g004
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Discussion

In the present study, we demonstrated that dectin-1 and dectin-2 ligands were exposed on C
gattii cells growing in SD medium and that SD medium-induced C. gattii influence the immu-

nostimulatory activity to BMDCs.

Our recent study showed that DC-based vaccination induced lung resident memory Th17

cells, which influence the protective effects against highly virulent C. gattii infection [39]. In the

DC vaccine, YPD medium-induced CAP60Δ was used as a vaccine antigen to prime BMDCs. We

believe that SD medium-induced acapsular cells including CAP59Δcould be the more favorable

vaccine antigens for the stimulation of protective T cells against highly virulent cryptococcosis.

It has been demonstrated that β-1,3-glucan and chitin are increased in cell walls recon-

structed in C. neoformans cultured in SD medium [27]. The study also indicated that the sui-

cide autolysis activity generated dead cells in SD medium [27]. In the present study, the

viability of C. gattii cells was maintained in SD medium, compared to that of C. neoformans
(S4 Fig). In addition, we observed the aberrant cell shapes of C. neoformans cultured in SD

Fig 5. BMDCs were strongly activated by C. gattii cells growing in SD medium. BMDCs were incubated with heat-killed (HK) fungal cells for 10

min (A, MOI = 2), 3 h (B, MOI = 3), or 24 h (C). Protein phosphorylation (A), phagocytosis (B), and cytokine production (C) were evaluated by

Western blotting, flow cytometry, and ELISA, respectively. For flow cytometry analysis, gates were set for CD11b+ CD11c+ BMDCs. Representative

bar graph (mean ± SDs) from three independent experiments are shown. #: P< 0.05 as determined via an unpaired t-test, �: P< 0.05 versus

counterparts of YPD medium using an unpaired t-test, W: C. gattii PNG18, Δ: C. gattii CAP59Δ, C: C. gattii CAP59C, SC: C. albicans SC5314.

https://doi.org/10.1371/journal.pone.0220989.g005

C. gattii exposes PAMPs in SD medium

PLOS ONE | https://doi.org/10.1371/journal.pone.0220989 August 9, 2019 12 / 18

https://doi.org/10.1371/journal.pone.0220989.g005
https://doi.org/10.1371/journal.pone.0220989


medium, whereas only partial erosion of the capsule was observed in C. gattii cells (Figs 2–3,

and S4 Fig). Although the autolysis activity in SD medium has also been observed in the model

fission yeast, Schizosaccharomyces pombe [45], the physiological role of cryptococcal suicide

autolysis in SD medium has remained unknown. Our findings suggest that C. gattii may have

a different suicide autolysis activity in SD medium compared with C. neoformans.
SD medium-induced cell wall reconstitution or secondary cell wall formation has been per-

ceived as a rescue system for the suicide autolysis in SD medium [27]. A previous study

showed that suicide autolysis was suppressed in C. neoformans growing in SD medium supple-

mented with neutral buffer 3-(N-morpholino)propanesulfonic acid [27]. The finding sug-

gested that acidification of SD medium was a key factor inducing autolysis of C. neoformans
[27]. In the present study, we observed the exposure of dectin-1 ligands in the partial erosion

sites of capsules on C. gattii cells growing in SD medium. Moreover, the exposure was not

observed in C. gattii cells growing in HEPES-buffered neutral SD medium. In the HEPES-buff-

ered SD medium, both C. gattii and C. neoformans had normal capsule and cell shapes (S4

Fig). The results suggest that the acidification of SD medium is a key trigger for the exposure

of dectin-1 ligands. Overall, the findings suggest that cell wall remodeling may be required for

the exposure of CLR ligands in cryptococcal cells.

However, we assume an additional key factor rather than medium acidification, because

medium acidification was not in perfect correlation with the exposure of dectin-1 ligands. In

the present study, we observed acidification in SD + YE (pH = 2.3–2.4) and Sabouraud

medium (pH = 3.5–3.7) after 2-days cultivation of C. gattii cells; however, the exposure of dec-

tin-1 ligands was not observed in C. gattii cells growing in the media (Figs 1–3). The results

indicate that crude components, such as yeast extract and polypepton, in the media may sup-

press suicide autolysis activity and cell wall remodeling, even under acidic environments. In

the case of S. pombe, autolysis is suppressed in SD medium supplemented with asparagine and

phosphate [45]. The autolysis activity in S. pombe has also been observed in a ura4 deletant

growing in YPD medium, in which they cannot synthesize uridine monophosphate [46,47];

therefore, a key factor in addition to medium acidification may influence suicide autolysis and

cell wall remodeling in cryptococcal cells. More studies are required to elucidate the additional

signal that induces the autolysis and cell wall remodeling in C. gattii cells.

Cell wall remodeling also occurred in C. neoformans recombinant, in which the gene for

pH-responsive transcriptional factor Rim101p was conserved in the fungal species [30,48]. In

the cell wall of rim101Δ, chitin oligomer and α-glucan are significantly increased compared to

that in the wild type strain. Notably, the rim101Δ strongly induces inflammatory responses in
vitro and in vivo [30]. These results indicate that C. neoformans requires the conserved tran-

scriptional factor for the cell wall reconstruction to evade immune surveillance [30]. Because

our findings on antigenic alteration induced in SD medium are consistent with the reports

associated with the rim101Δ phenotype, Rim101p and the relevant pathway are also potentially

associated with the cell wall remodeling of C. gattii cultured in SD medium.

We speculate that the acidification of SD medium resembles the phagosome acidic environ-

ment and that CLR ligands are exposed in phagosomes. It has been demonstrated that dectin-

1 and its adaptor protein CARD9 are accumulated in phagosomes [49–52]. The finding is con-

sistent with our speculation. Whereas C. gattii generally is generally less likely to be recognized

by the immune system, C. gattii cells are engulfed by innate immune cells, such as neutrophils,

in the presence of fresh serum components [6]. An acidic phagosome may stimulate C. gattii
cells to expose CLR ligands on the cell surface, and the exposure could enhance innate immune

responses, including the production of cytokines and reactive oxygen species. Further studies

are required to elucidate the physiological significance and regulation system of the antigenic

alteration in acidic environments in C. gattii.
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The present study had certain limitations: (1) Our findings do not fully address the relation-

ship between the absolute amounts and the exposure levels of β-1.3-glucan and α-mannan in

C. gattii cells growing in SD medium. A previous study demonstrated that the absolute

amounts of β-1.3-glucan were increased in SD medium-induced cryptococcal cells, which

reconstructed the cell wall via suicide autolysis activity [27]. We observed the localization of

dectin-1 ligands localized on the capsule erosion sites on C. gattii cells (Fig 3B and 3C). There-

fore, we presume that both amounts and exposure of β-1.3-glucan are increased in SD

medium-induced C. gattii cells. (2) Our data do not address the non-glucan ligands that are

recognized by dectin-1 in cryptococcal cells. The presence of SPG hardly disturbs the deposi-

tion of Fc dectin-1 on C. neoforomans H99 growing in SD medium compared with that on C.

gattii cells (Fig 1D). The deposition of Fc dectin-1 was significantly decreased in C. gattii cells

treated with β-1,3-glucanase; however, Fc dectin-1 still bound to C. gattii cells, even when they

were treated with β-1,3-glucanase (S2 Fig). These data suggest that dectin-1 can recognize not

only glucan but also other antigens expressed in cryptococcal cells. (3) Our work did not fully

identify the biochemical and physiological factors affecting the exposure of PAMPs in crypto-

coccal cells, as described above. (4) Our data do not adequately demonstrate that the upregula-

tion of immunostimulatory ability in SD medium-induced C. gattii cells depends on the

increment of accessible CLR ligands on the cell surface. It is likely that SD medium-induced C.

gattii cells increase not only the CLR ligands but also the PAMPs recognized by TLRs, NLRs,

and RLRs.

In conclusion, we demonstrated that C. gattii alters its antigenic potential in response to the

environment. The findings may offer insights that could facilitate the design of vaccine anti-

gens and innate immune responses against cryptococcal cells via CLRs.
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