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Although the major causative factors of Alzheimer’s disease (AD) are the accumulation
of amyloid β and hyperphosphorylated tau, AD can also be caused by metabolic
dysfunction. The major clinical symptom of AD is cognitive dysfunction. However,
AD is also accompanied by various secondary symptoms such as depression,
sleep–wake disturbances, and abnormal eating behaviors. Interestingly, the orexigenic
hormone ghrelin has been suggested to have beneficial effects on AD-related metabolic
syndrome and secondary symptoms. Ghrelin improves lipid distribution and alters insulin
sensitivity, effects that are hypothesized to delay the progression of AD. Furthermore,
ghrelin can relieve depression by enhancing the secretion of hormones such as
serotonin, noradrenaline, and orexin. Moreover, ghrelin can upregulate the expression
of neurotrophic factors such as brain-derived neurotrophic factor and modulate the
release of proinflammatory cytokines such as tumor necrosis factor α and interleukin
1β. Ghrelin alleviates sleep–wake disturbances by increasing the levels of melatonin,
melanin-concentrating hormone. Ghrelin reduces the risk of abnormal eating behaviors
by increasing neuropeptide Y and γ-aminobutyric acid. In addition, ghrelin increases
food intake by inhibiting fatty acid biosynthesis. However, despite the numerous studies
on the role of ghrelin in the AD-related pathology and metabolic disorders, there are only
a few studies that investigate the effects of ghrelin on secondary symptoms associated
with AD. In this mini review, our purpose is to provide the insights of future study
by organizing the previous studies for the role of ghrelin in AD-related pathology and
metabolic disorders.

Keywords: ghrelin, Alzheimer’s disease, metabolic syndrome, depression, sleep–wake disturbances, abnormal
eating behaviors

INTRODUCTION

Alzheimer’s disease (AD), characterized histopathologically by amyloid β aggregation and tau
hyperphosphorylation, is the most common cause of dementia (Querfurth and LaFerla, 2010).
Although AD is clinically characterized by progressive impairment of cognitive functions such as
episodic memory, it is also accompanied by secondary symptoms such as depression, sleep–wake
disturbances, and abnormal eating behaviors. Notably, some AD patients exhibit symptoms
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of major depressive episodes such as appetite changes, insomnia,
and dysphoria (Merriam et al., 1988; Novais and Starkstein,
2015; Okuda et al., 2019). In addition, subjects with mild
cognitive or behavioral impairment are more likely to experience
accelerated progression to AD or onset of dementia if they
have a history of depression (Wilson et al., 2002). Furthermore,
metabolic syndrome such as hyperglycemia, hyperinsulinemia,
and hypercholesterolemia is known to be the risk factor for AD
(Lane and Farlow, 2005; Nelson and Alkon, 2005; Razay et al.,
2007). Psychiatric and metabolic deficits are not only symptoms
of AD, but also markers of AD prognosis. Although there are
drugs that effectively delay AD-related cognitive impairment,
thus far, no therapeutic strategy has been established to treat the
psychiatric and metabolic symptoms of AD thus far.

Ghrelin is an orexigenic hormone which regulates body
weight, energy homeostasis, and metabolism through the
hypothalamus, and plays an enhancing role in insulin resistance
and growth hormone secretion (Pradhan et al., 2013; Muller et al.,
2015; Yanagi et al., 2018). Remarkably, extensive evidence has
indicated that ghrelin may alleviate AD-related pathology such
as Aβ accumulation (Dhurandhar et al., 2013; Jeong et al., 2018),
tau hyperphosphorylation (Kang et al., 2015), mitochondrial
dysfunction (Chung et al., 2007), impaired adult neurogenesis
(Moon et al., 2014), and neuroinflammation (Moon et al.,
2011; Sibilia et al., 2012). Therefore, due to its potential for
mitigating AD-related pathologies, ghrelin could be a possible
therapeutic target for AD (Jeon et al., 2019). In addition, several
studies have reported that ghrelin plays a protective role in
metabolic syndrome (Broglio et al., 2004) and various psychiatric
disorders, including depression (Carlini et al., 2012), sleep–
wake disturbances (Yannielli et al., 2007), and abnormal eating
behaviors (Overduin et al., 2012). However, the possible roles
of ghrelin in AD-related metabolic syndrome and psychiatric
disorders have not yet been investigated. Furthermore, although
ghrelin plays a pivotal role in energy metabolism and homeostasis
(Yanagi et al., 2018), the effects of ghrelin on metabolic disorders
and secondary symptoms of AD remain unclear. In this review,
we discuss the possibility of using ghrelin as a therapeutic
target for AD by presenting evidence for the potential roles of
ghrelin in the metabolic symptoms and secondary symptoms
associated with AD.

THE ROLE OF GHRELIN IN METABOLIC
SYNDROME AND SECONDARY
SYMPTOMS OF AD

The Role of Ghrelin in AD-Related
Metabolic Syndrome
Alzheimer disease is considered to be another type of diabetes,
and hyperinsulinemia and hypercholesterolemia are known to

Abbreviations: AMPK, AMP-activated protein kinase; ARC, arcuate nucleus;
BDNF, brain-derived neurotrophic factor; GABA, γ-aminobutyric acid; LHA,
lateral hypothalamus; NPY, neuropeptide Y; POMC, proopiomelanocortin; PVhd,
dorsal parvocellular paraventricular nucleus; ROS, reactive oxygen species; SCN,
suprachiasmatic nucleus; VLPO, ventrolateral preoptic nucleus.

promote AD pathogenesis (de La Monte and Wands, 2008; Merlo
et al., 2010). Hyperinsulinemia inhibits the activity of AMP-
activated protein kinase (AMPK) (Valentine et al., 2014), and
inhibition of AMPK activity as a result of metabolic syndrome
inactivates the pentose phosphate pathway (Saito et al., 2015).
Abnormal metabolic conditions including diabetes mellitus
may induce impairment of energy metabolism by increasing
the production of reactive oxygen species and mitochondrial
dysfunction (Bonomini et al., 2015; Bhatti et al., 2017) and
may accelerate cognitive impairment by promoting abnormal
release of neurotransmitters, particularly γ-aminobutyric acid
(GABA) (van Bussel et al., 2016). Several studies have suggested
that in neurodegenerative diseases, there exists a link between
insulin and cholesterol levels (Laws et al., 1991; Nelson and
Alkon, 2005). Indeed, insulin increases the activity of 3-hydroxy-
3-methylglutaryl-CoA reductase, the enzyme that catalyzes
an intermediate in cholesterol synthesis (Nelson and Alkon,
2005). In a previous study, individuals with type 2 diabetes
mellitus exhibited decreased cholesterol absorption and increased
cholesterol synthesis regardless of obesity (Simonen et al., 2002).
In the case of AD, Aβ-induced metabolic imbalance involving
AMPK results in tau phosphorylation and neuroinflammation
(Martinez de Morentin et al., 2010; Thornton et al., 2011; Lee
et al., 2013). Furthermore, AD patients suffer from insulin
signaling dysfunction due to a reduction in activity of tyrosine
kinase, an important effector system for insulin receptors
(Frolich et al., 1999), and decreased activities of elements
of insulin–PI3K–AKT signaling, which results in elevated
tau phosphorylation and decreased glucose metabolism (Liu
et al., 2011). In particular, apolipoprotein E (ApoE), a protein
responsible for the metabolism of plasma lipids (Jones et al.,
2019), is also associated with AD (Lane and Farlow, 2005).
Reportedly, polymorphism of ApoE allele, especially ApoE ε4,
attributes to risk of AD development by increasing Aβ and Tau
aggregation, whereas ApoE ε2 exhibits protective effects on risk
of AD development (Verghese et al., 2011). Moreover, ApoE ε4
induces dysregulation of cerebral metabolism by decreasing lipid
and glucose metabolism (Brandon et al., 2018). Interestingly, the
control of insulin and plasma glucose by ghrelin administration
can vary depending on the details of administration (i.e.,
duration, route, and dose) (Nieminen and Mustonen, 2004;
Theander-Carrillo et al., 2006; Barazzoni et al., 2007a; Goshadrou
et al., 2015). In rats, acute (1 day) administration of ghrelin
increased levels of insulin and fasting plasma glucose, but
chronic (21 days) administration of ghrelin normalized these
upregulations (Goshadrou et al., 2015). The mechanism of insulin
and glucose regulation after administration of exogenous ghrelin
has not yet been clearly identified. Known mechanisms through
which insulin inhibits ghrelin include upregulation of the
AMPK- uncoupling protein 2 (UCP2) pathway through AMPK
phosphorylation and UCP2 expression (Chmielewska et al., 2010;
Wang et al., 2010), and the IA-2β pathway, which inhibits
glucose-stimulated insulin through induction of IA-2β (Doi
et al., 2006). These two pathways independently inhibit insulin.
Remarkably, ghrelin not only regulates insulin but also regulates
nigrostriatal dopamine function in a UCP2-dependent manner
(Andrews et al., 2009). In addition, upregulation of UCP2 has
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been demonstrated to have a protective effect in animal models
of ischemic stroke and Parkinson disease (Andrews et al., 2009;
Liu et al., 2009).

The concentration of ghrelin is decreased in the middle-
aged and elderly people with metabolic syndrome compared
to individuals of the same age who do not have metabolic
syndrome, and its concentration rapidly is decreased as metabolic
abnormalities intensify (Ukkola et al., 2006; Serra-Prat et al.,
2009; Mora et al., 2014). Several studies have suggested that
ghrelin may be involved in the metabolism of insulin and
glucose. In healthy subjects, administration of acyl-ghrelin
reduced insulin levels and increased glucose levels (Broglio et al.,
2004). By contrast, administration of des-acyl-ghrelin improved
glucose metabolism and insulin sensitivity in subjects (Benso
et al., 2012). In addition, administration of acyl-ghrelin alone
to growth hormone–deficient patients increases insulin and
glucose levels rapidly but decreases insulin sensitivity, whereas
administration of acyl-ghrelin and des-acyl-ghrelin increases
insulin sensitivity (Gauna et al., 2004). Moreover, transgenic mice
overexpressing des-acyl-ghrelin exhibited a reduction in white
adipose tissue weight and improvement in glucose tolerance
and insulin sensitivity (Zhang et al., 2008). In a previous study,
obese children with metabolic syndrome exhibited decreased
levels of des-acyl-ghrelin and an increased acyl-ghrelin/des-acyl-
ghrelin ratio compared to obese children without metabolic
syndrome (Pacifico et al., 2009). Similarly, obese individuals with
normoglycemia and type 2 diabetes mellitus exhibited increased
plasma levels of acyl-ghrelin and decreased levels of des-acyl-
ghrelin compared to lean individuals (Rodriguez et al., 2009).
Therefore, individuals with metabolic syndrome and obesity
have a higher acyl-ghrelin/des-acyl-ghrelin ratio than non-obese
individuals with metabolic syndrome, suggesting that excessive
acyl-ghrelin levels may promote insulin resistance (Barazzoni
et al., 2007b). Moreover, administration of ghrelin causes tissue-
specific changes in the activity of mitochondrial oxidative
enzyme, the expression of gene involved in lipid metabolism,
and triglyceride content in rats, suggesting that ghrelin may be
involved in the regulation of lipid distribution and metabolism
(Barazzoni et al., 2005).

Patients with AD exhibited lower lean mass compared to
controls. Although patients with AD and controls exhibited
similar basal levels of ghrelin, the area under the curve value
was lower in male patients with AD than in control males
(Theodoropoulou et al., 2012). Although further evidence and
investigation are required, a previous study by Yoshino et al.
(2018) showed increased levels of serum acyl-ghrelin in AD
subjects compared to control subjects that might be a result
of changes of the ghrelin pathway in brain (Yoshino et al.,
2018). Thus, further deliberate examination and interpretation
should be made. Given that ghrelin-O-acyltransferase blockade
reduces the acyl-ghrelin/des-acyl-ghrelin ratio, des-acyl-
ghrelin administration could be a promising therapeutic
approach for metabolic dysfunction (Barnett et al., 2010). It is
possible that the increased acyl-ghrelin/des-acyl-ghrelin ratio
in individuals with obesity may promote insulin resistance and
hyperinsulinemia (Barazzoni et al., 2007b). Insulin resistance
and hyperinsulinism may increase the prevalence of AD by

increasing Aβ-related metabolism and inflammation in the
brain (Craft, 2007). Additionally, insulin transport to the brain
is reduced, causing insulin deficiency (Baura et al., 1996).
Furthermore, neurofibrillary tangles containing phosphorylated
tau were observed in the hippocampus of insulin receptor
substrate 2 knockout mice, indicating that insulinlike growth
factor-1 and insulin are associated with tau phosphorylation
(Schubert et al., 2003). These results suggest that metabolic
abnormalities such as hyperinsulinemia and insulin resistance
promote AD development (DiStefano et al., 2007). Both in vitro
and in vivo studies have reported that an optimal concentration
of insulin reduced Aβ production through increasing the levels
of α-secretase ADAM10, sAPPα, and C83 and decreasing the
levels of β-secretase BACE1, sAPPβ, and C99 (Vandal et al.,
2014; Wang et al., 2014). Furthermore, antidiabetic drugs such
as metformin and peroxisome proliferator-activated receptor-γ
agonists may have beneficial effects on preventing or improving
cognitive dysfunction and pathogenesis of AD (Crisby et al.,
2002; Cong et al., 2010; Akter et al., 2011). Therefore, given that
ghrelin plays major roles in metabolism, it may be a noteworthy
therapeutic target for AD (Gahete et al., 2011; Eslami et al.,
2018). Nonetheless, considering the fact that the area under the
curve value of ghrelin was increased by glucose loading only in
male patients with AD, not in female patients (Theodoropoulou
et al., 2012), and the higher basal ghrelin levels in female healthy
and opposite-sex twin pair subjects than men (Makovey et al.,
2007; Song et al., 2017), difference in effects of ghrelin for
AD-related metabolic syndrome according to gender should be
examined in the future.

The Role of Ghrelin in AD-Related
Depression
Depression is the most common secondary symptom in patients
with AD and is associated with accelerated cognitive impairment
(Bassuk et al., 1998; Modrego, 2010). In particular, late-onset
depression is considered to be a risk factor for AD development
and is more strongly associated with cognitive decline than early-
onset depression (Devanand et al., 1996; van Reekum et al., 1999;
Wilson et al., 2002). An increase in glucocorticoid production
is characteristic of early AD (Rasmuson et al., 2001), and
hypothalamic–pituitary–adrenal (HPA) axis dysfunction caused
by excessive glucocorticoid secretion and reactivity promotes the
development of depression (Zunszain et al., 2011). In addition,
the limbic lobe, hippocampus, amygdala, and anterior and
posterior cingulate cortices are involved in the pathophysiology
of depression; a decrease in the density/structural plasticity
of these areas has been identified in patients with depression
(Rajkowska, 2000; Nestler et al., 2002; Ries et al., 2009) and in
patients with early AD (Braak et al., 1993; Minoshima et al., 1997;
Gastard et al., 2003; Poulin et al., 2011). Moreover, dysfunction
of the monoaminergic system, in particular the serotonergic
and noradrenergic systems, has been shown to occur in both
depression and AD (Ressler and Nemeroff, 2000; Versijpt et al.,
2003; Kepe et al., 2006; Chalermpalanupap et al., 2013).

Chronic stress–induced glucocorticoid upregulation
promotes neuronal damage, induces structural changes,
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and decreases the expression of brain-derived neurotrophin-3
and neurotrophic factor (BDNF) mRNA in the hippocampus
(Smith et al., 1995; Nestler et al., 2002). Ghrelin, which has a
protective effect on metabolic disturbances induced by chronic
stress, has been reported to also have protective effects against
depressive-like responses in experimental animals (Lutter
et al., 2008; Labarthe et al., 2014). In addition, the rat model
of diabetes exhibits lower hippocampal BDNF mRNA levels
compared to control rats, while administration of ghrelin
significantly upregulates BDNF mRNA levels in a rat model
of diabetes (Ma et al., 2011). Olfactory bulbectomy induced
depressive-like behavior in mice, and this deficit was reversed
by ghrelin administration, indicating that ghrelin exhibits
an antidepressant-like effect (Carlini et al., 2012). Moreover,
olfactory bulbectomy decreased noradrenaline levels and
serotonin turnover and increased the levels of proinflammatory
cytokines such as interleukin 1β (IL-1β) and tumor necrosis
factor α (TNF-α) (Hellweg et al., 2007; Song et al., 2009;
Yang et al., 2014; Chang et al., 2016). However, exogenous
ghrelin inhibited the release of proinflammatory cytokines and
increased noradrenaline levels and serotonin turnover, further
demonstrating the antidepressant-like effect of ghrelin (Date
et al., 2006; Kawakami et al., 2008; Waseem et al., 2008; Hansson
et al., 2014). Moreover, increased ghrelin levels induced by
calorie restriction led to anti–depressant-like effects. By contrast,
the calorie restriction–induced anti–depressive-like effects
were not observed in growth hormone secretagogue receptor
(GHS-R) null mice, and these animals exhibited increased social
avoidance compared to their wild-type littermates (Lutter et al.,
2008). Notably, GHS-R1 is known to be involved in various
psychological conditions, including depression (Guo et al.,
2019). Thus, ghrelin may alleviate depressive-like responses
by acting on GHS-R1–expressing neurons (Abizaid et al., 2006;
Diano et al., 2006; Lutter et al., 2008).

Mechanisms related to the pathogenesis of depression
include HPA axis dysfunction, monoaminergic system deficiency,
inflammation, and neurodegeneration (Zunszain et al., 2011).
Therefore, ghrelin may alleviate depressive symptoms by
upregulating BDNF mRNA, decreasing glucocorticoid levels,
rebalancing the monoaminergic system, stimulating GHS-R1–
expressing neurons to modulate mood and synapse formation,
and regulating the release of proinflammatory cytokines such as
IL-1β and TNF-α. Unfortunately, few studies have investigated
the role of ghrelin in AD-related depression. However, given the
antidepressant-like effect of ghrelin observed in previous animal
studies, we hypothesize that ghrelin may have a therapeutic effect
on depression in AD patients.

Other neuropeptides, including neurotensin and
neuropeptide Y (NPY), have been shown to be involved in
the pathogenesis of depression. Interestingly, the effects of
neurotensin were opposite to those of ghrelin on food intake
(Cooke et al., 2009). In addition, neurotensin neurons are known
to play important roles in regulation of energy balance controlled
by ghrelin and leptin (Brown et al., 2017). Notably, mRNA levels
of ghrelin and expression of its G protein–coupled receptors
(neurotensin receptors 1 and 2) are decreased, whereas levels of
neurotensin tend to decrease in the temporal lobe of patients with
AD (Gahete et al., 2010). In another study, density of amyloid

plaque in the occipital cortex was negatively correlated with
density of neurotensin neurons in postmortem suprachiasmatic
nucleus (SCN) (Hu et al., 2013). Moreover, neurotensin receptor
1 knockout mice showed increased depressive-like behaviors
in the tail suspension test (Fitzpatrick et al., 2012). Despite the
conflicting results from clinical studies examining the roles of
NPY in depression, evidence strongly supports the involvement
of NPY in pathogenesis of depression (Morales-Medina et al.,
2010). In addition, levels of NPY vary by the locations of
sampling and models of AD (Duarte-Neves et al., 2016).
Considering, ghrelin cross talks with NPY neurons in the arcuate
nucleus (ARC) in rats (Kohno et al., 2003) and the evidence
that ghrelin increases gene expression of NPY in the ARC in
hypothalamic cultures of rats (Goto et al., 2006), the regulatory
effect of ghrelin on NPY in AD-related depression should be
examined in the future. Although the interacting mechanisms
among ghrelin, neurotensin, and NPY in AD-related depression
remain to be examined, neurotensin and NPY, at least, seem
to be mediating some AD-related depression-like behaviors by
interacting with ghrelin.

The Role of Ghrelin in AD-Related
Sleep–Wake Disturbances
Maintaining a normal circadian rhythm is essential in order
to optimize quality of life and preserve health. Sleep–wake
disturbances are common secondary symptoms of AD that have
been observed in studies on patients with AD (Uddin et al.,
2020) and on the 3×Tg and 5×FAD mouse models of AD
(Sterniczuk et al., 2010; Sethi et al., 2015). Moreover, the pineal
gland, which adjusts sleep patterns by producing melatonin, and
the SCN, which is involved in the regulation and production
of biological rhythms, are vulnerable regions in AD (Buijs and
Kalsbeek, 2001; Wu and Swaab, 2005; Roy et al., 2019). A recent
study using magnetic resonance imaging of the brain showed that
the pineal volume was decreased in mild cognitive impairment
(MCI) patients who converted to AD than in MCI patients who
did not convert to AD (Matsuoka et al., 2020). Furthermore,
sleep–wake cycle disturbances showed to increase Aβ plaques
in the brain of AD mouse models (Kang et al., 2009; Rothman
et al., 2013). The level of Aβ42 protein in cerebrospinal fluid
of healthy middle-aged individuals was increased in the sleep
deprivation group compared to that in the unrestricted sleep
group (Ooms et al., 2014). In particular, sundowning, a common
symptom of AD with circadian rhythm disruption, occurs in the
afternoon and evening and is accompanied by seven destructive
actions: combativeness, agitation or purposeless movement,
wandering, prolonged incoherent vocalization, hallucinations,
confusion, and disorientation (Gallagher-Thompson et al., 1992;
Volicer et al., 2001). Regulations of sleep and brain functions
are related to regulatory pathways including hippocampal
signaling pathway and common neurotransmitter systems such
as orexinergic and GABAergic systems (Prince and Abel, 2013).
However, dysfunction of sleep function destabilizes physiology,
disturbs sleep–wake timing, and promotes other pathological
symptoms such as cognitive and metabolic deficits (Wulff et al.,
2010). Surprisingly, the orexigenic peptide ghrelin regulates
circadian rhythm (Yannielli et al., 2007; LeSauter et al., 2009;
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Steiger et al., 2011). Studies have been shown that administration
of ghrelin decreased REM sleep and increased slow wave sleep
in elderly men (Kluge et al., 2010) and promoted non-REM
sleep in male mice (Obal et al., 2003). Several studies have
been reported that GHS-R1 mRNA is highly expressed in
the SCN (Zigman et al., 2006) and ARC (Jeon et al., 2019).
It is well known that neurons in the SCN are projected to
the dorsal parvocellular paraventricular nucleus (PVHd), and
neurons in the PVHd are projected to sympathetic preganglionic
neurons, which in turn regulate melatonin secretion by the pineal
gland (Saper et al., 2005). Therefore, ghrelin could alleviate
sleep–wake disturbances through increasing melatonin secretion
by binding to GHS-R1 in the SCN and enhancing the regulatory

pathways that stimulate the pineal gland. Additionally, the
ARC neurons innervate to the ventrolateral preoptic nucleus
(VLPO) and lateral hypothalamus (LH) via the dorsomedial
hypothalamus. The VLPO is involved in sleep, and the LH is
associated with wakefulness by regulating melanin-concentrating
hormone (Saper et al., 2005). Thus, ghrelin could enhance sleep–
wake cycle by stimulating the VLPO and LH through binding
to GHS-R1 in the ARC. Moreover, ghrelin affects circadian
locomotor output cycles kaput (CLOCK)–dependent functions
(Garaulet et al., 2011). Taken together, these data indicate that
ghrelin may alleviate sleep-wake disturbances by stimulating
the SCN and ARC and ultimately regulate the function of
CLOCK-related activity.

TABLE 1 | The role of ghrelin in metabolic syndrome and secondary symptoms of Alzheimer’s disease.

Subjects or experimental
models

Major findings References

Metabolic
syndrome

Growth hormone–deficient
patients

Combined treatment with acyl-ghrelin and des-acyl-ghrelin enhanced insulin sensitivity,
while administration of acyl-ghrelin alone reduced insulin sensitivity

Gauna et al., 2004

Patients with metabolic
syndrome

Patients with metabolic syndrome exhibited lower total ghrelin levels and a higher
acyl-ghrelin/des-acyl-ghrelin ratio than non-obese individuals with metabolic syndrome

Barazzoni et al., 2007b

Obese children with metabolic
syndrome

Obese children with metabolic syndrome exhibited decreased levels of des-acyl-ghrelin
and an increased acyl-ghrelin/des-acyl-ghrelin ratio compared to obese children without
metabolic syndrome

Pacifico et al., 2009

Obese patients with
normoglycemia and type 2
diabetes mellitus

Obese individuals with normoglycemia and type 2 diabetes mellitus exhibited increased
plasma levels of acyl-ghrelin and decreased levels of des-acyl-ghrelin compared to lean
individuals

Rodriguez et al., 2009

Patients with moderate
Alzheimer’s disease

Patients with Alzheimer’s disease exhibited a lower area under the curve value for
ghrelin compared to control patients

Theodoropoulou et al.,
2012

Healthy young male subjects Acyl-ghrelin reduced insulin levels and increased glucose levels, whereas
des-acyl-ghrelin antagonized these effects

Broglio et al., 2004

Healthy young subjects Administration of des-acyl-ghrelin reduced the area under the curve for glucose and
free fatty acid. In addition, des-acyl-ghrelin time-dependently increased the area under
the curve of insulin

Benso et al., 2012

Isolated rat adipocytes Acyl-ghrelin inhibited lipolysis Muccioli et al., 2004

Isolated mice pancreatic islets Acyl-ghrelin decreased spontaneous pancreatic polypeptide release, and
des-acyl-ghrelin counteracted this

Kumar et al., 2010

ddY mice Administration of des-acyl-ghrelin decreased food intake and gastric emptying and
increased the gene expression of hypothalamic neuropeptides such as cocaine- and
amphetamine-regulated transcript and urocortin

Asakawa et al., 2005

Transgenic mice
overexpressing des-acyl-ghrelin

Mice overexpressing des-acyl-ghrelin exhibited a decrease in gastric emptying rate,
body weight, food intake, fat pad mass, and plasma triglyceride levels

Transgenic mice
overexpressing des-acyl-ghrelin

Overexpression of des-acyl-ghrelin inhibited adipose tissue development and improved
glucose tolerance and insulin sensitivity

Zhang et al., 2008

C57BL/6 mice Inhibition of ghrelin-O-acyltransferase reduced body weight and fat mass Barnett et al., 2010

Depression Mice subjected to bilateral
olfactory bulbectomy

Intracerebroventricular administration of ghrelin reversed the depressive-like phenotype
induced by olfactory bulbectomy

Carlini et al., 2012

Calorie-restricted mice growth
hormone secretagogue
receptor null mice

Increased ghrelin levels induced by calorie restriction promoted antidepressant-like
responses, whereas these effects were abolished in growth hormone secretagogue
receptor null mice

Lutter et al., 2008

Sleep–wake
disturbances

Sprague–Dawley rats Microinjection of ghrelin into the lateral hypothalamus stimulated wakefulness and food
consumption

Szentirmai et al., 2007

C57BL/6J mice
mPeriod2Luciferase mice

After food deprivation, intraperitoneal injection of ghrelin or growth hormone–releasing
peptide-6 altered circadian rhythm by directly acting on the suprachiasmatic nucleus

Yannielli et al., 2007

Overweight/obese patients Ghrelin affected a circadian locomotor output cycle kaput-dependent mechanism Garaulet et al., 2011

Abnormal eating
behaviors

Healthy volunteers Ghrelin increased appetite and food intake Wren et al., 2001

Male Wistar rats Intracerebroventricular injection of ghrelin increased food intake Wren et al., 2000

Neuropeptide Y knockout mice Intracerebroventricular injection of ghrelin increased food intake and body weight Tschop et al., 2000
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Areas such as the SCN, ARC, and pineal gland that influence
the regulation and production of biological rhythms are damaged
in patients and mouse models of AD, and these damaged regions
cause sleep–wake disturbances (Do et al., 2018; Roy et al., 2019;
Matsuoka et al., 2020). In addition, sleep–wake disturbances
increase level of Aβ protein and plaques in healthy individuals
and mouse models of AD (Kang et al., 2009; Rothman et al.,
2013). Accumulating evidence has demonstrated that ghrelin
not only has beneficial effects on sleep–wake cycle, but also
stimulates areas involved in biological rhythms (Yannielli et al.,
2007; LeSauter et al., 2009; Steiger et al., 2011). Because there is
almost no study on the effects of ghrelin in AD-related sleep–
wake disorders, further well-controlled clinical trials regarding
the positive effects of ghrelin on disruption in the circadian
rhythm and quality of life in patients with AD are needed.

The Role of Ghrelin in AD-Related
Abnormal Eating Behaviors
In a previous clinical study, patients with AD exhibited weight
loss (Barrett-Connor et al., 1998). Aging causes changes in
appetite and growth hormone secretion (Creyghton et al., 2004),
and these changes are referred to as “anorexia of aging.” Anorexia
of aging causes several sequelae such as undernutrition, frailty,
and sarcopenia (Cox et al., 2019). In addition, aging increases
insulin resistance and reduces glucose metabolism (Shou et al.,
2020). Insulin levels increase with age, and insulin may promote
the development of anorexia. Moreover, aging-related leptin and

ghrelin resistance may be related to anorexia of aging (Chapman
et al., 2002; Chapman, 2004, 2007; Di Francesco et al., 2007).

Ghrelin is known to increase food intake (Tschop et al.,
2000; Wren et al., 2000; Wren et al., 2001) and promote
gastric emptying (Inui et al., 2004; Overduin et al., 2012).
In particular, ghrelin regulates fatty acid metabolism in the
ventromedial nuclei of the hypothalamus (VMH) to regulate
food intake. The orexigenic effect of ghrelin is mediated via
the phosphorylation of hypothalamic AMPK, which decreases
malonyl-CoA levels and increases carnitine palmitoyltransferase-
1 activity (Lopez et al., 2008). In the hypothalamic ARC,
agouti-related protein and NPY are expressed in orexigenic
neurons, and proopiomelanocortin (POMC) and amphetamine-
and cocaine-regulated transcript are expressed in anorexigenic
neurons (Zheng et al., 2003; Chen et al., 2004). In a previous
study, ghrelin suppressed the activity of POMC-expressing
neurons in the ARC by activating NPY-expressing neurons,
which promoted the release of GABA (Cowley et al., 2003).
Moreover, ghrelin reduced malonyl-CoA levels by suppressing
the expression of fatty acid synthase in the VMH (Lopez
et al., 2008). Indeed, intracerebroventricular infusion of
ghrelin stimulated food intake via a mechanism involving
the dopamine D1 receptor in rats (Overduin et al., 2012).
In addition, ghrelin administration stimulated cerebral
responses to food in the amygdala, anterior insula, orbitofrontal
cortex, and striatum of healthy subjects (Malik et al., 2008).
Interestingly, rivastigmine administration increased appetite by
increasing acyl-ghrelin/des-acyl-ghrelin ratio in AD patients

FIGURE 1 | The mechanism of action of ghrelin in metabolic syndrome and secondary symptoms of Alzheimer’s disease. Upregulation is indicated by plus (+),
downregulation is indicated by minus (–). Shadowed background color indicates the beneficial effects of ghrelin on metabolic syndrome and secondary symptoms of
Alzheimer’s disease.
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(Furiya et al., 2018) implying AD-related cachexia could
potentially be alleviated by promoting appetite through
ghrelin administration. Thus, the orexigenic effect of ghrelin
may prevent the loss of body weight and lean mass in
AD patients.

CONCLUSION

Taken together, there has been a lack of evidence demonstrating
that ghrelin can alleviate metabolic syndrome and secondary
symptoms associated with AD. However, it has been
suggested that ghrelin may affect the progression of AD by
alleviating metabolic syndrome. Moreover, it is thought that
ghrelin may control secondary symptoms of AD such as
depression, sleep–wake disturbances, and abnormal eating
behaviors (Table 1 and Figure 1). Given the evidence
for the involvement of ghrelin at various stages of AD
progression, it is necessary to further examine the role of

ghrelin in metabolic syndrome and in the secondary symptoms
of AD.
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