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A five ferroptosis-related genes risk score for 
prognostic prediction of osteosarcoma
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Abstract 
Background: Osteosarcoma (OS) is the most common bone cancer in adolescents, and has a high propensity to metastasize. 
Ferroptosis is a unique modality of cell death, driving the metastasis of cancer cells. Identifying ferroptosis-related genes (FRGs) 
as prognostic factors will be critical to predict the outcomes of OS. This study aimed to explore the prognostic value of FRGs in 
OS and build a prognostic model to indirectly improve OS patients’ outcomes.

Methods: OS data were downloaded from the TARGET database and 2 Gene Expression Omnibus datasets. Univariate Cox 
regression was conducted to assess FRGs. A risk score model basing on 5 FRGs was constructed via LASSO-Cox regression. 
Multivariate Cox regression analysis was used to determine the independent prognostic factors. The Nomogram model was built 
using independent prognostic factors. The relationship between the risk score and the immune cell infiltration was estimated by 
CIBERSORT, and the correlation between the risk score and immune checkpoints was also analyzed.

Results: Based on the prognosis-related FRGs, we built a regression model: Risk score = (−0.01382853 × ACSL4) − (0.05371778 
× HMOX1) − (0.02434655 × GPX4) − (0.16432810 × PRNP) − (0.15567120 × ATG7). OS patients with high risk score tended to 
suffer from poor prognosis, validated in 2 Gene Expression Omnibus datasets. The Nomogram model showed the combination 
of the risk score and the tumour-node-metastasis stage improved predictive effectiveness. The risk score was also related to 
immune cell infiltration and immune checkpoint expression.

Conclusion: The risk score model based on 5 FRGs was a reliable prognostic predictive indicator for OS patients.

Abbreviations: ACSL4 = Acyl-CoA synthetase long-chain family member 4, ATG7 = autophagy related 7, FRGs = ferroptosis-
related genes, GEO = Gene Expression Omnibus, GPX4 = glutathione peroxidases 4, HMOX1 = heme oxygenase-1, ICPs = 
immune checkpoints, OS = osteosarcoma, PRNP = prion protein gene, TARGET = therapeutically applicable research to generate 
effective treatment, TNM = tumour-node-metastasis.
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1. Introduction

Osteosarcoma (OS) is the most common malignant bone can-
cer in children and adolescents, peaking at 15 to 19 years 
old.[1,2] The morbidity is over 3 cases per million per year 
worldwide. The mortality is higher in males than in females.[3,4] 
Besides, the 5-year disease-free survival rate of primary cancer 
patients is 52.9%, and it is even lower in OS patients with 
metastasis.[5] The tumor mass of OS often found in the dis-
tal femur and proximal bones is mainly composed of tumor 
cells that are related to the production of osteoid tissue or 
immature bone.[6,7] Current treatments for OS mainly include 
resection of the primary tumor with or without adjuvant che-
motherapy. The development of treatment methods for OS 
patients has improved the survival rates, but the prognosis of 
OS patients with metastasis or recurrent disease remains is still 
poor.[8,9] Grade, size, and location are the 3 most important 

prognostic parameters in clinical cases, but the significant 
morphologic overlaps between bone cancer subtypes and the 
preference for less invasive methods raise great challenges for 
pathologists.[10,11]

Ferroptosis, a term coined by Dr Brent R Stockwell, is a 
form of regulated cell death depending on iron,[12] which is 
caused by the accumulation of reactive oxygen species based 
on lipid.[13] It has a direct or indirect effect on the glutathione 
peroxidase through different pathways, leading to a reduction 
of antioxidant capacity and accumulation of lipid reactive oxy-
gen species, eventually causing oxidative cell death.[14] Previous 
studies have indicated that the induction of ferroptosis was a 
potential treatment option, as it is able to cause certain cancer 
cell death.[15,16] Erastin (a type of ferroptosis inducer) also has 
anti-cancer effects in certain cancer cells when it is used with or 
without chemotherapy drugs such as cisplatin.[17] The ferropto-
sis-related genes (FRGs) have been reported to correlate with 
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the prognosis of hepatocellular carcinoma and glioma.[15,18] 
Zhu et al[19,20] have shown that FRGs may also be involved in 
the progression and prognoses of esophageal adenocarcinoma 
and bladder cancer. Moreover, prognostic models constructed 
by FRGs have exhibited potential prognostic values and may 
help predict the prognosis of cancer patients to assist clinical 
doctors in choosing individual treatments.[21] However, only a 
few studies about the prognostic values of FRGs for OS patients 
were reported.[22]

Herein, we systematically analyzed the prognostic values of 
FRGs in OS patients hoping to construct a reliable FRG-based 
prognostic model to facilitate OS diagnosis and treatment.

2. Materials and Methods

2.1. Data collection

The mRNA expression profiles of 88 OS patients were down-
loaded from the Therapeutically Applicable Research to 
Generate Effective Treatment (TARGET, https://ocg.cancer.gov/
programs/target). Eight-four patients had complete survival 
information (Table 1). We also downloaded GSE16091 (n = 34) 
and GSE21257 (n = 53) datasets from the Gene Expression 
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). A gene 
list including 40 FRGs was obtained from the GSEA database 
(http://www.gsea-msigdb.org/).

2.2. Cluster analysis

Cluster analysis was performed on the 84 OS patients based on 
the mRNA expression levels of FRGs using the k-means method 
in R.

2.3. Construction and validation of the risk score model

The 84 OS samples in TARGET database were taken as training 
set, and the GSE16091 (n = 34) and GSE21257 (n = 53) were 
merged as an independent validation set, named meta-GEO 
(n = 87).

The univariate Cox regression analysis was applied to 
select prognosis-related FRGs, and the filtering criteria was “P 
value < .05.”

Then, we utilized the “glmnet” package in R[23] to apply 
LASSO-Cox regression analysis to further optimize the progno-
sis-related FRGs. The screened genes were used to calculate the 
Risk Score for each patient using the following formula:

Risk score =
n∑

i=1

Coefi∗Xi,

In this formula, Coefi represented the risk coefficient and Xi 
represented the gene expression value. The “survival,” “sur-
vminer” packages in R were used to determine the best cutoff 
value of risk score. And patients in the training set and validat-
ing set were divided into low-risk and high-risk groups based on 
the best cutoff value.

2.4. Survival analysis

Kaplan–Meier method in “survival” and “survminer” pack-
ages was used to estimate the overall survival rates in dif-
ferent groups and the significance of difference was tested 
by the log-rank test. The Multivariate Cox regression was 
used to analyze the independent prognostic value of the risk 
score model for OS patients compared with other clinical 
features.

2.5. Construction and validation of nomogram model

To predict the prognosis of OS patients in 1, 3, and 5 years, we 
utilized the “rms” package (https://CRAN.R-project.org/pack-
age=rms) in R to construct a nomogram model. Independent 
factors filtered from the multivariate Cox regression were 
included to build the nomogram model. Calibrated curves 
were drawn to test the prognostic power of the nomogram 
model.

2.6. Calculation of immune cells infiltration proportion

The CIBERSORT was used to calculate the relative proportion 
of immune cells in each sample.[24] CIBERSORT utilized a 547 
barcode gene expression matrix to characterize the composition 
of immune cells.

2.7. Statistical analysis

The correlations between the immune cells were analyzed by 
Pearson or Spearman coefficients. The difference in immune 
checkpoints (ICPs) expression between high-risk and low-risk 
groups was analyzed by the Wilcoxon rank sum test. All anal-
yses were conducted in R (version 4.0.2, R Core Team, Vienna, 
Austria).

Table 1

Clinicopathological characteristics of OS patients from TARGET database.

Characteristics 

Patients (N = 84)

N % 

Gender Female 37 44.05
Male 47 55.95

Age (median) ≤14 44 52.38
>14 40 47.62

Grade I/II 19 22.62
III/IV 16 19.05
Unknown 49 58.33

Survival time Long (>5 yr) 28 33.33
Short (<5 yr) 56 66.67%

OS status Dead 27 32.14%
Alive 57 67.86%

OS = osteosarcoma.

https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
https://www.ncbi.nlm.nih.gov/geo/
http://www.gsea-msigdb.org/
https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=rms
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3. Results

3.1. Cluster of OS patients based on FRGs expression 
levels

To identify the potential influence of FRGs expression on OS 
development, we obtained a gene list containing 40 FRGs from 
GSEA database (Table  2) and performed cluster analysis on 
the OS samples in the TARGET database based on the FRGs 
expression levels. According to the sum of the squared errors 
in the k-means method, the number of cluster k = 2 was cho-
sen (Fig. 1A). OS samples were separated into 2 groups, and 
they were named the FRGs-high group and the FRGs-low 
group (Fig. 1B). After conducting the Kaplan–Meier survival 
analysis, we found a significant difference in overall survival 
between the 2 groups (P = .029) (Fig. 1C). We speculated that 
FRGs expression had the potential to predict the outcomes of 
OS patients.

3.2. Identification and validation of a risk score model for 
OS

To obtain the independent OS-associated prognostic markers 
in the 40 FRGs, the univariate Cox regression analysis was 
conducted. According to the hazard ratio, 12 genes (ATG7, 
PRNP, ACSL4, FTL, HMOX1, GSS, ACSL5, FTH1, LPCAT3, 
GPX4, SLC39A8, and MAP1LC3B) were found significantly 
associated to the outcome of OS patients (Fig.  2A). Then 
the LASSO-Cox analysis was performed to optimize the 12 

independent prognostic markers into 5 FRGs, including Acyl-
CoA synthetase long-chain family member 4 (ACSL4), heme 
oxygenase-1 (HMOX1), glutathione peroxidases 4 (GPX4), 
prion protein (PRNP) and autophagy related 7 (ATG7) 
(Fig.  2B). We finally constructed the regression model: risk 

Table 2

FERROPTOSIS_Gene.

MAP1LC3C SLC39A14 
SLC11A2 ATG5
SLC39A8 SLC3A2
FTH1 TFRC
SLC40A1 TP53
NCOA4 LPCAT3
STEAP3 PCBP1
HMOX1 FTMT
ACSL6 PCBP2
CYBB ACSL4
CP SLC7A11
MAP1LC3B ACSL3
TF FTL
SAT1 ALOX15
VDAC2 GCLM
GCLC MAP1LC3A
VDAC3 PRNP
ACSL5 SAT2
ATG7 GSS
ACSL1 GPX4

Figure 1. FRGs expression associated with prognosis of osteosarcoma. (A) Elbow diagram to determine the best number of clusters. The x and y axes are the 
number of clusters K and the SSE, respectively. The optimal number of clusters K = 2 was chosen. (B) Schematic diagram of samples clustering. The color of 
the boxes indicates clusters. (C) Kaplan–Meier survival curves of clusters. The x-axis shows time and the y-axis shows survival rate. Color represents the group. 
The P value is obtained from the log-rank test. FRGs = ferroptosis-related genes, SSE = squared errors.
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score = (−0.01382853 × ACSL4) − (0.05371778 × HMOX1) − 
(0.02434655 × GPX4) − (0.16432810 × PRNP) − (0.15567120 
× ATG7).

To validate the predictive performance of the risk score basing 
on the 5 FRGs, we regrouped OS patients in TARGET (training 
set) and meta-GEO (combination of 2 GEO datasets, validation 
set) datasets into high-risk and low-risk groups according to 
the optimal cutoff point (value = −0.175). The survival analysis 
showed the overall survival of patients in the high-risk group 
(score > −0.175) was worse than those in the low-risk group in 
both the training set and validating set (Fig. 2C and D). It sug-
gested the risk score constructed by ACSL4, HMOX1, GPX4, 
PRNP, and ATG7 represented a reliable performance to predict 
the prognosis of OS patients.

3.3. Risk score acted as an independent prognostic marker 
for OS

We utilized the multivariate Cox regression analysis to determine 
whether the risk score could act as an independent prognostic 
indicator compared with other clinical characteristics: age, sex, 
race, and the tumour-node-metastasis (TNM) stage. Results 

indicated that the prognosis of OS was significantly associated 
with the risk score and the TNM stage. The patients with higher 
risk score had higher death risk (hazard ratio = 5.73, 95% con-
fidence interval = 2.066–15.89, P < .01) (Fig. 3A).

To further explore the prognostic value of risk score under 
different situations, OS patients were regrouped for survival 
analysis according to the pathological factors (including age, 
sex, and the TNM stage). In the female (Fig.  3B), the male 
(Fig. 3C), the ≤14 years old (Fig. 3D) and the stage Ⅰ/Ⅱ sub-
groups (Fig.  3F), the overall survival rates of the high-risk 
group were significantly lower compared to the low-risk group. 
The limited sample size might be the reason for the non-signifi-
cance (P > .05) in the >14 years old (Fig. 3E) and the stage III/
IV (Fig. 3G) subgroups. These results suggested the risk score 
could independently predict the prognosis of OS patients.

3.4. Construction of a nomogram model based on the risk 
score and the TNM stage

To further evaluate the clinical utility of the risk score, a nomo-
gram model was built based on 2 independent prognostic fac-
tors, the risk score and the TNM stage (Fig. 4A). The calibrated 

Figure 2. Construction and validation of the risk score model. (A) Forest map showing 12 prognosis-associated FRGs analyzed by the univariate Cox analysis. 
(B) Point plot of the LASSO regression model determining the best tuning parameter lambda. The x and y axes are the value of log (lambda) and the partial 
likelihood of deviance, respectively. The Kaplan–Meier survival curves of the TARGET dataset (C) and meta-GEO dataset (D). Color represents the group. The P 
values are calculated by the log-rank test. FRGs = ferroptosis-related genes, GEO = Gene Expression Omnibus.
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diagrams of the 1-year (Fig. 4B), 3-year (Fig. 4C), and 5-year 
(Fig. 4D) OS showed the nomogram model had the best per-
formance for predicting 1-year OS, suggesting the combination 
of the risk score and the TNM stage increased the power of 
predicting prognostic outcomes.

3.5. The immune cells infiltration difference between the 
high-risk and low-risk groups

To figure out whether the OS patients with high or low risk 
score were different in the tumor immune microenvironment, 

the analytical tool CIBERSORT was used to characterize 
the proportions of immune cell infiltration in the high-risk 
and the low-risk groups from the TARGET dataset (total 
number = 84). The overall immune cells distribution in each 
patient was shown in the stacked percentage barplot, and 
the ratio changes among patients may represent the intrinsic 
difference (Fig.  5A). The infiltration ratios of immune cells 
were different between high or low-risk groups (Fig. 5B), but 
only the activated CD4 memory T cells proportions were 
significantly higher in the low-risk group compared with the 
high-risk group (Fig. 5C). Activation of CD4 memory T cells 

Figure 3. The risk score acted as an independent prognostic indicator. (A) Forest map of the multivariate Cox regression analysis. A hazard ratio >1 is consid-
ered to indicate a high death risk. (B and C) The Kaplan–Meier survival curves of female subgroups and male subgroups. (D and E) The Kaplan–Meier survival 
curves of <14 years old subgroups and >14 years old subgroups. (F and G) The Kaplan–Meier survival curves of different TNM stages subgroups, TNM = 
tumour-node-metastasis.
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had been reported to be associated with a low risk of disease 
relapse in colorectal cancer,[25,26] which agreed with our result 
that OS patients in the low-risk group had a better progno-
sis. However, the correlations between different immune cells 
were weak (Fig. 5D).

3.6. Relationship between the risk score and the ICPs

ICPs had become popular immunotherapy targets for OS 
patients. To look into the role of the risk score in immunother-
apy, we analyzed the relationship between the risk score and 
crucial ICPs. Six ICPs (CTLA4, PDL1, LAG3, TIGIT, IDO1, 
and TDO2) expression levels were all found to be significantly 
correlated with the risk score (Fig. 6A). And these ICPs were 
significantly up-regulated in the low-risk group than in the high-
risk group (LAG3 P = .0029, PDL1 = 0.0013, IDO1 = 0.0052, 
TDO2 = 0.0028, CTLA4 = 0.0006, and TIGHT = 0.00044) 
(Fig.  6B), suggesting the risk score might help selecting the 
patients who could benefit from immunotherapy. ICPs were 
associated with immune-related adverse effects and were 
reported to serve as prognostic biomarkers in stomach adeno-
carcinoma[27] and renal clear cell carcinoma,[28] which were in 
accord with our results.

4. Discussion
Enormous efforts had been put into the prevention, diagnosis, 
and treatment of OS, however, the outcome has not significantly 
changed over these years. It is super urging to find more reliable 
and sensitive markers to improve the prognostic prediction of 
OS patients.[29,30] Ferroptosis has been reported as an important 

biological process in many types of cancers,[14] and regulators in 
the ferroptosis process showed great value in understanding the 
pathophysiological processes in cancers. But little was known 
about ferroptosis in OS, leading us to explore the probability of 
FRGs as biomarkers in OS.

To understand the potential role of the FRGs in the prognosis 
of OS patients, we collected a 40 FRGs gene list from the GSEA 
database and downloaded the mRNA expression profiles from 
the TARGET database. The OS patients could be clustered into 
2 groups according to the 40 FRGs expression levels, suggesting 
FRGs might act as prognosis biomarkers. The univariate Cox 
regression analysis identified 12 FRGs which were significantly 
associated with the prognosis of the OS patients. The LASSO-
Cox regression optimized the 12 FRGs into 5 FRGs and the 
risk score model was finally built: risk score = (−0.01382853 × 
ACSL4) − (0.05371778 × HMOX1) − (0.02434655 × GPX4) − 
(0.16432810 × PRNP) − (0.15567120 × ATG7).

These 5 FRGs had already been reported participating in 
tumorigenesis and development. ACSL4 was one of the acyl-
CoA synthetase proteins and was a necessary component for 
lipid peroxidation and ferroptosis metabolism.[31–33] ACSL4 pre-
sented great predictive value for the prognosis of hepatocellular 
carcinoma.[34–36] And the abnormal expression of ACSL4 was 
correlated with cancer development.[37] ACSL4 also suppressed 
the proliferation of glioma cells by activating ferroptosis.[31,38] 
Nevertheless, the detailed role of ACSL4 in OS has never been 
reported as far as we know, which deserved deepening explo-
ration. The rate-limiting enzyme HMOX1 catalyzed the degen-
eration of pro-oxidant heme and HMOX1 overexpression was 
associated with mitophagic cell death of the glioma cells.[39,40] 
Genetic inhibition of HMOX1 might serve as an anticancer 

Figure 4. Construction and validation of a nomogram model to predict the survival probability. (A) A nomogram model to predict the survival probabilities 
of osteosarcoma patients in 1, 3, and 5 yr. Calibrated Nomogram curves to predict the overall survival of OS patients in 1 yr (B), 3 yr (C), and 5 yr (D). OS = 
osteosarcoma.
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approach in various cancer types.[41] GPX4 could protect cells 
from ferroptosis by eliminating phospholipid peroxides via 
presuming on glutathione, and it was a central regulator of 
ferroptosis.[42,43] Moreover, 1 way to trigger cancer cell death 
is ferroptosis induction via the inhibition of GPX4 and target-
ing GPX4 had emerged as a therapeutic strategy for clear-cell 

carcinomas.[44,45] The prion protein gene encoded a conserved 
cell surface glycoprotein (PrP) expressed within almost all mam-
malian cells.[46] The mutation in PRNP could induce dysfunc-
tion of PrP, which led to tumorigenesis in many cancers.[47–49] 
ATG7 encoded an enzyme that was essential for autophagy. 
Reports had shown that autophagy could cause ferroptosis by 

Figure 5. Immune cell infiltration difference between the high-risk and low-risk groups. (A) Stacked percentage barplot showing the relative proportion of 
immune cells in all patients. (B) Violin plots of immune cells showing infiltration ratio differences between high-risk and low-risk groups. (C) Violin plots of acti-
vated CD4 memory T cells. (D) Correlation matrix of immune cells. Orange represents positive correlation and light blue represents negative correlation. The 
darkness of color indicates the correlation.
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degradation of ferritin, and ATG7 low expression could limit 
erastin-induced ferroptosis.[50] Collectively, previous studies 
have provided more evidence supporting our present ferropto-
sis-related prognostic signature in OS.

We further validated the risk score in the meta-GEO datasets 
and found patients with higher risk score tended to suffer from 
a worse outcome. Through the multivariate Cox analysis, we 
found the risk score was an independent prognostic factor. After 
constructing a nomogram model, we found the combination of 
the risk score and the TNM stage could increase the prediction 
performance of 1-year OS. We also found that the activated 
CD4 memory T cells infiltration ratios were significantly differ-
ent between the high-risk and low-risk groups. The risk score 
was significantly associated with expression levels of CTLA4, 
PDL1, LAG3, TIGIT, IDO1, and TDO2, indicating the risk score 
may facilitate immunotherapy in OS.

FRGs-based signatures had been identified with prognostic 
values in colon cancer,[51] lung adenocarcinoma,[52,53] gastric 
cancer,[54] breast cancer,[55] and bladder cancer.[21,56] And nomo-
grams built by FRGs for predicting survival probabilities had 
already been used in lung adenocarcinoma and oral squamous 
cell carcinoma patients.[57,58] Our findings also indicated that 
the FRGs-based model may be a reliable prognostic marker for 
OS patients. However, this work needed more big cohorts to 
validate these results. Other clinical indicators should also be 
included in the model to improve the prediction power. On the 
other hand, we have herein preliminarily explored the prognos-
tic effects of the FRG-related signature in OS patients. More 
details in the exact underlying functional pathways of the 5 key 
FRGs in OS cannot be clearly concluded at present and should 
be further investigated in our future work.

5. Conclusions
In summary, we identified a Risk-Score model predicting 
the outcome of OS patients, risk score = (−0.01382853 × 
ACSL4) − (0.05371778 × HMOX1) − (0.02434655 × GPX4) 
− (0.16432810 × PRNP) − (0.15567120 × ATG7) in TARGET 
dataset via the univariate Cox regression analysis and the 
LASSO-Cox regression analysis. Herein, we have revealed an 
independent prognostic signature basing on 5 FRGs for OS for 
the first time (validated in 2 cohorts). Our findings are promis-
ing to give more insights into accurate prognosis prediction and 
better treatment strategy making of OS patients.
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