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Organismal development is a process that requires a fine-tuned control of cell fate
and identity, through timely regulation of lineage-specific genes. These processes are
mediated by the concerted action of transcription factors and protein complexes that
orchestrate the interaction between cis-regulatory elements (enhancers, promoters) and
RNA Polymerase II to elicit transcription. A proper understanding of these dynamics
is essential to elucidate the mechanisms underlying developmental diseases. Many
developmental disorders, such as Coffin-Siris Syndrome, characterized by growth
impairment and intellectual disability are associated with mutations in subunits of the
SWI/SNF chromatin remodeler complex, which is an essential regulator of transcription.
ARID1B and its paralog ARID1A encode for the two largest, mutually exclusive,
subunits of the complex. Mutations in ARID1A and, especially, ARID1B are recurrently
associated with a very wide array of developmental disorders, suggesting that these
two SWI/SNF subunits play an important role in cell fate decision. In this mini-review we
therefore discuss the available scientific literature linking ARID1A and ARID1B to cell fate
determination, pluripotency maintenance, and organismal development.
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INTRODUCTION

The SWI/SNF Complex
The SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complex leverages an
ATP-dependent mechanism to modify the structure of the chromatin and modulate its accessibility
to transcriptional regulators (Figure 1). It was first discovered in yeast (SWI/SNF) (Stern et al.,
1984), later in Drosophila (Brm-associated protein, BAP) (Kennison and Tamkun, 1988; Tamkun
et al., 1992) and finally in mammals (Brg/Brahma-associated factors, BAF) (Wang et al., 1996).

In mammals, the different subunits comprise eight different bromodomains, two PHD finger
proteins, two chromodomain and multiple proteins with DNA binding domains (Wang et al.,
1996a,b; Wang et al., 1998; Lessard et al., 2007). These various subunits are not always present
at the same time.
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FIGURE 1 | The three main configurations of the mSWI/SNF complex: BAF, pBAF e ncBAF. The two mutually exclusive subunits ARID1A and ARID1B, object of the
present review, are only found in the BAF.

Mammalian SWI/SNF (mSWI/SNF) complexes are
assembled from subunits encoded by 29 genes, including
multiple paralogs, which generate an extensive diversity in
composition. Three versions of the mSWI/SNF were recently
characterized in detail: 1) BRG1/BRM-associated factor complex
(BAF), 2) polybromo containing complex (pBAF), and 3) a
non-canonical version of the complex (ncBAF) (Figure 1)
(Mashtalir et al., 2018).

The SWI/SNF complex is able to modify the structure of
the chromatin leveraging the energy generated by the hydrolysis
of ATP. SWI/SNF binds to the nucleosome in a central cavity
where the DNA is exposed (Havas et al., 2000; Saha et al., 2005).
Once bound, the complex uses the energy derived by the ATP
hydrolysis to break the binding between histones and DNA,
promoting the formation of a transient DNA loop that spreads
around the nucleosome, ultimately orchestrating the changes
in chromatin accessibility (Dechassa et al., 2008; Tang et al.,
2010; Tyagi et al., 2016). As a consequence of this process,

the chromatin becomes more accessible and permissive to the
binding of transcription factors (Kadoch et al., 2017).

All the existing mammalian configurations of the complex
contain an ATPase subunit, either SMARCA4 (BRG1) or
SMARCA2 (BRM), which catalyzes the hydrolysis of ATP.
Several other “core-subunits” are shared by all the different
configurations (e.g., SMARCD1/2/3, SMARCC1/2 and a few
others; Mashtalir et al., 2018). Finally, some of the subunits
are only present in specific configurations. Among these, the
mutually exclusive AT-rich interactive domain proteins ARID1A
or ARID1B are only found in the BAF (Wilsker et al., 2004;
Patsialou et al., 2005; Raab et al., 2015; Mashtalir et al., 2018).

ARID1A and ARID1B are conserved throughout metazoans
and expressed across most human cells and tissues. Mutations in
the genes encoding for these two subunits are associated with a
wide array of developmental disorders and cancers, suggesting
that they are implicated in the maintenance of cell identity and
in the determination of cell fate. Based on this premise, in the
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present review, we discuss the role of ARID1A and ARID1B in
the maintenance of pluripotency, in the determination of cell fate,
and, more broadly, in organismal development.

Mutations in ARID1A
ARID1A encodes for the AT-Rich Interactive Domain-containing
protein 1A (ARID1A/BAF250a). It is the most frequently
mutated member of the SWI/SNF family in cancer. ARID1A
mutations are associated with a wide range of cancers, including
ovarian endometrioid/clear-cell carcinomas, pancreatic cancer,
gastric carcinoma, esophageal adenocarcinoma, renal carcinoma
and breast tumors (Biegel et al., 2014; Wu et al., 2014; Kadoch
and Crabtree, 2015; Masliah-Planchon et al., 2015; Takeda et al.,
2016). Despite this evidence, the role of ARID1A in cancer
is still not fully understood, with some studies suggesting a
tumor suppression role, while a few others indicate an oncogenic
function (Fang et al., 2015; Gibson et al., 2016; Zhai et al.,
2016; Zhao et al., 2016; Mathur et al., 2017). In the case of
endometrial and ovarian cancers, these mutations might either
hamper the nuclear import of ARID1A, or affect the ability
of ARID1A to interact with the subunits of SWI/SNF complex
(Guan et al., 2012). The most frequently dysregulated pathway is
PI3K/AKT, along with the downstream signaling cascades PTEN
and PIKC3A (Takeda et al., 2016).

Mutations in ARID1A also lead to Coffin-Siris Syndrome, a
neurodevelopmental disorder which will be further discussed in
this review (Santen et al., 2013; Wieczorek et al., 2013; Kosho
et al., 2014; Tsurusaki et al., 2014; Lee and Ki, 2021). ARID1A
mutations are typically frame-shift or nonsense, spread across the
gene with no specific hotspots, resulting in loss of protein level.

Mutations in ARID1B
ARID1B encodes for the AT-rich interactive domain-containing
protein 1B (ARID1B/BAF250b). ARID1B mutations are
commonly associated with neurodevelopmental disorders. Most
frequently, ARID1B mutations are de novo haploinsufficient
mutations, with no specific gene hotspots.

To date, the majority of the reported mutations are either
nonsense or frameshift. These mutations result in non-functional
truncated proteins, triggering ARID1B-haploinsufficiency and
associated pathologies (Schweingruber et al., 2013; Sim et al.,
2015). Mutations in ARID1B may disrupt the ability of the
SWI/SNF complex to bind the chromatin (Sim et al., 2015).

Often, ARID1B mutations result in Coffin-Siris Syndrome,
a relatively rare genetic disorder that manifests at birth
and is characterized by both intellectual disabilities and
physical phenotypes (Coffin and Siris, 1970; van der Sluijs
et al., 2019). Coffin-Siris patients usually show coarse facial
features, impaired craniofacial development, and hypoplastic
fifth finger nails (Schrier et al., 2012). Further, most individuals
present mild to severe intellectual disability, speech impairment
and impaired motor skills (Vergano and Deardorff, 2014).
Other characteristics of this disorder include respiratory
infections, feeding issues, hearing loss, sparse scalp hair
and hypermobility of joints (Vergano and Deardorff, 2014).
Mutations in ARID1B have also been linked to Autism Spectrum
Disorder (ASD), Intellectual Disabilities (ID), epilepsy and

neuroblastoma (Vergano et al., 1993; Halgren et al., 2012; Hoyer
et al., 2012; Santen et al., 2012; Vals et al., 2014; Yu et al., 2015;
Ben-Salem et al., 2016; Sonmez et al., 2016; Jung et al., 2017; Lee
et al., 2017; Shibutani et al., 2017; Yu et al., 2018; Demily et al.,
2019; Filatova et al., 2019; Pranckeniene et al., 2019; Sekiguchi
et al., 2019; van der Sluijs et al., 2019; Curcio et al., 2020; Fujita
et al., 2020; Lian et al., 2020; Pascolini et al., 2020; Smith et al.,
2020). ARID1B mutations can be associated with both syndromic
and non-syndromic forms of ID (van der Sluijs et al., 2019).
In this context, Coffin-Siris patients almost always show some
degree of ID, and often present some characteristics that can
be associated to Autism Spectrum Disorder. Recently, van der
Sluijs et al. (2019) sought to determine genotypic and phenotypic
differences between ARID1B-ID and ARID1B-CSS. They found
only minor differences between ARID1B-ID and ARID1B-CSS
patients, and suggested that ARID1B-related disorders seem to
consist of a spectrum, and patients should be managed similarly.

Several studies tried to uncover genes and pathways most
commonly dysregulated in ARID1B-ID and ARID1B-CSS.
A recent paper looked at gene expression in monocytes of CSS
patients. The study identified few differentially expressed genes
(CRYZ, TRGV5, TSPAN33, TPPP3, SAMD9L, DDX60, FMN1,
PER1, MIR3648, and GSTM1) (Kalmbach et al., 2019) and
the pathway analysis did not reveal any statistically significant
network. A previous study investigated gene expression in a
single CSS patient carrying a novel microduplication of ARID1B,
and identified EIF2 signaling and the regulation of eIF4 and
p70S6K signaling as top canonical pathways (Seabra et al.,
2017). Using an ARID1B-haploinsufficient mouse model, Celen
et al. (2017) detected dysregulations in the Ephrin, nNOS,
axonal guidance and glutamate receptor signaling pathways.
Gene expression profile performed by Shibutani et al. (2017)
suggested that ARID1B+/− mice exhibit a pattern very similar
to autistic brains centered on immature fast spiking cells.
Amongst the several differentially expressed genes, HOXB2, PRL,
PODNL1, and PTH2 were the most downregulated, whereas
AREG, GBP8, KLR2, and ZP2 were the most upregulated
(Shibutani et al., 2017).

The Role of ARID1A and ARID1B in
Pluripotency and Cell Fate Determination
The contribution of ARID1A and ARID1B to cell pluripotency
has been predominantly investigated in mouse embryos and in
embryonic stem cells (ESCs). These cells are distinguished by
their ability to differentiate into almost any cell lineage.

Gao et al. (2008) demonstrated that embryos carrying a
homozygous ARID1A knockout are able to differentiate in
primitive endoderm and epiblast layers but are unable to
generate the mesodermal layer. Moreover, ARID1A−/− mouse
ESCs fail to maintain a normal stem cell phenotype in
culture and spontaneously differentiate (Gao et al., 2008). These
pluripotency anomalies seem to be lineage specific, since the ESCs
cannot differentiate into cardiomyocytes or adipocytes, but can
differentiate into ectoderm-derived neurons (Gao et al., 2008).
Consistent with this, Lei et al. (2015) observed dysregulated
expression of key developmental and pluripotency genes in
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TABLE 1 | Biological processes and phenotypes associated to ARID1A and ARID1B.

STEM CELL PLURIPOTENCY

ARID1A−/− mouse and human ESCs Failure to maintain pluripotency, spontaneous differentiation,
dysregulated expression of pluripotency genes

Gao et al. (2008); Lei
et al. (2015), Liu J. et al.
(2020)

ARID1B−/− mouse ESCs Failure to maintain pluripotency, dysregulated expression of
pluripotency genes

Yan et al. (2008)

CELL DIFFERENTIATION AND PROLIFERATION

ARID1A−/− mouse and human ESCs Bias toward neuronal differentiation Gao et al. (2008), Liu J.
et al. (2020)

Failure to differentiate into cardiomyocytes or adipocytes Gao et al. (2008); Liu J.
et al. (2020)

ARID1A−/− hematopoietic stem cells Impaired differentiation into myeloid and lymphoid lineages Han et al. (2019)

ARID1B−/− Zebrafish Reduced body length due to dysregulated Wnt/β-catenin
signaling

Liu X. et al. (2020)

ARID1A+/− Zebrafish Excessive cell proliferation in the sympathoadrenal lineage Shi et al. (2020)

ARID1A−/− Mouse (liver) Impaired liver regeneration, increased vacuole accumulation,
liver dysfunction

Li et al. (2019)

ARID1A−/− Mouse (liver) Increased liver regeneration Sun et al. (2016)

ARID1A−/− Mouse (preosteoblasts) Dysregulated cell cycle NaglJr., Patsialou et al.
(2005)

DEVELOPMENTAL PHENOTYPES

ARID1A+/− Mouse (neural crest) Craniofacial defects, shortened snouts, low ears, defects in
developing cardiac neural crest

Chandler and
Magnuson (2016)

ARID1B+/− Mouse Impaired maturation of dendritic spines, reduced dendritic
innervation, lack of arborization and dendrite growth in cortical
and hippocampal pyramidal neurons

Ka et al. (2016)

Social and emotional impairments (parvalbumin neurons), Smith et al. (2020)

learning and memory dysfunction (somatostatin neurons)

Reduced number of cortical GABAergic interneurons, Jung et al. (2017)

decreased proliferation of interneuron progenitors in the
ganglionic eminence

Hydrocephalus, reduced size of the corpus callosum and
dentate gyrus, impairment in social behavior, growth deficit

Celen et al. (2017)

Hydrocephalus Shibutani et al. (2017)

ARID1A−/− mouse ESCs. In particular, the most frequently
affected genes were associated with the generation of the
mesodermal and endodermal layers (Lei et al., 2015).

Similar results were published by Liu J. et al. (2020), who
investigated the role of ARID1A in early human cardiac
development and neurogenesis. The study demonstrated that
homozygous deletion of ARID1A in human ESCs results
in spontaneous neuronal differentiation due to increased
expression of several genes associated with neurodevelopment.
Simultaneously, the same cells displayed downregulation
of genes associated with cardiomyocyte differentiation
(Liu J. et al., 2020).

Han et al. (2019) studied the function of ARID1A in
hematopoietic stem cells (HSC), and uncovered that this
SWI/SNF subunit is important for the generation of myeloid
colonies, for normal T cell maturation, and for the differentiation
of both myeloid and lymphoid lineages.

ARID1A loss/gain of function are thought to have
context-dependent effects. For instance, ARID1A deletion

is lethal in early embryonic mouse development (Gao
et al., 2008). On the other hand, the depletion of this
SWI/SNF subunit induces proliferation of ovarian clear
cell carcinoma cells (Xiao et al., 2012; Yamamoto et al.,
2012; Lakshminarasimhan et al., 2017). In contrast,
another study leveraged a mouse ovarian cancer model
and demonstrated that ARID1A loss enhances epithelial
differentiation and prolongs survival (Chandler et al., 2015;
Zhai et al., 2016). ARID1A is instead overexpressed in many
hepatocellular carcinomas (Zhao et al., 2016), while the
expression of this gene is reduced or lost in colorectal cancer
(Mathur et al., 2017).

While there is extensive research investigating the role of
ARID1A in cell differentiation, the work performed on ARID1B
is thus far limited to a few studies. In this context, Yan
et al. (2008) demonstrated that ARID1B−/− mouse ESCs are
viable but exhibit a slower proliferation rate and tend to
spontaneously differentiate. Consistent with this observation,
ESCs with homozygous ARID1B deletion displayed reduced
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expression of several pluripotency markers, including OCT4
and NANOG. This suggests that ARID1B may be required
to regulate stem cell pluripotency. Recently, Boerstler et al.
(2020) leveraged CRISPR/Cas9 to generate a human ARID1B-
haploinsufficient ESC line with an in-frame deletion of exons
5 and 6 of the gene. Future studies leveraging this cell
line may help clarifying the role of ARID1B in pluripotency
(Boerstler et al., 2020).

Shi et al. (2020) established ARID1A and ARID1B deletion
mutant lines in zebrafish to investigate the effect of these
subunits in neuroblastoma. The authors observed that depletion
of ARID1A or ARID1B results in an increased rate of cell
proliferation in the sympathoadrenal lineage, which ultimately
leads to higher tumor penetrance (Shi et al., 2020).

A zebrafish model was also used to elucidate how
ARID1B regulates organismal development (Liu X. et al.,
2020). In this study, the authors demonstrated that ARID1B
haploinsufficiency results in reduced body length due to
dysregulated Wnt/β-catenin signaling pathway (Liu X. et al.,
2020). An association between ARID1B and the Wnt/β-
catenin signaling pathway had already been proposed by
Vasileiou et al. (2015).

ARID1A and ARID1B in
Neurodevelopment
ARID1A was associated with neural crest differentiation
and craniofacial development (Chandler and Magnuson,
2016). Neural crest cells are a transient, ectoderm-derived,
cell population that can migrate throughout the embryo
to give origin to craniofacial bone and cartilage, peripheral
neurons and glia, melanocytes, and smooth muscle cells
(Shakhova and Sommer, 2008). Chandler and Magnuson
(2016) generated mice with a conditional, neural crest specific,
heterozygous deletion of ARID1A. The ARID1A-depleted mice
displayed craniofacial defects, including shortened snouts
and low ears. Additionally, most of the bones involved
in the ventral cranial skeleton were greatly reduced in
size, leading to abnormal facial features (Chandler and
Magnuson, 2016). The study also revealed that conditional
haploinsufficiency of ARID1A results in defects in developing
cardiac neural crest due to an incomplete colonization of the
outflow tract and septation of the arterial trunk, ultimately
producing defects in the pharyngeal arch arteries. Consistently,
homozygous ARID1A mutants did not survive in utero
(Chandler and Magnuson, 2016).

As mentioned, mutations in ARID1B often lead to a wide array
of neurodevelopmental disorders, including Autism Spectrum
Disorders, Coffin-Siris Syndrome, and other forms of Intellectual
Disabilities (Vergano et al., 1993; Halgren et al., 2012; Hoyer
et al., 2012; Santen et al., 2012; Vals et al., 2014; Yu et al.,
2015; Ben-Salem et al., 2016; Sonmez et al., 2016; Jung et al.,
2017; Lee et al., 2017; Shibutani et al., 2017; Yu et al., 2018;
Demily et al., 2019; Filatova et al., 2019; Pranckeniene et al., 2019;
Sekiguchi et al., 2019; van der Sluijs et al., 2019; Curcio et al.,
2020; Fujita et al., 2020; Lian et al., 2020; Pascolini et al., 2020;
Smith et al., 2020).

Based on these lines of evidence, several studies investigated
the role of ARID1B in neurodevelopment (Ka et al., 2016;
Celen et al., 2017; Jung et al., 2017; Shibutani et al., 2017;
Smith et al., 2020). Ka et al. (2016) demonstrated that
ARID1B is required for arborization and dendrite growth
in cortical and hippocampal pyramidal neurons. ARID1B
haploinsufficiency resulted in reduced dendritic innervation
as well as diminished attachment of dendrites to the pial
surface (Ka et al., 2016). In the same study, Ka et al. (2016)
found that ARID1B mono-allelic loss impairs the formation
and maturation of dendritic spines, generating malformations
that morphologically resemble those reported in animal models
of multiple neuropsychiatric disorders such as ID, ASD, Rett-
Syndrome, Down-Syndrome and Fragile-X-Syndrome (Irwin
et al., 2002; McKinney et al., 2005; Jentarra et al., 2010; Moffat
et al., 2019).

Recently, Smith et al. (2020) leveraged a mouse model
to elucidate the consequences of ARID1B-haploinsufficiency
on the development and function of parvalbumin (PV)
and somatostatin (SST) neurons, two of the most prevalent
interneuron subtypes. Briefly, the authors discovered that
ARID1B-haploinsufficiency in PV neurons leads to social and
emotional impairments, which are key features of ASD, while
ARID1B deficiency in the SST population results in learning and
memory dysfunction (Smith et al., 2020).

In a similar study, Jung et al. (2017) demonstrated that
ARID1B-haploinsufficient mice present a reduced number of
cortical GABAergic interneurons and decreased proliferation
of interneuron progenitors in the ganglionic eminence. These
neurological phenotypes are often recovered in autism and
schizophrenia patients (Benes and Berretta, 2001; Pizzarelli and
Cherubini, 2011). Additionally, in a third mouse model study,
Celen et al. (2017) showed that ARID1B-haploinsufficient mice
are characterized by hydrocephalus, a condition frequently
reported also in Coffin-Siris patients (Schrier Vergano
et al., 1993). Brain abnormalities were detected in ARID1B-
haploinsufficient mice also by Shibutani et al. (2017). The
ARID1B-haploinsufficient mice also exhibited reduced size of
the corpus callosum and dentate gyrus, along with impairment
in social behavior, altered vocalization, presence of anxiety-like
behavior, and growth deficit (Celen et al., 2017).

ARID1A and ARID1B in Cell Proliferation
and Tissue Regeneration
Recent studies conducted on mouse liver linked ARID1A to
tissue regeneration (Sun et al., 2016; Li et al., 2019). Specifically,
Li et al. (2019) demonstrated that ARID1A is required for the
generation of liver-progenitor-like cells (LPLCs) in different types
of periportal injuries. In detail, mice with conditional ARID1A
knockout in the liver displayed impaired LPLCs formation
and reduced regeneration of damaged liver tissue (Li et al.,
2019). Moreover, ARID1A-knockout livers were characterized
by significantly increased accumulation of fatty vacuoles and
impaired liver function. Conversely, a prior study also performed
in the mouse liver demonstrated that suppression of ARID1A
is sufficient to promote liver regeneration (Sun et al., 2016).
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These two studies suggest a dual role for ARID1A in the hepatic
context. Sun et al. (2016) proposed a mechanism focused on
CYP-metabolism. On the other hand, Li et al. (2019) suggested
the presence of a hepatocyte plasticity network where ARID1A
promotes the formation of LPLC during injury, while hampering
cell proliferation during the recovery stage.

The role of ARID1A and ARID1B in cell proliferation was
also investigated using mouse derived preosteoblasts (NaglJr.,
Patsialou et al., 2005; Flores-Alcantar et al., 2011). Notably,
NaglJr., Patsialou et al. (2005) showed that deletion of ARID1A
leads to failure in cell cycle arrest. Conversely, the same study
demonstrated that loss of ARID1B has not significant impact on
the cell cycle (Nagl et al., 2005).

Molecular Processes Modulated by
ARID1A and ARID1B
The SWI/SNF complex is mainly considered as a transcriptional
activator, which antagonizes the Polycomb Repressor Complexes
(PRC1 and PRC2) in the modulation of gene expression (Kadoch
and Crabtree, 2015; Alfert et al., 2019). Nonetheless, repressing
activity for the SWI/SNF has also been reported. For instance,
a recent study performed on HepG2 cells (hepatocellular
carcinoma line) uncovered that ARID1A-containing BAF
activates and represses roughly equal numbers of genes
(Raab et al., 2015). The same study also demonstrated that
ARID1B-containing BAF is primarily a repressor of enhancer
activity (Raab et al., 2015). More specifically, Raab et al. (2015)
investigated the localization of ARID1A and ARID1B binding
sites in HepG2 cells via chromatin immunoprecipitation
followed by sequencing (ChIP-seq). The authors observed
binding of ARID1A at most enhancers and promoters, while
ARID1B was predominantly located at enhancers. Loss of
ARID1A from HepG2 cells resulted in a roughly equal
number of activated and repressed genes, whereas loss of
ARID1B predominantly resulted in transcriptional activation
(Raab et al., 2015).

Consistently, ARID1A and ARID1B have been recently
associated with acetylation of histone tails at both enhancers
and promoters (Chandler et al., 2013; Lei et al., 2015; Raab
et al., 2015; Alver et al., 2017; Kelso et al., 2017; Trizzino
et al., 2018). For example, Mathur et al. (2017) observed that
human ARID1A−/− colorectal cancer cells display dampened
acetylation levels at Histone H3 lysine 27 (H3K27ac), which is
usually associated with transcriptional activity at enhancers and
promoters. Correlation between ARID1A loss and attenuation
of enhancer acetylation was also observed in zebrafish models
(Shi et al., 2020).

Liu X. et al. (2020) profiled chromatin accessibility in
wild-type and ARID1A-deleted human ES cells. With these
experiments, the authors discovered that loss of ARID1A
generated a loss in accessibility at cardiogenic genes, as well as an
increase in accessibility at neurogenic genes (Liu X. et al., 2020).
These data are thus consistent with a dual (activator/repressor)
role of ARID1A in the transcriptional regulation of ESCs. An
additional study on human ES cells also revealed that acute
depletion of ARID1A increases nucleosome occupancy, and

therefore repression, at a set of H3K4me3- and/or H3K27me3-
associated promoters (Lei et al., 2015).

The consequences of ARID1A loss on chromatin accessibility
were further investigated by Kelso et al. (2017) in colorectal
carcinoma lines. The authors demonstrated that loss of ARID1A
and ARID1B correlates with global dampening of chromatin
accessibility, along with a significant decrease of histone
modifications normally associated with transcriptional activation
at enhancers (Kelso et al., 2017).

Recently, Wu et al. (2019) linked ARID1A-containing BAF
to Condensin, a protein complex involved in the regulation
of genomic organization and chromatin looping. The study
demonstrated that ovarian cancer cell lines depleted of ARID1A
exhibit decreased binding of Condensing-II at active enhancers.
Further, they illustrated that ARID1A-loss leads to improper
genome compartmentalization (Wu et al., 2019).

Finally, in a recent study conducted in ovarian cancer cell
lines, Trizzino et al. (2018) demonstrated that ARID1A and
ARID1B play a role in the regulation of RNA Polymerase
II promoter-proximal pausing, a widespread mechanism
that controls the timing of expression of developmental
genes genome-wide.

CONCLUSION

In conclusion, multiple lines of evidence point toward a model
in which the ARID1A- and ARID1B-containing configurations
of the SWI/SNF complex (i.e., the BAF) play an important
role in the regulation of pluripotency, as well as in cell
fate determination and development (Table 1). Multiple
molecular and genomic functions were ascribed to these
two SWI/SNF subunits. However, the mechanisms by which
ARID1A and ARID1B regulate pluripotency and cell fate are
still not fully understood and are likely context-specific. The
discovery of such mechanisms, along with the transcription
factors and the molecular pathways involved, may open new
roads for the diagnosis and the treatment of developmental
disorders and cancer.
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