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Abstract
This article aims to continue the debate on how explicit, conscious knowledge can arise in an implicit learning situation. We 
review hitherto existing theoretical views and evaluate their compatibility with two current, successful scientific concepts 
of consciousness: The Global Workspace Theory and Higher-Order Thought Theories. In this context, we introduce the 
Unexpected Event Hypothesis (Frensch et al., Attention and implicit learning, John Benjamins Publishing Company, 2003) 
in an elaborated form and discuss its advantage in explaining the emergence of conscious knowledge in an implicit learning 
situation.

Introduction

Implicit learning research is concerned with situations in 
which individuals learn sequential deterministic or probabil-
istic contingencies, but lack the intention to learn about these 
contingencies. Such sequential contingencies might com-
prise sequential actions (such as learning to blindly type on 
a keyboard), perceptual events (e.g. learning the sequence of 
notes in a melody or of visual regularities when driving the 
same route repeatedly) or complex regularities (e.g. arith-
metic principles, Prather, 2012). Empirically, two different 
tasks are common to investigate implicit learning: The Serial 
Reaction Time Task (SRTT; Nissen & Bullemer, 1987) and 
the Artificial Grammar Learning Task (AGL; Reber, 1967). 
In the SRTT, participants typically respond to sequential 
stimuli with sequential responses. In general, learning of the 
underlying sequence is most commonly shown by comparing 
the reaction times of sequential trials with trials containing a 
new, unknown sequence. In the AGL, participants learn by 
observing probabilistic contingencies between strings of, for 
example, letters or other visual stimuli. Here, learning can, 
for example, be inferred by showing that participants are 
able to discriminate strings that follow either the old or new 
grammar. The hidden regularities in the SRTT and the AGL 
are usually not mentioned to the participants.

Interestingly, on a subjective level, participants in these 
paradigms often seem to lack conscious insight that they 
have learned something. In these cases, it is often presumed 
that participants acquired unconscious or implicit knowl-
edge. In the simplest sense, when a participant is asked to 
report the learned sequence at a later time and is unable 
to do so, is said to have “implicit knowledge”. Participants 
who can report their knowledge are said to possess “explicit 
knowledge”. Of course, a large debate is centered around the 
question of how to determine whether the acquired knowl-
edge in implicit learning paradigms is, in fact, unconscious 
(see e.g., Newell & Shanks, 2014; Peters & Lau, 2015).

Various objective or subjective measures to determine the 
conscious or unconscious status of the developed knowledge 
have been suggested over the years. Objective measures aim 
to show a performance-based difference between conscious 
and unconscious knowledge. For instance, process disso-
ciation tasks have been suggested as objective measures 
(Destrebecqz & Cleeremans, 2001; for critical points see 
Stahl et al., 2015). These tasks aim to show that unconscious 
(implicit) knowledge leads to correct responses when the 
participants are asked to generate the learned sequence on 
their own (inclusion condition), but also fail to inhibit their 
acquired sequence knowledge when asked to generate new 
sequences (exclusion condition). Quite different, subjective 
measures emphasize the lack of metacognitive knowledge 
or subjective awareness. While participants with implicit 
knowledge are often able to predict the next correct response 
or stimulus, they express subjective uncertainty. For exam-
ple, they put low instead of high wagers on the correctness 
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of their responses. By contrast, participants with conscious 
(explicit) knowledge express high certainty on correct 
responses but low certainty on wrong responses (Dienes 
& Seth, 2010; Haider et al., 2011; Persaud et al., 2007). 
Thus, there are conceptual differences when assessing the 
status of knowledge acquired in an implicit learning situa-
tion. Furthermore, presupposed that implicit learning tasks 
can lead to implicit, unconscious knowledge, there usually 
are participants who develop explicit, consciously accessi-
ble knowledge. Based on these findings, we will adapt the 
term “implicit knowledge” for subjectively and behaviorally 
unconscious knowledge and “explicit knowledge” for con-
scious knowledge.

This difference in conscious availability of the acquired 
knowledge suggests that implicit learning settings could pro-
vide a promising opportunity to investigate how implicit or 
explicit knowledge is related to the representational status 
of the acquired knowledge and which mechanism medi-
ates between implicit and explicit knowledge. Is explicit 
knowledge based on the same acquired representation as 
implicit knowledge? If so, does the same learning mecha-
nism change the representational quality (e.g. its strength 
is increased over the learning period) which is then accom-
panied by a gradual change in conscious accessibility? Or 
does the conscious status depend on a different access to 
that representation? A different possibility would be that 
implicit knowledge is based on different representations than 
explicit knowledge. These latter two options would imply 
that an “implicit learning” process leads to strictly implicit 
knowledge, while explicit knowledge requires an additional 
process that grants conscious accessibility.

This leads to a close connection between implicit learning 
research and general theories of consciousness which aim 
to explain how consciousness originates from unconscious 
processes. This way, implicit sequence learning can enrich 
theoretical views on consciousness with new experimental 
approaches and help to test predictions, thereby, improving 
current weaknesses or identifying unexpected problems of 
the respective theories. Likewise, the question how explicit 
knowledge arises from an implicit learning situation can 
profit from testing predictions from general theories of 
consciousness.

The central aim of this article is thus to discuss two cur-
rent models in implicit learning research that aim to explain 
how consciously accessible, explicit knowledge can develop 
from implicit learning situations and to assess their corre-
spondence with current theories on consciousness. One of 
these views proposes that explicit knowledge depends on the 
strengthening of associative links (i.e., the representational 
quality). In this case, it is assumed that conscious knowl-
edge will develop gradually, either by strengthening single 
transitions (Cleeremans, 2008, 2011; Cleeremans & Jimé-
nez, 2002) or by integrating single elements into sequence 

chunks (Perruchet & Vinter, 2002; Perruchet et al., 2002). 
On the other hand, there are theories that propose an indirect 
link between implicit and explicit knowledge. One of these 
theories is called the Unexpected Event Hypothesis (Frensch 
et al., 2003). From this theoretical viewpoint, unconscious 
(implicit) knowledge and conscious (explicit) knowledge 
are based on different representations. Implicit knowledge 
relies on representations acquired during learning that lead 
to behavioral changes (e.g. faster RTs). Explicit knowl-
edge develops by detecting mismatches between expected 
and experienced behavior. If such a mismatch is detected 
a second (and subjectively explicit) inferential process is 
triggered that can lead to the discovery of sequential con-
tingencies inherent in the task. In this case, a new represen-
tation of the sequential contingencies is acquired, which is 
independent of the implicitly learned representation. This 
new representation is explicitly accessible. Thus, explicit 
knowledge is not assumed to develop gradually from implicit 
knowledge, as is presumed by strengthening theories, but 
instead in an abrupt change from an unconscious into a con-
scious knowledge state.

We will review current evidence for each of these theo-
retical classes. Furthermore, these two viewpoints and their 
empirical evidence will be reconciled with two prominent 
theories of consciousness: One is the Global Workspace 
Theory (Baars, 1997, 2005), the other is the Higher-Order 
Thought Theory (Lau, 2008; Rosenthal, 1997, 2012). We 
will discuss the advantages and disadvantages of each 
perspective and their implications for the development of 
explicit knowledge in implicit learning situations.

The serial reaction time task (SRTT) and its 
relevance for consciousness research

In this section, we will briefly outline how implicit learning 
paradigms can provide an important opportunity to investi-
gate the connection between unconscious and conscious pro-
cesses. As we have briefly stated in the introduction, there 
are various implicit learning paradigms which all have in 
common that a sequence of responses or stimuli is learned 
without the intention to do so. Here, we will mainly focus on 
the SRTT, as we believe that its simple, yet flexible structure 
makes it a particularly interesting instrument to investigate 
how implicitly acquired representations can become con-
sciously accessible.

The SRTT has the potential to provide both, online and 
offline measures of learning. During the training part, in 
which participants are trained with a sequence of stimuli 
or responses, error rates and reaction times can be utilized 
to assess learning. Subsequent tests, such as the previously 
described Inclusion/Exclusion Task or the Wagering Task, 
are usually employed to determine whether or to what extent 
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the acquired knowledge is implicit or explicit. However, the 
training part of the task can also have the potential to detect 
whether knowledge is explicit. Moreover, it might also have 
the potential to confine the time frame in which a qualitative 
change from an implicit to an explicit representation of the 
learned sequence occurs. It has been found that participants 
who develop explicit knowledge in a SRTT often show a 
sudden decrease in reaction times in the training phase. This 
so-called RT-drop indicates that participants change their 
behavior qualitatively (Haider & Frensch, 2005; Haider 
et al., 2005; Haider & Rose, 2007; Lustig et al., 2021; Rose 
et al., 2010; Wessel et al., 2012) and do not mandatorily need 
to process the stimulus anymore to perform the task. This 
stimulus-independency of explicit sequence knowledge is 
further supported by studies that show that participants are 
no longer affected by incongruent stimulus–response charac-
teristics, such as the Stroop Effect (Haider et al., 2011) and 
the Simon Effect (Koch, 2007), or by a frequency-induced 
response bias (Tubau et al., 2007). Thus, analyzing reaction 
times in a SRTT has the potential to classify participants 
with explicit sequence knowledge online during training, as 
well as potentially grasping the point in time when explicit 
knowledge occurs (Rose et al., 2010).

From this perspective, the SRTT is a useful addition to 
the investigation of qualitative differences between uncon-
sciously and consciously accessible representations, as well 
as the mechanisms that mediate between them. Mostly, such 
questions are approached by priming studies (e.g., Del Cul 
et al., 2009; Kouider & Faivre, 2017; Kouider et al., 2010; 
Lau & Rosenthal, 2011; Overgaard, 2003). Priming studies 
provide a well-controlled opportunity to study the differ-
ences between conscious and unconscious processing on a 
trial-by-trial basis. In priming studies, unconscious process-
ing is operationalized either by weak signal strength or by 
inattention towards the critical stimuli or stimuli features 
(Dehaene et al., 2006). The advantage of implicit learning 
paradigms, however, is that they provide an opportunity to 
create situations where signal strength can be controlled 
in a wider range (e.g., by controlling training duration or 
sequence complexity) while the resulting representations 
have a high temporal stability (Tamayo & Frensch, 2015). 
At the same time, the role of attention towards the sequence 
can be investigated, with evidence so far suggesting that 
selective attention (i.e., having participants respond to the 
sequential feature vs. responding to a sequence-irrelevant 
feature) towards the sequence does not lead to more con-
scious knowledge but might be a prerequisite for implicit 
learning (Jiménez & Méndez, 1999; Turk-Browne et al., 
2005). A further difference between priming and implicit 
learning paradigms is that the former can provide insight 
how certain singular simple or complex (most often vis-
ual) percepts which already have an existing entry in long-
term memory can become conscious. By contrast, implicit 

learning studies can investigate how whole newly acquired 
knowledge structures about relations between clearly per-
ceivable events in the environment can become conscious. 
Implicit learning can hereby help to investigate how the cog-
nitive system can learn about its own internal states; how the 
system changes from a state of not knowing that the internal 
knowledge base has changed to knowing that new knowledge 
has been developed and that current consciously accessible 
believes about states in the world need to be adjusted or 
replaced. Thus, implicit learning research could also be seen 
as an interesting link to research on insight and creativity in 
which it is often proposed that creative ideas result from or, 
at least, are largely supported by consciously inaccessible 
processes (Dietrich & Haider, 2017; Fedor et al., 2017).

The term creative “insight” implies that there is a very 
brief moment in time in which the cognitive system changes 
its state from consciously not knowing to knowing. Nev-
ertheless, it is important to see that research on insight 
and creativity often stresses that such apparently sudden 
“insight” moments are preceded by other events, including 
the moment of noticing that there is a problem that needs to 
be solved over an incubation period (spanning from years 
to minutes) until finally coming up with a new idea (Cos-
melli & Preiss, 2014; Dietrich & Haider, 2017; Hélie & Sun, 
2010). Thus, there might be different, hierarchical represen-
tational contents an individual can become aware of Kouider 
et al., (2010). In an implicit learning task, this can encom-
pass consciously noticing that there is something about the 
task that has not yet been recognized before, noticing that 
certain events (finger movements, stimuli, etc.) appear sys-
tematically, to lastly discovering the actual sequence that 
governs the task. However, regardless of the specific content, 
these changes in awareness could result from a sudden or a 
gradual change in the underlying representations. While the 
SRTT has the potential to explore various aspects of these 
insight stages, what might be of particular interest in the 
light of the Unexpected Event Hypothesis is the moment 
where an individual notices that their consciously held 
beliefs about the task do not match their perceived experi-
ences, which could trigger an inferential process that finally 
leads to recognizing the sequence in the task.

How to conceptualize the transition 
from implicit to explicit sequence 
knowledge

In the following, we will briefly outline two theoretical 
viewpoints about the development of explicit knowledge in 
an implicit learning situation. Afterwards, two prominent 
theoretical perspectives on consciousness will be introduced. 
These are the Global Workspace Theory (Baars, 1997; Baars 
& Franklin, 2003; Dehaene & Changeux, 2011; Dehaene 
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& Naccache, 2001) and the Higher-Order Thought Theory 
(Dienes & Perner, 1999; Lau & Rosenthal, 2011; Rosenthal, 
2012; see Dehaene et al., 2017, or Shea & Frith, 2019, for an 
argument why both, the Global Workspace Theory and the 
Higher-Order Thought Theory, are important for conscious-
ness studies). We will elaborate how both theoretical views 
have already been applied in the field of implicit learning 
and how they fit the current theoretical views and empirical 
data on the transition from implicit to explicit knowledge. 
We will try to illustrate which problems both perspectives 
have, when they are used to explain how explicit knowledge 
arises from an implicit learning situation. Finally, we aim to 
discuss in which direction future research could go to tackle 
these issues.

Theoretical views on the development 
of conscious knowledge in implicit learning 
situations

As briefly stated in the introduction, there are two distinct 
theoretical perspectives on how explicit knowledge can 
develop in an implicit learning situation. One proposes that 
there is a continuous transition from an unconscious to a 
conscious state, while the other assumes that knowledge is 
either implicit or explicit and that the transition happens in 
a sudden representational change.

The idea of a gradual change in representational quality 
goes back to Cleeremans and Jiménez (2002). They pro-
posed three different factors which influence the quality of a 
representation: (1) Stability, i.e., the time a certain activation 
pattern can be maintained, (2) strength, i.e., the number of 
modules involved and their respective activation strength, 
and (3) distinctiveness, i.e., the extent of overlap between 
representations within a functional network (see Kinsbourne, 
1996, for a similar position). While implicit learning first 
leads to very weak representations, with practice these rep-
resentations gradually gain quality and can result in explicit 
knowledge. This proposal has later been elaborated further 
in the Radical Plasticity Hypothesis by Cleeremans (2008, 
2011, 2014) by adding a hierarchically higher, second-order 
learning system. The lower-order or first-order learning sys-
tem develops implicit knowledge through interaction with 
the environment. This knowledge is never conscious; it is 
labeled as knowledge within the system. For consciousness 
to arise, the first-order information needs to be redescribed 
as a meta-representation; that is, knowledge for the system 
(Clark & Karmiloff-Smith, 1993). The first-order representa-
tion itself becomes an object of a representation for higher-
order systems. This higher-order system receives input 
from the first-order systems and learns that the state of the 
first-order system has changed as it becomes more accurate 
and thereby develops a higher-order attitude towards the 

first-order knowledge (e.g. “knowing that …”, “hoping that 
…”, “believing that …”). This higher-order representation is 
assumed to be a new representation involving a broad pattern 
of activation over different processing units which is only 
indirectly shaped by the changes of the connection-weights 
within the first-order system. The proposed learning mecha-
nism behind the first- and the higher-order learning system 
is the same; both systems gradually improve the quality of 
a representation with each learning trial. Thus, the higher-
order representation gradually becomes more consciously 
accessible, as it changes from “not knowing” to “knowing”.

The other theoretical account, the Unexpected-Event 
Hypothesis, agrees that it is not the implicit knowledge 
that becomes conscious itself. Rather, a second learning 
mechanism leads to the acquisition of explicitly accessible 
knowledge. However, this second mechanism does not lead 
to a gradual development of conscious access. The cru-
cial idea of the Unexpected Event Theory is that explicit 
sequence knowledge can only develop when an individual 
unexpectedly notices a change in their own behavior. In 
an implicit learning situation, the interaction with the task 
leads to a continuous improvement of the responses to the 
stimuli; they become more accurate and faster. It can be 
this improvement or, for example, the feeling that the task 
becomes more fluent or easy, that there is a certain rhythm 
in one’s own responses, or an external event that can trigger 
an intentional search for the sequence. Generally speaking, 
the Unexpected Event Theory involves a monitoring process 
which constantly compares observable expected and actual 
behavior. This comprises internal, subjectively experienced, 
as well as externally observable behavioral deviations from 
one’s expectations.

For example, giving the (correct) response before the 
stimulus was shown could clearly be a surprising event 
for the participant. Haider and Frensch (2009) varied the 
RSI to manipulate the opportunity for participants to emit 
a response before the next stimulus occurred. They found 
more explicit sequence knowledge when the task allowed 
participants to emit premature responses. Likewise, Rünger 
and Frensch (2008) demonstrated that exchanging the 
trained sequence with a new sequence led to more explicit 
knowledge, than the same amount of training with only one 
sequence. The authors attributed this effect to the partici-
pants noticing surprisingly slower responses and attributing 
them to a change in the structure of the task. Controlling for 
the number of sequential and non-sequential trials, Esser and 
Haider (2017) showed that arranging regular, sequential and 
irregular, random trials in mini-blocks led to more explicit 
sequence knowledge, compared to a condition where regular 
and irregular trials were mixed randomly. In this case, the 
authors attributed this effect to providing the participants 
the opportunity to experience systematic differences in the 
fluency of the task.
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Under the Unexpected Event Hypothesis, these con-
sciously perceivable differences in the expected and 
observed behavior are critical for recognizing that the own 
knowledge is different from the expected knowledge. This 
does not imply that the individual instantly also gains insight 
into the exact sequence structure. Instead, the detected con-
flict triggers an attributional process to adjust its predictions 
and reestablish coherence between the distal environment 
and one’s proximal model of it. Comparable monitoring-
models have been established in neurocognitive models 
of conflict-detection and adaption (Botvinick, 2007; Bot-
vinick et al., 2001), metacognitive control (Koriat, 2000, 
2012, 2015), or memory (Whittlesea, 2002; Whittlesea & 
Williams, 2000). Thus, the triggered attributional processes 
do not necessarily lead to explicit sequence knowledge, if 
another explanation seems more likely to account for the 
unexpected experience (see also Reisenzein et al., 2019). 
Haider and Frensch (2005) have shown that premature 
responses in an implicit learning task did not result in more 
explicit knowledge if another, simpler explanation for these 
responses was provided (e.g. “attentional lapses”). Impor-
tantly, the secondary explicit learning process is not assumed 
to directly have access to the implicit knowledge. Instead, 
the explicit learning process will result in a new represen-
tation based on the available information. In this context, 
Schwager et al. (2012) have shown that after perceiving an 
unexpected event, participants will learn a new sequence just 
as well as the sequence they were trained with.

A suggestion that comprises aspects of both perspectives, 
the Radical Plasticity and the Unexpected Event Hypothesis, 
has been made by Scott and Dienes (2008, 2010). They sug-
gested that implicit learning influences familiarity judge-
ments, which enable individuals to correctly distinguish 
strings that follow the implicitly learned structure from 
those that do not. With repeated familiarity judgements, 
the individual will learn that their judgements are correct 
and thus explicit judgmental knowledge (knowing that one 
knows) develops gradually. However, to acquire explicit 
structural knowledge (knowing the exact structure of the 
implicitly learned information), a second explicit learning 
mechanism is required that tests different hypotheses about 
the reason for the correct judgements. When and how this 
explicit learning mechanism is triggered remains unclear.

In the following sections, we briefly describe the main 
aspects of the Global Workspace Theory and The Higher-
Order Thought Theory as well as their relation to both, the 
Radical Plasticity and the Unexpected Event Hypothesis.

Global Workspace Theory

The Global Workspace Theory is a prominent functional 
and neuroscientific theory of consciousness. The basic 
assumption of the Global Workspace Theory is that the brain 

contains a multitude of functionally highly specialized sub-
systems working in parallel. Information in these subsystems 
is unconscious, there is no phenomenal- (Block, 2007; Chal-
mers, 1995), micro-consciousness (Lamme, 2006), or any-
thing alike associated with information processing in these 
networks. Per se, these networks work encapsulated, that 
means they exchange information only within hard-wired 
or acquired pathways to fulfill their specialized task. This 
encapsulation enables the brain to handle a massive amount 
of input in parallel (Baars, 1997). Nevertheless, coherent 
interaction with the environment requires serial output 
and therefore a mechanism is needed that selects the most 
relevant information. Here, the theory postulates a global 
workspace mechanism which provides the necessary infra-
structure, neurologically mainly realized by thalamo-cortical 
long-distance neurons of the prefrontal and the anterior cin-
gular cortices (see Baars et al., 2013 for a detailed elabora-
tion of the neuronal architecture). The global workspace is 
able to select relevant information, to prevent interference, 
to allow the encapsulated modules to exchange information, 
and to flexibly establish temporary networks between these 
modules (Dehaene & Naccache, 2001).

The Global Workspace Theory uses a blackboard meta-
phor for describing how the global workspace works. When 
a module gets selected to enter the global workspace, it 
can broadcast its content to any other network in the brain. 
Other modules can access the information on the blackboard 
and process it in their specified function. The information 
from the broadcasted module is no longer encapsulated. It 
is now said to be amodal because it is no longer bound to 
the specialized processes of the module it originated from. 
Instead, it is now processed in a broad context of uncon-
scious subsystems. These subsystems include, for example, 
perception, language, intentions, self-concepts, expecta-
tions, memory, and exclusive access to working-memory 
functions (Baars, 1997, 2005; Baars & Franklin, 2003; Baars 
et al., 2013; Cowan, 2010; Persuh et al., 2018; Schwager 
& Hagendorf, 2009). Thus, the Global Workspace The-
ory avoids the assumption that there is a certain instance 
where consciousness is “created” or that consciousness is 
an additional phenomenal quality that accompanies certain 
processes. Instead, consciousness is functionally defined by 
the global accessibility of representations and the resulting 
enabling of behavioral consequences.

Crucial to the Global Workspace Theory as a functional-
ist theory of consciousness is that conscious processing is 
equalized with the global accessibility of information and 
the thereby enabled options of processing this information. 
Neuroimaging shows that this de-capsulation of informa-
tion is accompanied by a neurological “ignition”, a sudden, 
strong activation of a vast variety of cortical and subcortical 
regions (Dehaene & Changeux, 2011; Dehaene & Naccache, 
2001; Del Cul et al., 2009; Rose et al., 2010; Schuck et al., 
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2015; Wessel et al., 2012). Hence, in the Global Workspace 
Theory the transition from unconscious to conscious pro-
cessing is seen as an all-or-none phenomenon; there is no 
gradual consciousness. What may differ, however, is the 
level of representation that gains access to the global work-
space. The levels of representation can vary from low (e.g. 
simple shapes or levels of intensity) to high (e.g. whole 
object, words, meaning), which all can be accessed inde-
pendently and thus account for varying levels of the quality 
of conscious representations (Kouider et al., 2010).

To explain how a representation can change from an 
unconscious to a conscious state, while at the same time 
avoiding to assume that some instance “knows” (i.e., a 
homunculus) which information to select, the Global 
Workspace Theory suggests a stochastic bottom-up varia-
tion-selection mechanism for explaining how the most rel-
evant information is selected from the enormous amount of 
unconscious information (“Neural Darwinism”, Changeux 
& Dehaene, 1989). Every unconscious module constantly 
competes for access to the global workspace (variation com-
ponent), while the global workspace sets a selection function 
depending on current goal states. Only one module or coali-
tion of modules will show the strongest activation in the con-
text of the current goal-state-dependent content of the global 
workspace and will therefore win the competition for global 
broadcasting (“winner-takes-it all”, Shanahan & Baars, 
2005). If a bottom-up signal surpasses a certain threshold, 
it is assumed to receive top-down amplification to remain 
maintained (it is said to receive “attentional amplification”). 
Thus, Dehaene et al. (2006) propose a 2 × 2 taxonomy in 
which an unconscious representation can have (a) strong or 
weak signal strength and, independent from signal strength, 
(b) can or cannot be amplified by top-down attention. Only 
when both criteria are given, signal strength is high and top-
down attention towards the unconscious content is provided, 
the sufficient conditions for consciousness are met.

Global Workspace Theory and the emergence 
of conscious knowledge in implicit learning

What are the implications of the Global Workspace The-
ory for implicit learning research and the explanation how 
explicit knowledge develops in an implicit learning situa-
tion? A first prediction is that the change from an uncon-
scious to a conscious state happens in a sudden “insight” 
that a sequence has been learned, instead of a gradual 
change towards consciously accessible knowledge (Marti 
& Dehaene, 2017). There is some empirical evidence that, 
in fact, the transition from implicit to explicit knowledge is 
reflected in a sudden representational change. These stud-
ies aim to examine the point in time where an individual 
becomes able to verbalize their acquired knowledge or use 
it strategically. For example, Haider et al. (2011) provided 

evidence that most of the participants who showed a sud-
den drop in their RT during learning were able to ver-
balize their knowledge by the end of training. The RT-
drop seemingly reflects the moment where participants 
switched from stimulus- to plan-driven control (Tubau 
et al., 2007). Moreover, neuroimaging data showed that a 
sudden coupling of gamma-band activity and increases of 
the BOLD-signal in the ventrolateral prefrontal cortex, the 
medial and ventrolateral prefrontal cortex and the ventral 
striatum preceded such an RT-drop, respectively strategy 
change (Lawson et al., 2017; Rose et al., 2010; Schuck 
et al., 2015; Wessel et al., 2012). These changes might 
reflect the sudden “ignition” of cortical activity which, 
as postulated by the Global Workspace Theory, accom-
panies the transition from an unconscious to a conscious 
state (Dehaene & Changeux, 2011; Dehaene & Naccache, 
2001).

While such results implicate that conscious insight into 
implicitly learned representations seem to happen rather 
sudden instead of gradually, they do not provide informa-
tion about how and why these transitions occur. A non-lin-
ear transition can occur due to an underlying slow gradual 
learning processes as well as through a spontaneously trig-
gered, inferential explicit learning process. To explain how 
an unconscious, implicit representation can become con-
sciously accessible under the Global Workspace Theory, two 
essential aspects need to be clarified: first, it needs to be 
explained how implicit, encapsulated information can reach 
a representational strength high enough to win the competi-
tion for access to the global workspace. Second, it needs to 
be explained how a goal state arises that provides the neces-
sary top-down amplification for the implicit information.

Certainly, with ongoing practice in an SRTT, the repre-
sentational strength or quality will gradually increase. The 
Global Workspace Theory allows the proposal that with 
enough practice, the representational strength or quality 
could be high enough by itself to win the competition and 
enter the global workspace (Cleeremans & Jiménez, 2002). 
This is what happens, when a signal with very high bot-
tom-up strength is presented (e.g. a loud noise). However, 
it seems rather unlikely that an implicit learning process 
results in a signal that is strong enough by itself to win this 
competition without any additional top-down amplifica-
tion. Likewise, a gradual higher-order learning process, as 
it is suggested by Cleeremans (2008, 2011), would, in the 
light of the Global Workspace Theory, require an additional 
explanation when and how the higher-order learning pro-
cess changes from a gradual increase in representational 
quality to a non-linear increase in activation that corre-
sponds with the sudden ignition proposed by the Global 
Workspace Theory. Rather, it seems that an explanation is 
needed how the system gets into a state in which the encap-
sulated module containing implicit information provides 
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the fitting information to the selection function set by the 
global workspace and thus will receive additional top-down 
amplification.

Here, the Unexpected Event Theory provides a simple 
explanation: A monitoring process can detect a mismatch 
between expected and experienced performance. Because 
the mismatch is subjectively perceivable in one’s own behav-
ioral output or in internally perceived aspects of the task, 
this mismatch results in a new state of the global workspace 
that sets a fitting selective function for the implicitly learned 
representation.

Whatever the mechanism is that triggers the global work-
space to allocate top-down amplification to the implicitly 
learned representation, it is furthermore important to ask, 
whether it is the implicit representation itself that will 
become a conscious representation or whether a new explicit 
representation will develop.

The Unexpected Event Theory suggests that the latter 
is the case; a detected mismatch only triggers a conscious 
attributional process with the purpose of finding any expla-
nation for this mismatch. If an explanation different from 
an underlying sequence is more likely to the participant, the 
(sequence) knowledge remains implicit (Haider & Frensch, 
2005; Wilbert & Haider, 2012). If, however, it seems likely 
to the participant that an underlying sequence is a reason for 
their behavior, a new, explicit learning process will learn the 
sequence, fully independent of the implicitly learned repre-
sentation (see Schwager et al., 2012).

To sum up, when the Global Workspace Theory should 
be applied to explaining a transition from implicit to explicit 
knowledge two questions need more investigation in the 
future: first, how does the global workspace get into a state 
that can provide top-down amplification to the implicitly 
learned representation? Second, is it the implicit informa-
tion that becomes conscious itself once it is selected or does 
the content of the global workspace only mobilize a second, 
explicit learning process?

Higher‑Order Thought Theory

While the Global Workspace Theory is a specific theory 
of consciousness, Higher-Order Thought Theories are an 
umbrella term for a wider range of theories, which are con-
cerned with the metacognitive aspects of consciousness 
(Lau & Rosenthal, 2011). Here, we focus on a Higher-Order 
Thought Theory that goes back to the work of Rosenthal 
(1997; Dienes & Perner, 1999). In its core, it differenti-
ates between first-order and second-order (or higher-order) 
states. First-order states refer to simple input–output rules 
of any sensory or motor system. This can be understood 
in analogy to the parallel working modules in the Global 
Workspace Theory. Encapsulated, respectively implicitly 
learned information can be seen as a first-order state which 

is unconscious. Not only the human brain, but any simple or 
complex machine, which shows discriminatory performance, 
has first-order states (e.g. perceiving light of a certain wave-
length results in the output of detecting red).

Consciousness, according to Higher-Order Thought The-
ories, crucially depends on developing higher-order knowl-
edge about this first-order knowledge. Put simply, conscious-
ness means knowing that one knows. This comprises the 
ability for self-reflection, self-reference and a propositional 
attitude (e.g. “I know/believe/guess that it is red that I see”, 
“It is I, who sees red”, “it is red that I see”, Dienes & Perner, 
1999). What is needed for consciousness is a mechanism 
that allows the brain to draw inferences about its own inter-
nal first-order states and about how these relate to states 
in the environment. Different theoretical suggestions and 
models have been put forward to describe the learning pro-
cess behind the acquisition of higher-order knowledge about 
first-order states (Fleming & Daw, 2017; Lau, 2008; Lau & 
Rosenthal, 2011).

Higher‑Order Thought Theory and the emergence 
of conscious knowledge in implicit learning

The theoretical view put forward by Cleeremans (2008, 
2011, 2014) clearly applies Higher-Order Thought Theo-
ries to the question how explicit knowledge develops in 
an implicit learning situation: through interaction with the 
environment, a first-order representation is developed and 
is gradually improving in quality. The higher-order system 
receives input from the first-order systems and learns that the 
state in the first-order system has changed and thereby devel-
ops a higher-order attitude towards the first-order knowledge 
(e.g. “knowing that …”, “hoping that …”, “seeing that …”). 
This higher-order knowledge is not per se conscious but can 
become conscious, once its representational quality is strong 
enough. A very valuable aspect of this theory is that it con-
nects well-established connectionist learning theories with 
the development of consciousness.

Pasquali et  al. (2010) have investigated the relation 
between first-order sensitivity and higher-order awareness 
in simulations of neural networks within different paradigms 
(i.e. Blindsight, Iowa Gabling Task, and an AGL Task). 
These results supported the assumption that the higher-order 
representations gradually improve with the learning progress 
of the first-order system. Using the Post-Decision Wager-
ing Task (Persaud et al., 2007), the authors showed that the 
higher-order networks gradually changed from classifying 
random answers as being correct to classifying only correct 
responses as being correct (by giving high wagers on correct 
responses).

There are debates on how exactly the relation between 
first-order knowledge and a meta-cognitive learning mecha-
nism should be modeled, with most of the suggested models 
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being based on bottom-up signal-detection theories (Barrett 
et al., 2013; Fleming & Lau, 2014; Maniscalco & Lau, 2012, 
2016). What these models have in common is the gradual 
development of higher-order knowledge. The conscious 
state of a representation changes from guessing, which rep-
resents being unconscious about a first-order representation, 
to knowing, which represents being conscious about a first-
order representation (Dienes & Scott, 2005; Sandberg et al., 
2010).

A rather simple higher-order learning mechanism, as 
proposed by Cleeremans (2014), might indeed provide an 
important basis for a cognitive system to determine what 
first order-state it currently is in. The assumption that a 
meta-cognitive learning mechanism plays a significant role 
in gaining conscious insight into otherwise unconscious 
information processing is very promising, as it describes 
the brain’s ability to learn not only about external informa-
tion but also about its internal states. However, there are a 
few open points that should be considered in future research.

The higher-order learning process informs the system 
that knowledge has been acquired, but knowing that one 
knows (instead of guessing) the correct response is not equal 
to knowing that there is an underlying sequence or even 
knowing what exact rules constitute this sequence (Scott & 
Dienes, 2010). It could be argued that under Higher-Order 
Thought Theories this aspect is less important than under the 
Global Workspace Theory, because consciousness is defined 
as possessing a higher-order representation of the first-order 
contents. Further functional properties, such as being able 
to verbalize the sequence, or being able to flexibly transfer 
this knowledge to new, different situations are of less impor-
tance. However, the question remains: even if consciousness 
relies on gradual metacognitive learning processes, how is 
that learning mechanism connected to explicit knowledge of 
the underlying sequence?

Another question to ask is if correctness of the first-order 
performance is the only or most important target of higher-
order learning systems. Knowing that one knows might 
not only rely on assessing the correctness of the behavioral 
output. For example, noticing premature responses before 
the next stimulus occurs (Haider & Frensch, 2009), sud-
den changes in the sequential structure which lead to slower 
reaction times (Rünger & Frensch, 2008), or changes in the 
perceived fluency of the task performance (Esser & Haider, 
2017) also could be the target of metacognitive learning 
processes. Thus, it is open to further investigation whether 
such a higher-order process would also be able to learn 
about different metacognitive judgements (e.g. fluency). 
The mechanism described by Cleeremans et al. (Pasquali 
et al., 2010) has so far only been tested in situations where a 
person is directly asked to evaluate the correctness of their 
responses. This leads to the question whether metacognitive 
learning only occurs for intentionally attended dimensions 

(e.g. correctness), or whether learning about first-order 
performance is automatic and can happen in parallel for 
multiple dimensions (e.g. correctness, fluency, speed, etc.) 
when there is no external instruction to do so (as there is by 
subsequently presenting the post-decision wagering task).

Research on implicit learning implies that implicit learn-
ing processes can occur in parallel (Goschke & Bolte, 2012; 
Haider et al., 2012, 2014, 2020; Mayr, 1996). Yet, it is not 
granted that higher-order learning processes can happen in 
parallel for all implicit learning processes. It might be that 
higher-order learning processes rely on intention, respec-
tively selective attention, to evaluate one specific behavio-
ral output (correctness, speed, fluency, etc.). If this were 
the case, it needed to be explained how the system decides 
which first-order representations are accessed to develop a 
higher-order representation. Moreover, a large number of the 
implicit learning studies cited here, imply sensitivity for sud-
den changes, which so far have not been addressed by theo-
ries suggesting gradual metacognitive learning processes.

Therefore, a learning process involving expectations, pre-
dictions, and violations thereof should be considered rather 
than gradual associative strengthening. On an empirical side, 
this is supported by the above-mentioned studies, which 
used different manipulations for balancing the associative 
strength between conditions but manipulated whether small 
or large violations of expectations occurred. For example, 
Esser and Haider (2017) showed differences in the emer-
gence of explicit knowledge when the structure of the task 
led to noticeable differences in the fluency of processing the 
task material. Noticeably, the number of regular and irregu-
lar sequential trials was equal for both groups. Therefore, it 
needs to be addressed how a metacognitive mechanism that 
gradually learns to evaluate first-order performance would 
detect the differences between both learning conditions, 
even though the first-order signal strength is matched. A 
gradual bottom-up higher-order learning mechanism does 
not include the size of prediction errors (here, the sudden 
changes in fluency) as a signal. In the following section, we 
will propose a tentative model which includes ideas of the 
Higher-Order Thought Theories and the Global Workspace 
Theory to respond to the formerly described problems.

Metacognitive learning mechanisms 
and unexpected events

We have reviewed two different views on the development 
of explicit knowledge in an implicit learning situation: The 
Unexpected Event Hypothesis (Frensch et al., 2003; Haider 
& Frensch, 2005) and the metacognitive Radical Plastic-
ity Hypothesis from Cleeremans (2008, 2011). We have 
argued why the Unexpected Event Theory makes assump-
tions and provides empirical evidence that fits with a Global 



1450	 Psychological Research (2022) 86:1442–1457

1 3

Workspace Theory of consciousness, while the Radical Plas-
ticity account of Cleeremans theoretically and empirically 
fits well with Higher-Order Thought Theories (see Fig. 1).

First, both theoretical viewpoints do not differ in the 
conceptualization of the process of implicit learning itself. 
Implicit learning is viewed as a first-order learning mecha-
nism (as it might be called under a Higher-Order Thought 
Theory viewpoint), that creates localized, encapsulated rep-
resentations (as the Global Workspace Theory would put 
it). These first-order learning processes can be described as 
internal perception–action loops that use prediction errors 
to enable learning. In such models, learning of actions or 

action-sequences is controlled by an interaction of feedback 
and feedforward loops (McNamee, & Wolpert, 2019; Wolp-
ert & Ghahramani, 2000). A forward model predicts, given 
a specific motor command, sensory or proprioceptive con-
sequences of an action. The predictive forward model can 
be trained by comparing predicted and actual sensory feed-
back and using the resulting error signal to make increas-
ingly more accurate predictions. It has been demonstrated 
that such internal perception–action loops are relevant for 
implicit motor and perceptual sequence learning (Janacsek 
et al., 2020; Lutz et al., 2018; Ruttle et al., 2021; Ziessler & 
Nattkemper, 2001).

Fig. 1   Implicit and explicit learning viewed under the Global Workspace and the Higher-Order Thought Theory
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Both theoretical viewpoints, the Unexpected Event 
Hypothesis and the Radical Plasticity Hypothesis state that 
it is not these implicit internal models themselves that are 
consciously accessible. Instead, both theoretical approaches 
raise the question how a secondary explicit or higher-order 
learning mechanism represents that the contents of the first-
order models have changed and, finally, how consciousness 
about unconsciously learned sequences arises.

Both viewpoints have their strengths and weaknesses. The 
metacognitive Radical Plasticity account has the strength of 
explaining conscious access by clearly definable connection-
ist learning mechanisms that rely on the same predictive 
learning principles as the first-order system does. How-
ever, this does not readily explain how structural explicit 
knowledge develops (knowing what exactly the sequence is; 
Dienes & Scott, 2005). Furthermore, it does not account for 
the role of expectancy violations from several distinct meta-
cognitive sources (accuracy, speed, fluency, conflict, etc.).

The seemingly biggest difference between the Radical 
Plasticity account and the Unexpected Event Hypothesis is 
that the former assumes that consciousness develops gradu-
ally along with lowering the prediction error of the second-
order system; when there is no surprise about the ongoings 
in the first-order system left, one knows that one knows. 
The Unexpected Event Hypothesis instead proposes that 
conscious awareness is triggered by large prediction errors; 
when an individual thought they did not know but apparently 
know. The Unexpected Event Theory captures the important 
aspect of violations of consciously accessible expectations 
and explains why a rather sudden insight (comprising the 
time span from a consciously accessible surprise to explicit 
structural knowledge) into the implicitly learned representa-
tions seems to develop. Its weakness is that, so far, it did not 
take metacognitive learning mechanisms into account that 
could provide a clearer prediction when expectancies will 
be violated or how these expectancies arise in the first place.

Thus, we aim to elaborate the processes behind the origi-
nal proposal of the Unexpected Event Theory and to point 
to open questions which should be addressed by future 
research. Even though the Unexpected Event Hypothesis 
generally follows the Global Workspace Theory, we assume 
that higher-order learning is an important mechanism to con-
sider, when trying to explain how an unexpected event can 
become consciously accessible. What is needed is a mecha-
nism which allows a comparison between the expected 
metacognition (e.g., “How correct, fast, fluent, (...) should 
my response be?”) an individual has in a given situation 
and the experienced metacognition (e.g., “How correct, 
fast, fluent, (...) was my response?”). Important questions in 
this regard are: what is the relation between the first-order 
internal perception–action models and the second-order or 
metacognitive model? How could a metacognitive learn-
ing process explain how a consciously accessible surprise 

occurs? Currently, there are several different models aiming 
to explain the relation between the first-order signal (here, 
implicit knowledge) and the second-order metacognitive 
evaluation of these signals. Mostly, these models rely on 
signal-detection theory (Del Cul et al., 2009; Galvin et al., 
2003; Lau & Rosenthal, 2011). The problem with these 
models is that they are often pure bottom-up models that do 
not take important top-down factors into account which have 
shown to influence metacognitive decisions. This includes, 
for example, the use of heuristic cues (e.g. fluency, lumi-
nance), which have no direct relation to the first-order sig-
nal the metacognitive judgement is relating to (Hoyndorf 
& Haider, 2009; Koriat, 2007; Wilbert & Haider, 2012). It 
further includes the role of previous metacognitive expe-
riences, with similar situations, successes and failures, or 
general knowledge about one’s own performance capacities.

There are, however, theories that model the relationship 
between first-order knowledge and metacognitive judge-
ments with Bayesian learning (Fleming & Daw, 2017; Sher-
man et al., 2015). One advantage is that Bayesian models 
allow metacognitive learning via predictive coding (Clark, 
2013; Friston, 2010). The evaluation of one’s own behavior, 
respectively knowledge leads to a first hypothesis of what 
metacognitive experience is expected in the next, similar 
situation. This prediction is compared with the current expe-
rienced metacognitive judgement and, in turn, the resulting 
error-signal is used as a bottom-up learning signal for the 
next, more precise metacognitive prediction.

For implicit learning and the development of explicit 
knowledge, this means that any individual has a certain 
expectation about their own performance in an SRTT, based 
on previous experiences with similar situations. Thus, in the 
beginning an individual has a certain metacognitive model 
how fast, fluent, correct, etc. their behavior should be when 
responding to stimuli that appear seemingly randomly on 
a computer screen. The sequential material inherent in the 
task can lead to behavior different from the expected behav-
ior. These deviations from the expected performance will be 
used to adjust the metacognitive model. To develop explicit 
knowledge, the participant has to recognize that their per-
formance does not match their expectations to an extent that 
is not compatible with their model of the current situation. 
We assume that what is important for a change of the meta-
cognitive model and thereby the development of explicit 
knowledge, is the size of the metacognitive prediction error 
and the strength of the a-priori hypothesis.

Smaller deviations from the expected metacognitive 
judgement of the situation can easily be used to adjust the 
model via this bottom-up error signal. For example, faster 
responses, fewer errors, and increasing fluency are com-
patible with mere practice effects and only slight, gradual 
adjustments of the metacognitive models are the result. 
However, large prediction errors would more likely lead to 
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a stronger change of the metacognitive model. In this case, 
it might be functional to evaluate whether a new, different 
model should be applied to the situation, instead of making 
rather drastic changes to the current model. The strength of 
the a-priori hypothesis could also play a significant role. If 
there is a very strong a-priori hypothesis and the current data 
strongly contradict this model, it might be less functional to 
make drastic changes to the current, well-established model. 
Instead, it might be more advisable to test whether a differ-
ent model should be applied, respectively built for the new 
situation. During an SRTT-training, a large deviation might 
occur, if the well-practiced sequence is suddenly removed 
and replaced by random responses. In this case, it might be 
less functional to assume that the own performance capacity 
has declined and instead it might be useful to check whether 
the task has properties that were not considered before (e.g. 
that there used to be a sequence, which is now missing). If, 
however large metacognitive prediction errors are encoun-
tered while the participant only has a rather weak a-priori 
hypothesis, there is no need to replace the current metacog-
nitive model with a new one. Instead, the participant will 
make adjustments to their expectations, without developing 
explicit sequence knowledge. Taken together, we propose 
that both factors, metacognitive prediction error and strength 
of the metacognitive a-priori hypothesis determine whether 
an individual will change their metacognitive model and 
thus enable explicit sequence learning.

As mentioned before, there are models for metacognitive 
learning that support our notion that metacognitive evalua-
tions not only rely on current first-order performance signals 
but also on earlier metacognitive judgements (e.g. Fleming 
& Daw, 2017). So far, there is not much research on how 
metacognitive models are selected in a given situation and 
under which circumstances a model is replaced with a new 
or different one or when instead the current model will be 
adjusted. Collins and Frank (2013) suggested a Bayesian 
“context-task set” model. In this model, an inference is made 
in every single learning trial about whether the current task-
set is still applicable to the current situation or whether there 
are yet unknown rules that should influence the task-set and, 
therefore, a new model should be applied. This model also 
uses arbitrary context cues to determine whether the cur-
rent situation is indicating a new, unknown task context or 
whether previously acquired metacognitive models should 
be used and adjusted.

Importantly, with regard to the Global Workspace The-
ory, we do not assume that such metacognitive represen-
tations are per se conscious or that their strength has any 
relation to a gradual change in consciousness. Instead, we 
propose that metacognitive representations are generally 
good candidates for being accessed by the global work-
space (see Shea & Frith, 2019, for an opinion why meta-
cognitive learning is important to the Global Workspace 

Theory). Assuming that there are multiple parallel higher-
order learning processes, their content might be entirely 
implicit as well. They send and receive information from 
the global workspace, just like implicit first-order informa-
tion could. In the global workspace, multiple meta-cogni-
tive representations could be integrated into a hierarchi-
cally higher metacognitive representation of the current 
situation. This integrated information could for example 
involve metacognitive knowledge about one’s own perfor-
mance like fluency, accuracy of processing, precision or 
confidence. In addition, different weights to the underlying 
metacognitive representations are assigned, according to 
their current relevance.

These original assumptions of the Unexpected Event 
Theory and the additional assumptions about a predictive 
metacognitive learning processes proposed here, could 
solve some of the formerly described problems behind 
the explanations based solely on the Global Workspace 
Theory or Higher-Order Thought Theories. Concerning 
the Global Workspace Theory, the Unexpected Event The-
ory does not need to explain how an implicitly acquired 
first-order representation can gain a signal-strength strong 
enough to win the competition against all other uncon-
scious modules or how top-down amplification can be 
directed to this encapsulated knowledge. This problem is 
solved because it is the conflict between the expected and 
the experienced metacognitive judgements which gains 
access to the global workspace. It is the representation of 
this conflict (or surprise) which has a high likelihood of 
winning the competition against other parallel processes 
for entering the global workspace.

Concerning the Higher-Order Thought Theory-based 
explanation of the emergence of explicit from implicit 
knowledge, the here proposed addition to the Unex-
pected Event Theory account lies in the assumption how 
implicit, first-order knowledge and higher-order knowl-
edge are related. An account where metacognitive judge-
ments depend on a predictive learning process that does 
not only base its predictions on the first-order bottom-up 
signal, but also on heuristic cues, previous knowledge, and 
experiences with similar situations, can help to explain 
different empirical findings. This includes, for example, 
premature responses (Haider & Frensch, 2009), changes 
in the underlying sequence (Schwager et al., 2012) and 
changes in the experienced fluency (Esser & Haider, 2017; 
Rünger & Frensch, 2008). All these results are difficult 
to explain with a pure bottom-up mechanism relying on 
gradual strengthening of the first-order learning signal. 
Furthermore, large prediction errors and the processes, 
they are assumed to trigger, fit the data suggesting that 
explicit knowledge seems to develop in a sudden moment 
of insight (Haider et al., 2011; Rose et al., 2010; Schwager 
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et al., 2012; Wessel et al., 2012), rather than developing 
gradually.

Conclusion and future directions

We assume that the predictive metacognitive model a 
person has about their own behavior in a given situation 
(e.g. how fast, how precise, how difficult or fluent a task 
should be) adapts to the task by comparing the predicted 
and the experienced metacognitive judgement in any given 
situation. The behavioral changes resulting from implicit 
learning may not fit the current metacognitive model (i.e. 
responses might suddenly be much slower than expected 
when the sequence is exchanged with new, random mate-
rial). If so, this violation has a high chance to enter the 
Global Workspace and serve as a trigger to evaluate 
whether a new metacognitive model of the situation should 
be applied.

Nevertheless, there are questions that should be 
addressed by future considerations. This relates to theo-
retical assumptions in need of further elaboration: Are all 
implicit learning processes continuously monitored by par-
allel metacognitive learning processes? How can previous 
knowledge and external cues, like task fluency, influence 
these metacognitive processes? Is metacognitive learning 
a pure bottom-up process? Does the metacognitive predic-
tion error play a role in the emergence of explicit knowl-
edge? Furthermore, there is a need for a model that can 
account for current empirical findings: Why does explicit 
knowledge seem to emerge in a sudden insight process? 
Why do alternative explanations for the behavioral change 
prevent such insight?

We assume that the Unexpected Event Theory and the 
here proposed extensions about expectancy violations 
resulting from Bayesian metacognitive learning processes 
can provide a promising step into answering these ques-
tions. The prediction of a metacognitive judgement is com-
pared to the currently experienced metacognitive judge-
ment about one’s own behavior. Its prediction-error signal 
is then used as a learning signal for developing a more 
accurate metacognitive model of the current situation. 
Small prediction errors might lead to a gradual change of 
the model. Yet, large prediction errors in combination with 
strong a-priori hypotheses can serve as a signal that the 
current model is not suitable for the given situation and a 
different model should be applied. Within such a frame-
work, it can be modelled that not only the current bottom-
up first-order signal but also top-down factors, such as 
heuristic cues and previous experiences with similar situ-
ations, are the basis for a prediction of the metacognitive 
judgement in a given situation.

Our proposal of integrating the role of metacognitive 
learning processes in the Unexpected Event Theory needs 
further experimental investigation: First, it should be 
tested whether the predicted metacognitive judgements can 
be manipulated not only by the strength of the first-order 
signal but also by differences between the expected and the 
actual experienced metacognitive judgment. Second, the 
size of the prediction error of metacognitive judgements 
as well as the strength of the a-priori hypothesis should be 
manipulated to test its relation to the emergence of explicit 
knowledge. Third, we proposed that large prediction errors 
serve as a consciously accessible signal to trigger explicit 
search processes. These search processes are assumed to 
lead to a new explicit representation, independent of the 
implicit representation.

A better understanding of the transition from implicit to 
explicit sequence knowledge can provide interesting con-
tributions to the broad and difficult field of consciousness 
theories itself. Implicit learning paradigms create the unique 
experimental situation where unconscious knowledge does 
not need to be induced by week signal strength or inat-
tention. The development of metacognitive knowledge is 
a concern of many different and often separated research 
fields which all provide different contributions. For example, 
research on decision-making or on perception is governed 
by bottom-up signal-detection models (Galvin et al., 2003; 
Pleskac & Busemeyer, 2010), cue-utilization is prominent 
in memory research (Koriat, 2000, 2012, 2015) and models 
of evidence accumulation are often found in research on 
error-monitoring (Yeung & Summerfield, 2012). Implicit 
sequence learning paradigms can augment this research by 
providing additional opportunities (to the predominant prim-
ing paradigms) to manipulate the first-order signal strength, 
external cues, as well as the role of prior expectations and 
how these expectations develop over the course of learning.

Funding  Open Access funding enabled and organized by Projekt 
DEAL. This study was funded by a Grant from the German Research 
Foundation (HA-5447/12-1).

Declarations 

Conflict of interest  All authors declare that there is no conflict of in-
terest.

Ethical approval  This article does not contain any studies with human 
participants or animals performed by any of the authors.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 



1454	 Psychological Research (2022) 86:1442–1457

1 3

included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Baars, B. J. (1997). In the theatre of consciousness: Global Workspace 
Theory, a rigorous scientific theory of consciousness. Journal of 
Consciousness Studies, 4(4), 292–309.

Baars, B. J. (2005). Global workspace theory of consciousness: 
Towards a cognitive neuroscience of human experience? Pro-
gress in Brain Research, 150, 45–53. https://​doi.​org/​10.​1016/​
S0079-​6123(05)​50004-9

Baars, B. J., & Franklin, S. (2003). How conscious experience and 
working memory interact. Trends in Cognitive Sciences, 7(4), 
166–172. https://​doi.​org/​10.​1016/​S1364-​6613(03)​00056-1

Baars, B. J., Franklin, S., & Ramsøy, T. Z. (2013). Global workspace 
dynamics: Cortical “binding and propagation” enables con-
scious contents. Frontiers in Psychology. https://​doi.​org/​10.​
3389/​fpsyg.​2013.​00200

Barrett, A. B., Dienes, Z., & Seth, A. K. (2013). Measures of meta-
cognition in signal-detection theoretic models. Psychological 
Methods, 18(4), 535–552. https://​doi.​org/​10.​1037/​a0033​26

Block, N. (2007). Consciousness, accessibility, and the mesh 
between psychology and neuroscience. Behavioral and Brain 
Sciences, 30(5–6), 481–499. https://​doi.​org/​10.​1017/​S0140​
525X0​70027​86

Botvinick, M. M. (2007). Conflict monitoring and decision making: 
Reconciling two perspectives on anterior cingulate function. 
Cognitive, Affective, and Behavioral Neuroscience, 7(4), 356–
366. https://​doi.​org/​10.​3758/​CABN.7.​4.​356

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, 
J. D. (2001). Conflict monitoring and cognitive control. Psy-
chological Review, 108(3), 642–652. https://​doi.​org/​10.​1037//​
0033-​295X.​108.3.​624

Chalmers, D. J. (1995). Facing up to the problems of consciousness. 
Journal of Consciousness Studies, 2(3), 200–219. https://​doi.​org/​
10.​1093/​acprof:​oso/​97801​95311​105.​003.​0001

Changeux, J. P., & Dehaene, S. (1989). Neuronal models of cognitive 
functions. Cognition, 33(1–2), 63–109. https://​doi.​org/​10.​1016/​
0010-​0277(89)​90006-1

Clark, A. (2013). Whatever next? Predictive brains, situated agents, 
and the future of cognitive science. The Behavioral and Brain 
Sciences, 36(3), 181–204. https://​doi.​org/​10.​1017/​S0140​525X1​
20004​77

Clark, A., & Karmiloff-Smith, A. (1993). The cognizer’s innards: A 
psychological and philosophical perspective on the development 
of thought. Mind and Language, 8(4), 487–519. https://​doi.​org/​
10.​1111/j.​1468-​0017.​1993.​tb002​99.x

Cleeremans, A. (2008). Consciousness: The radical plasticity thesis. 
In R. Banerjee & B. K. Chakrabarti (Eds.), Models of Brain and 
Mind. Physical, Computational and Psychological Approaches 
(pp. 19–33). Elsevier.

Cleeremans, A. (2011). The radical plasticity thesis: How the brain 
learns to be conscious. Frontiers in Psychology. https://​doi.​org/​
10.​3389/​fpsyg.​2011.​00086

Cleeremans, A. (2014). Connecting conscious and unconscious pro-
cessing. Cognitive Science, 38(6), 1286–1315. https://​doi.​org/​
10.​1111/​cogs.​12149

Cleeremans, A., & Jiménez, L. (2002). Implicit learning and con-
sciousness: A graded, dynamic perspective. In R. M. French & 
A. Cleeremans (Eds.), Implicit learning and consciousness: An 
empirical, computational and philosophical consensus in the 
making? (pp. 1–40). Psychology Press.

Collins, A. G., & Frank, M. J. (2013). Cognitive control over learning: 
Creating, clustering, and generalizing task-set structure. Psycho-
logical Review, 120(1), 190–229. https://​doi.​org/​10.​1037/​a0030​
852

Cosmelli, D., & Preiss, D. D. (2014). On the temporality of creative 
insight: A psychological and phenomenological perspective. 
Frontiers in Psychology, 5, Article 1184. https://​doi.​org/​10.​3389/​
fpsyg.​2014.​01184

Cowan, N. (2010). The magical mystery four: How is working memory 
capacity limited, and why? Current Directions in Psychologi-
cal Science, 19(1), 51–57. https://​doi.​org/​10.​1177/​09637​21409​
359277

Dehaene, S., & Changeux, J. P. (2011). Experimental and theoretical 
approaches to conscious processing. Neuron, 70(2), 200–227. 
https://​doi.​org/​10.​1016/j.​neuron.​2011.​03.​018

Dehaene, S., Changeux, J. P., Naccache, L., Sackur, J., & Sergent, C. 
(2006). Conscious, preconscious, and subliminal processing: A 
testable taxonomy. Trends in Cognitive Sciences, 10(5), 204–211. 
https://​doi.​org/​10.​1016/j.​tics.​2006.​03.​007

Dehaene, S., Lau, H., & Kouider, S. (2017). What is consciousness and 
could machines have it? Science, 358(6362), 48–492. https://​doi.​
org/​10.​1126/​scien​ce.​aan88​71

Dehaene, S., & Naccache, L. (2001). Towards a cognitive neurosci-
ence of consciousness: Basic evidence and a workspace frame-
work. Cognition, 79(1–2), 1–37. https://​doi.​org/​10.​1016/​S0010-​
0277(00)​00123-2

Del Cul, A., Dehaene, S., Reyes, P., Bravo, E., & Slachevsky, A. 
(2009). Causal role of prefrontal cortex in the threshold for 
access to consciousness. Brain, 132(9), 2531–2540. https://​doi.​
org/​10.​1093/​brain/​awp111

Destrebecqz, A., & Cleeremans, A. (2001). Can sequence learning be 
implicit? New evidence with the process dissociation procedure. 
Psychonomic Bulletin and Review, 8(2), 343–350. https://​doi.​org/​
10.​3758/​BF031​96171

Dienes, Z., & Perner, J. (1999). A theory of implicit and explicit knowl-
edge. Behavioral and Brain Sciences, 22(5), 735–808. https://​doi.​
org/​10.​1017/​S0140​525X9​90021​86

Dienes, Z., & Scott, R. (2005). Measuring unconscious knowledge: 
Distinguishing structural knowledge from judgement knowledge. 
Psychological Research Psychologische Forschung, 69(5–6), 
338–351. https://​doi.​org/​10.​1007/​s00426-​004-​0208-3

Dienes, Z., & Seth, A. (2010). Gambling on the unconscious: A com-
parison of wagering and confidence ratings as measures of aware-
ness in an artificial grammar task. Consciousness and Cognition, 
19(2), 674–681. https://​doi.​org/​10.​1016/j.​concog.​2009.​09.​009

Dietrich, A., & Haider, H. (2017). A neurocognitive framework for 
human creative thought. Frontiers in Psychology, 7, 2078. https://​
doi.​org/​10.​3389/​fpsyg.​2016.​02078

Esser, S., & Haider, H. (2017). The emergence of explicit knowledge in 
a serial reaction time task: The role of experienced fluency and 
strength of representation. Frontiers in Psychology. https://​doi.​
org/​10.​3389/​fpsyg.​2017.​00502

Fedor, A., Zachar, I., Szilágyi, A., de Öllinger, M., Vladar, H., & 
Szathmáry, E. (2017). Cognitive architecture with evolution-
ary dynamics solves insight problem. Frontiers in PsycholoGy. 
https://​doi.​org/​10.​3389/​fpsyg.​2017.​00427

Fleming, S. M., & Daw, N. D. (2017). Self-evaluation of decision-
making: A general Bayesian framework for metacognitive com-
putation. Psychological Review, 124(1), 91–114. https://​doi.​org/​
10.​1037/​rev00​00045

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0079-6123(05)50004-9
https://doi.org/10.1016/S0079-6123(05)50004-9
https://doi.org/10.1016/S1364-6613(03)00056-1
https://doi.org/10.3389/fpsyg.2013.00200
https://doi.org/10.3389/fpsyg.2013.00200
https://doi.org/10.1037/a003326
https://doi.org/10.1017/S0140525X07002786
https://doi.org/10.1017/S0140525X07002786
https://doi.org/10.3758/CABN.7.4.356
https://doi.org/10.1037//0033-295X.108.3.624
https://doi.org/10.1037//0033-295X.108.3.624
https://doi.org/10.1093/acprof:oso/9780195311105.003.0001
https://doi.org/10.1093/acprof:oso/9780195311105.003.0001
https://doi.org/10.1016/0010-0277(89)90006-1
https://doi.org/10.1016/0010-0277(89)90006-1
https://doi.org/10.1017/S0140525X12000477
https://doi.org/10.1017/S0140525X12000477
https://doi.org/10.1111/j.1468-0017.1993.tb00299.x
https://doi.org/10.1111/j.1468-0017.1993.tb00299.x
https://doi.org/10.3389/fpsyg.2011.00086
https://doi.org/10.3389/fpsyg.2011.00086
https://doi.org/10.1111/cogs.12149
https://doi.org/10.1111/cogs.12149
https://doi.org/10.1037/a0030852
https://doi.org/10.1037/a0030852
https://doi.org/10.3389/fpsyg.2014.01184
https://doi.org/10.3389/fpsyg.2014.01184
https://doi.org/10.1177/0963721409359277
https://doi.org/10.1177/0963721409359277
https://doi.org/10.1016/j.neuron.2011.03.018
https://doi.org/10.1016/j.tics.2006.03.007
https://doi.org/10.1126/science.aan8871
https://doi.org/10.1126/science.aan8871
https://doi.org/10.1016/S0010-0277(00)00123-2
https://doi.org/10.1016/S0010-0277(00)00123-2
https://doi.org/10.1093/brain/awp111
https://doi.org/10.1093/brain/awp111
https://doi.org/10.3758/BF03196171
https://doi.org/10.3758/BF03196171
https://doi.org/10.1017/S0140525X99002186
https://doi.org/10.1017/S0140525X99002186
https://doi.org/10.1007/s00426-004-0208-3
https://doi.org/10.1016/j.concog.2009.09.009
https://doi.org/10.3389/fpsyg.2016.02078
https://doi.org/10.3389/fpsyg.2016.02078
https://doi.org/10.3389/fpsyg.2017.00502
https://doi.org/10.3389/fpsyg.2017.00502
https://doi.org/10.3389/fpsyg.2017.00427
https://doi.org/10.1037/rev0000045
https://doi.org/10.1037/rev0000045


1455Psychological Research (2022) 86:1442–1457	

1 3

Fleming, S. M., & Lau, H. C. (2014). How to measure metacogni-
tion. Frontiers in Human Neuroscience. https://​doi.​org/​10.​3389/​
fnhum.​2014.​00443

Frensch, P. A., Haider, H., Rünger, D., Neugebauer, U., Voigt, S., & 
Werg, D. (2003). The route from implicit learning to awareness 
of what has been learned. In L. Jiménez (Ed.), Attention and 
implicit learning (pp. 335–366). John Benjamins Publishing 
Company.

Friston, K. (2010). The free-energy principle: A unified brain theory? 
Nature Reviews: Neuroscience, 11(2), 127–138. https://​doi.​org/​
10.​1038/​nrn27​87

Galvin, S. J., Podd, J. V., Drga, V., & Whitmore, J. (2003). Type 2 tasks 
in the theory of signal detectability: Discrimination between cor-
rect and incorrect decisions. Psychonomic Bulletin and Review, 
10(4), 843–876. https://​doi.​org/​10.​3758/​BF031​96546

Goschke, T., & Bolte, A. (2012). On the modularity of implicit 
sequence learning: Independent acquisition of spatial, sym-
bolic, and manual sequences. Cognitive Psychology, 65(2), 
284–320. https://​doi.​org/​10.​1016/j.​cogps​ych.​2012.​04.​002

Haider, H., Eberhardt, K., Esser, S., & Rose, M. (2014). Implicit 
visual learning: How the task set modulates learning by deter-
mining the stimulus-response binding. Consciousness and 
Cognition, 26(1), 145–161. https://​doi.​org/​10.​1016/j.​concog.​
2014.​03.​005

Haider, H., Eberhardt, K., Kunde, A., & Rose, M. (2012). Implicit 
visual learning and the expression of learning. Consciousness 
and Cognition, 22(1), 82–98. https://​doi.​org/​10.​1016/j.​concog.​
2012.​11.​003

Haider, H., Eichler, A., & Lange, T. (2011). An old problem: How can 
we distinguish between conscious and unconscious knowledge 
acquired in an implicit learning task? Consciousness and Cog-
nition, 20(3), 658–672. https://​doi.​org/​10.​1016/j.​concog.​2010.​
10.​021

Haider, H., Esser, S., & Eberhardt, K. (2020). Feature codes in 
implicit sequence learning: Perceived stimulus locations trans-
fer to motor response locations. Psychological Research Psy-
chologische Forschung, 84(1), 192–203. https://​doi.​org/​10.​1007/​
s00426-​018-​0980-0

Haider, H., & Frensch, P. A. (2005). The generation of conscious 
awareness in an incidental learning situation. Psychological 
Research Psychologische Forschung, 69(5–6), 399–411. https://​
doi.​org/​10.​1007/​s00426-​004-​0209-2

Haider, H., & Frensch, P. A. (2009). Conflicts between expected and 
actually performed behavior lead to verbal report of inciden-
tally acquired sequential knowledge. Psychological Research 
Psychologische Forschung, 73(6), 817–834. https://​doi.​org/​10.​
1007/​s00426-​008-​0199-6

Haider, H., Frensch, P. A., & Joram, D. (2005). Are strategy shifts 
caused by data-driven processes or by voluntary processes? 
Consciousness and Cognition, 14(3), 495–519. https://​doi.​org/​
10.​1016/j.​concog.​2004.​12.​002

Haider, H., & Rose, M. (2007). How to investigate insight: A pro-
posal. Methods, 42(1), 49–57. https://​doi.​org/​10.​1016/j.​ymeth.​
2006.​12.​004

Hélie, S., & Sun, R. (2010). Incubation, insight, and creative problem 
solving: A unified theory and a connectionist model. Psychologi-
cal Review, 117(3), 994–1024. https://​doi.​org/​10.​1037/​a0019​532

Hoyndorf, A., & Haider, H. (2009). The “Not Letting Go” phenom-
enon: Accuracy instructions can impair behavioral and meta-
cognitive effects of implicit learning processes. Psychological 
Research Psychologische Forschung, 73(5), 695–706. https://​doi.​
org/​10.​1007/​s00426-​008-​0180-4

Janacsek, K., Shattuck, K. F., Tagarelli, K. M., Lum, J., Turkeltaub, 
P. E., & Ullman, M. T. (2020). Sequence learning in the human 
brain: A functional neuroanatomical meta-analysis of serial 

reaction time studies. NeuroImage, 207, 116387. https://​doi.​org/​
10.​1016/j.​neuro​image.​2019.​116387

Jiménez, L., & Méndez, C. (1999). Which attention is needed for 
implicit sequence learning? Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 25(1), 236–259. https://​
doi.​org/​10.​1037//​0278-​7393.​25.1.​236

Kinsbourne, M. (1996). What qualifies a representation for a role in 
consciousness? In J. D. Cohen & J. W. Schooler (Eds.), Scien-
tific approaches to the study of consciousness (pp. 335–355). 
Erlbaum.

Koch, I. (2007). Anticipatory response control in motor sequence learn-
ing: Evidence from stimulus–response compatibility. Human 
Movement Science, 26, 257–274. https://​doi.​org/​10.​1016/j.​
humov.​2007.​01.​004

Koriat, A. (2000). The feeling of knowing: Some metatheoretical impli-
cations for consciousness and control. Consciousness and Cog-
nition, 9(2), 149–171. https://​doi.​org/​10.​1006/​ccog.​2000.​0433

Koriat, A. (2007). Metacognition and consciousness. In P. D. Zelazo, 
M. Moscovitch, & E. Thompson (Eds.), The Cambridge hand-
book of consciousness (pp. 289–325). Cambridge University 
Press.

Koriat, A. (2012). The self-consistency model of subjective confidence. 
Psychological Review, 119(1), 80–114. https://​doi.​org/​10.​1037/​
a0025​648

Koriat, A. (2015). Knowing by doing: When metacognitive monitoring 
follows metacognitive control. In S. D. Lindsay, C. M. Kelley, A. 
P. Yonelinas, & H. L. Roediger (Eds.), Remembering: attribu-
tions, processes, and control in human memory: Essays in honor 
of Larry Jacoby (pp. 185–197). Psychology Press.

Kouider, S., de Gardelle, V., Sackur, J., & Dupoux, E. (2010). How 
rich is consciousness? The partial awareness hypothesis. Trends 
in Cognitive Sciences, 14(7), 301–307. https://​doi.​org/​10.​1016/j.​
tics.​2010.​04.​006

Kouider, S., & Faivre, N. (2017). Conscious and unconscious per-
ception. In S. Schneider & M. Velmans (Eds.), The Black-
well companion in consciousness (2nd ed., pp. 855–864). 
Wiley-Blackwell.

Lamme, V. A. F. (2006). Towards a true neural stance on conscious-
ness. Trends in Cognitive Sciences, 10(11), 494–501. https://​doi.​
org/​10.​1016/j.​tics.​2006.​09.​001

Lau, H. C. (2008). A higher order Bayesian decision theory of con-
sciousness. Progress in Brain Research, 168, 35–48. https://​doi.​
org/​10.​1016/​S0079-​6123(07)​68004-2

Lau, H. C., & Rosenthal, D. (2011). Empirical support for higher-order 
theories of conscious awareness. Trends in Cognitive Sciences, 
15(8), 365–373. https://​doi.​org/​10.​1016/j.​tics.​2011.​05.​009

Lawson, R. R., Gayle, J. O., & Wheaton, L. A. (2017). Novel behav-
ioral indicator of explicit awareness reveals temporal course of 
frontoparietal neural network facilitation during motor learning. 
PLoS ONE, 12(4), e0175176. https://​doi.​org/​10.​1371/​journ​al.​
pone.​01751​76

Lustig, C., Esser, S., & Haider, H. (2021). The interplay between unex-
pected events and behavior in the development of explicit knowl-
edge in implicit sequence learning [Manuscript submitted for 
publication]. University of Cologne.

Lutz, N. D., Wolf, I., Hübner, S., Born, J., & Rauss, K. (2018). Sleep 
strengthens predictive sequence coding. The Journal of Neurosci-
ence, 38(42), 8989–9000. https://​doi.​org/​10.​1523/​JNEUR​OSCI.​
1352-​18.​2018

Maniscalco, B., & Lau, H. (2012). A signal detection theoretic 
approach for estimating metacognitive sensitivity from confi-
dence ratings. Consciousness and Cognition, 21(1), 422–430. 
https://​doi.​org/​10.​1016/j.​concog.​2011.​09.​021

Maniscalco, B., & Lau, H. C. (2016). The signal processing architec-
ture underlying subjective reports of sensory awareness. Neu-
roscience of Consciousness. https://​doi.​org/​10.​1093/​nc/​niw002

https://doi.org/10.3389/fnhum.2014.00443
https://doi.org/10.3389/fnhum.2014.00443
https://doi.org/10.1038/nrn2787
https://doi.org/10.1038/nrn2787
https://doi.org/10.3758/BF03196546
https://doi.org/10.1016/j.cogpsych.2012.04.002
https://doi.org/10.1016/j.concog.2014.03.005
https://doi.org/10.1016/j.concog.2014.03.005
https://doi.org/10.1016/j.concog.2012.11.003
https://doi.org/10.1016/j.concog.2012.11.003
https://doi.org/10.1016/j.concog.2010.10.021
https://doi.org/10.1016/j.concog.2010.10.021
https://doi.org/10.1007/s00426-018-0980-0
https://doi.org/10.1007/s00426-018-0980-0
https://doi.org/10.1007/s00426-004-0209-2
https://doi.org/10.1007/s00426-004-0209-2
https://doi.org/10.1007/s00426-008-0199-6
https://doi.org/10.1007/s00426-008-0199-6
https://doi.org/10.1016/j.concog.2004.12.002
https://doi.org/10.1016/j.concog.2004.12.002
https://doi.org/10.1016/j.ymeth.2006.12.004
https://doi.org/10.1016/j.ymeth.2006.12.004
https://doi.org/10.1037/a0019532
https://doi.org/10.1007/s00426-008-0180-4
https://doi.org/10.1007/s00426-008-0180-4
https://doi.org/10.1016/j.neuroimage.2019.116387
https://doi.org/10.1016/j.neuroimage.2019.116387
https://doi.org/10.1037//0278-7393.25.1.236
https://doi.org/10.1037//0278-7393.25.1.236
https://doi.org/10.1016/j.humov.2007.01.004
https://doi.org/10.1016/j.humov.2007.01.004
https://doi.org/10.1006/ccog.2000.0433
https://doi.org/10.1037/a0025648
https://doi.org/10.1037/a0025648
https://doi.org/10.1016/j.tics.2010.04.006
https://doi.org/10.1016/j.tics.2010.04.006
https://doi.org/10.1016/j.tics.2006.09.001
https://doi.org/10.1016/j.tics.2006.09.001
https://doi.org/10.1016/S0079-6123(07)68004-2
https://doi.org/10.1016/S0079-6123(07)68004-2
https://doi.org/10.1016/j.tics.2011.05.009
https://doi.org/10.1371/journal.pone.0175176
https://doi.org/10.1371/journal.pone.0175176
https://doi.org/10.1523/JNEUROSCI.1352-18.2018
https://doi.org/10.1523/JNEUROSCI.1352-18.2018
https://doi.org/10.1016/j.concog.2011.09.021
https://doi.org/10.1093/nc/niw002


1456	 Psychological Research (2022) 86:1442–1457

1 3

Marti, S., & Dehaene, S. (2017). Discrete and continuous mechanisms 
of temporal selection in rapid visual streams. Nature Commu-
nications, 8, 1955. https://​doi.​org/​10.​1038/​s41467-​017-​02079-x

Mayr, U. (1996). Spatial attention and implicit sequence learning: 
Evidence for independent learning of spatial and nonspatial 
sequences. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 22(2), 350–364. https://​doi.​org/​10.​
1037/​0278-​7393.​22.2.​350

McNamee, D., & Wolpert, D. M. (2019). Internal models in biological 
control. Annual Review of Control, Robotics, and Autonomous 
Systems, 2, 339–364. https://​doi.​org/​10.​1146/​annur​ev-​contr​
ol-​060117-​105206

Newell, B. R., & Shanks, D. R. (2014). Unconscious influences on 
decision making: A critical review. Behavioral and Brain Sci-
ences, 37(1), 1–61. https://​doi.​org/​10.​1017/​S0140​525X1​20032​14

Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learn-
ing: Evidence from performance measures. Cognitive Psychol-
ogy, 19(1), 1–32. https://​doi.​org/​10.​1016/​0010-​0285(87)​90002-8

Overgaard, M. (2003). On the theoretical and methodological founda-
tions for a science of consciousness. Journal of Anthropological 
Psychology, 13, 6–31.

Pasquali, A., Timmermans, B., & Cleeremans, A. (2010). Know thy-
self: Metacognitive networks and measures of consciousness. 
Cognition, 117(2), 182–190. https://​doi.​org/​10.​1016/j.​cogni​tion.​
2010.​08.​010

Perruchet, P., & Vinter, A. (2002). The self-organizing consciousness. 
Behavioral and Brain Sciences, 25, 297–388. https://​doi.​org/​10.​
1017/​S0140​525X0​20000​67

Perruchet, P., Vinter, A., Pacteau, C., & Gallego, J. (2002). The forma-
tion of structurally relevant units in artificial grammar learning. 
Quarterly Journal of Experimental Psychology, 55A, 485–503. 
https://​doi.​org/​10.​1080/​02724​98014​30004​51

Persaud, N., McLeod, P., & Cowey, A. (2007). Post-decision wager-
ing objectively measures awareness. Nature Neuroscience, 10(2), 
257–261. https://​doi.​org/​10.​1038/​nn1840

Persuh, M., LaRock, E., & Berger, J. (2018). Working memory and 
consciousness: The current state of play. Frontiers in Human 
Neuroscience, 12, 27. https://​doi.​org/​10.​3389/​fnhum.​2018.​00078

Peters, M. A., & Lau, H. (2015). Human observers have optimal intro-
spective access to perceptual processes even for visually masked 
stimuli. eLife. https://​doi.​org/​10.​7554/​eLife.​09651

Pleskac, T. J., & Busemeyer, J. R. (2010). Two-stage dynamic signal 
detection: a theory of choice, decision time, and confidence. 
Psychological Review, 117(3), 864–901. https://​doi.​org/​10.​1037/​
a0019​737

Prather, R. W. (2012). Implicit learning of arithmetic regularities is 
facilitated by proximal contrast. PLoS ONE, 7(10), e48868. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​00488​68

Reber, A. S. (1967). Implicit learning of artificial grammars. Journal 
of Verbal Learning and Verbal Behavior, 6(6), 855–863. https://​
doi.​org/​10.​1016/​S0022-​5371(67)​80149-X

Reisenzein, R., Horstmann, G., & Schützwohl, A. (2019). The cogni-
tive-evolutionary model of surprise: A review of the evidence. 
Topics in Cognitive Science, 11(1), 50–74. https://​doi.​org/​10.​
1111/​tops.​12292

Rose, M., Haider, H., & Büchel, C. (2010). The emergence of explicit 
memory during learning. Cerebral Cortex, 20(12), 2787–2797. 
https://​doi.​org/​10.​1093/​cercor/​bhq02

Rosenthal, D. (1997). A theory of consciousness. In N. Block, O. 
Flanagan, & G. Güzeldere (Eds.), The nature of consciousness: 
Philosophical debates (pp. 729–753). MIT Press.

Rosenthal, D. (2012). Higher-order awareness, misrepresentation and 
function. Philosophical Transactions of the Royal Society of 
London Series b, Biological Sciences, 367(1594), 1424–1438. 
https://​doi.​org/​10.​1098/​rstb.​2011.​0353

Rünger, D., & Frensch, P. A. (2008). How incidental sequence learning 
creates reportable knowledge: The role of unexpected events. 
Journal of Experimental Psychology: Learning, Memory, and 
Cognition, 34(5), 1011–1026. https://​doi.​org/​10.​1037/​a0012​942

Ruttle, J. E., Hart, B., & Henriques, D. (2021). Implicit motor learning 
within three trials. Scientific Reports, 11(1), 1627. https://​doi.​org/​
10.​1038/​s41598-​021-​81031-y

Sandberg, K., Timmermans, B., Overgaard, M., & Cleeremans, A. 
(2010). Measuring consciousness: Is one measure better than the 
other? Consciousness and Cognition, 19(4), 1069–1078. https://​
doi.​org/​10.​1016/j.​concog.​2009.​12.​013

Schuck, N. W., Gaschler, R., Wenke, D., Heinzle, J., Frensch, P. 
A., Haynes, J.-D., & Reverberi, C. (2015). Medial prefrontal 
cortex predicts internally driven strategy shifts. Neuron, 86, 
331–340. https://​doi.​org/​10.​1016/j.​neuron.​2015.​03.​015

Schwager, S., & Hagendorf, H. (2009). Goal-directed access to men-
tal objects in working memory: The role of task-specific feature 
retrieval. Memory and Cognition, 37(8), 1103–1119. https://​
doi.​org/​10.​3758/​MC.​37.8.​1103

Schwager, S., Rünger, D., Gaschler, R., & Frensch, P. A. (2012). 
Data-driven sequence learning or search: What are the pre-
requisites for the generation of explicit sequence knowledge? 
Advances in Cognitive Psychology, 8(2), 132–143. https://​doi.​
org/​10.​2478/​v10053-​008-​0110-4

Scott, R. B., & Dienes, Z. (2008). The conscious, the unconscious, 
and familiarity. Journal of Experimental Psychology Learning, 
Memory, and Cognition, 34(5), 1264–1288. https://​doi.​org/​10.​
1037/​a0012​943

Scott, R., & Dienes, Z. (2010). The metacognitive role of familiarity 
in artificial grammar learning: Transitions from unconscious 
to conscious knowledge. In A. Efklides & P. Misailidi (Eds.), 
Trends and prospects in metacognition research (pp. 37–61). 
Springer Science + Business Media.

Shanahan, M., & Baars, B. (2005). Applying global workspace the-
ory to the frame problem. Cognition, 98(2), 157–176. https://​
doi.​org/​10.​1016/j.​cogni​tion.​2004.​11.​007

Shea, N., & Frith, C. D. (2019). The global workspace needs meta-
cognition. Trends in Cognitive Sciences, 23(7), 560–571. 
https://​doi.​org/​10.​1016/j.​tics.​2019.​04.​007

Sherman, M. T., Seth, A. K., Barrett, A. B., & Kanai, R. (2015). 
Prior expectations facilitate metacognition for perceptual deci-
sion. Consciousness and Cognition, 35, 53–65. https://​doi.​org/​
10.​1016/j.​concog.​2015.​04.​015

Stahl, C., Barth, M., & Haider, H. (2015). Distorted estimates of 
implicit and explicit learning in applications of the process-
dissociation procedure to the SRT task. Consciousness and 
Cognition, 37, 27–43. https://​doi.​org/​10.​1016/j.​concog.​2015.​
08.​003

Tamayo, R., & Frensch, P. A. (2015). Temporal stability of implicit 
sequence knowledge: Implications for single-system models of 
memory. Experimental Psychology, 62(4), 240–253. https://​doi.​
org/​10.​1027/​1618-​3169/​a0002​93

Tubau, E., López-Moliner, J., & Hommel, B. (2007). Modes of execu-
tive control in sequence learning: From stimulus-based to plan-
based control. Journal of Experimental Psychology: General, 
136(1), 43–63. https://​doi.​org/​10.​1037/​0096-​3445.​136.1.​43

Turk-Browne, N. B., Jungé, J., & Scholl, B. J. (2005). The automaticity 
of visual statistical learning. Journal of Experimental Psychol-
ogy: General, 134(4), 552–564. https://​doi.​org/​10.​1037/​0096-​
3445.​134.4.​552

Wessel, J., Haider, H., & Rose, M. (2012). The transition from implicit 
to explicit representations in incidental learning situations: 
More evidence from high-frequency EEG coupling. Experimen-
tal Brain Research, 217(1), 153–162. https://​doi.​org/​10.​1007/​
s00221-​011-​2982-7

https://doi.org/10.1038/s41467-017-02079-x
https://doi.org/10.1037/0278-7393.22.2.350
https://doi.org/10.1037/0278-7393.22.2.350
https://doi.org/10.1146/annurev-control-060117-105206
https://doi.org/10.1146/annurev-control-060117-105206
https://doi.org/10.1017/S0140525X12003214
https://doi.org/10.1016/0010-0285(87)90002-8
https://doi.org/10.1016/j.cognition.2010.08.010
https://doi.org/10.1016/j.cognition.2010.08.010
https://doi.org/10.1017/S0140525X02000067
https://doi.org/10.1017/S0140525X02000067
https://doi.org/10.1080/02724980143000451
https://doi.org/10.1038/nn1840
https://doi.org/10.3389/fnhum.2018.00078
https://doi.org/10.7554/eLife.09651
https://doi.org/10.1037/a0019737
https://doi.org/10.1037/a0019737
https://doi.org/10.1371/journal.pone.0048868
https://doi.org/10.1016/S0022-5371(67)80149-X
https://doi.org/10.1016/S0022-5371(67)80149-X
https://doi.org/10.1111/tops.12292
https://doi.org/10.1111/tops.12292
https://doi.org/10.1093/cercor/bhq02
https://doi.org/10.1098/rstb.2011.0353
https://doi.org/10.1037/a0012942
https://doi.org/10.1038/s41598-021-81031-y
https://doi.org/10.1038/s41598-021-81031-y
https://doi.org/10.1016/j.concog.2009.12.013
https://doi.org/10.1016/j.concog.2009.12.013
https://doi.org/10.1016/j.neuron.2015.03.015
https://doi.org/10.3758/MC.37.8.1103
https://doi.org/10.3758/MC.37.8.1103
https://doi.org/10.2478/v10053-008-0110-4
https://doi.org/10.2478/v10053-008-0110-4
https://doi.org/10.1037/a0012943
https://doi.org/10.1037/a0012943
https://doi.org/10.1016/j.cognition.2004.11.007
https://doi.org/10.1016/j.cognition.2004.11.007
https://doi.org/10.1016/j.tics.2019.04.007
https://doi.org/10.1016/j.concog.2015.04.015
https://doi.org/10.1016/j.concog.2015.04.015
https://doi.org/10.1016/j.concog.2015.08.003
https://doi.org/10.1016/j.concog.2015.08.003
https://doi.org/10.1027/1618-3169/a000293
https://doi.org/10.1027/1618-3169/a000293
https://doi.org/10.1037/0096-3445.136.1.43
https://doi.org/10.1037/0096-3445.134.4.552
https://doi.org/10.1037/0096-3445.134.4.552
https://doi.org/10.1007/s00221-011-2982-7
https://doi.org/10.1007/s00221-011-2982-7


1457Psychological Research (2022) 86:1442–1457	

1 3

Whittlesea, B. W. A. (2002). Two routes to remembering (and another 
to remembering not). Journal of Experimental Psychology: 
General, 131(3), 325–348. https://​doi.​org/​10.​1037//​0096-​3445.​
131.3.​325

Whittlesea, B. W., & Williams, L. D. (2000). The source of feelings of 
familiarity: The discrepancy-attribution hypothesis. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 
26(3), 547–565. https://​doi.​org/​10.​1037//​0278-​7393.​26.3.​547

Wilbert, J., & Haider, H. (2012). The subjective experience of com-
mitted errors and the Discrepancy-Attribution hypothesis. Acta 
Psychologica, 139(2), 370–381. https://​doi.​org/​10.​1016/j.​actpsy.​
2011.​11.​010

Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles 
of movement neuroscience. Nature Neuroscience, 3, 1212–1217. 
https://​doi.​org/​10.​1038/​81497

Yeung, N., & Summerfield, C. (2012). Metacognition in human deci-
sion-making: Confidence and error monitoring. Philosophical 

Transactions of the Royal Society of London Series b, Biologi-
cal Sciences, 367(1594), 1310–1321. https://​doi.​org/​10.​1098/​
rstb.​2011.​0416

Ziessler, M., & Nattkemper, D. (2001). Learning of event sequences 
is based on response-effect learning: Further evidence from a 
serial reaction time task. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 27(3), 595–613. https://​doi.​
org/​10.​1037/​0278-​7393.​27.3.​595

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1037//0096-3445.131.3.325
https://doi.org/10.1037//0096-3445.131.3.325
https://doi.org/10.1037//0278-7393.26.3.547
https://doi.org/10.1016/j.actpsy.2011.11.010
https://doi.org/10.1016/j.actpsy.2011.11.010
https://doi.org/10.1038/81497
https://doi.org/10.1098/rstb.2011.0416
https://doi.org/10.1098/rstb.2011.0416
https://doi.org/10.1037/0278-7393.27.3.595
https://doi.org/10.1037/0278-7393.27.3.595

	What triggers explicit awareness in implicit sequence learning? Implications from theories of consciousness
	Abstract
	Introduction
	The serial reaction time task (SRTT) and its relevance for consciousness research
	How to conceptualize the transition from implicit to explicit sequence knowledge
	Theoretical views on the development of conscious knowledge in implicit learning situations
	Global Workspace Theory
	Global Workspace Theory and the emergence of conscious knowledge in implicit learning
	Higher-Order Thought Theory
	Higher-Order Thought Theory and the emergence of conscious knowledge in implicit learning

	Metacognitive learning mechanisms and unexpected events
	Conclusion and future directions
	References




