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A universal transcriptomic 
signature of age reveals the 
temporal scaling of Caenorhabditis 
elegans aging trajectories
Andrei E. Tarkhov   1,2, Ramani Alla3,4, Srinivas Ayyadevara3,4, Mikhail Pyatnitskiy1,5, 
Leonid I. Menshikov1,6, Robert J. Shmookler Reis3,4,7 & Peter O. Fedichev1,8

We collected 60 age-dependent transcriptomes for C. elegans strains including four exceptionally long-
lived mutants (mean adult lifespan extended 2.2- to 9.4-fold) and three examples of lifespan-increasing 
RNAi treatments. Principal Component Analysis (PCA) reveals aging as a transcriptomic drift along 
a single direction, consistent across the vastly diverse biological conditions and coinciding with the 
first principal component, a hallmark of the criticality of the underlying gene regulatory network. We 
therefore expected that the organism’s aging state could be characterized by a single number closely 
related to vitality deficit or biological age. The “aging trajectory”, i.e. the dependence of the biological 
age on chronological age, is then a universal stochastic function modulated by the network stiffness; 
a macroscopic parameter reflecting the network topology and associated with the rate of aging. To 
corroborate this view, we used publicly available datasets to define a transcriptomic biomarker of age 
and observed that the rescaling of age by lifespan simultaneously brings together aging trajectories of 
transcription and survival curves. In accordance with the theoretical prediction, the limiting mortality 
value at the plateau agrees closely with the mortality rate doubling exponent estimated at the cross-
over age near the average lifespan. Finally, we used the transcriptomic signature of age to identify 
possible life-extending drug compounds and successfully tested a handful of the top-ranking molecules 
in C. elegans survival assays and achieved up to a +30% extension of mean lifespan.

The largest relative lifespan extension yet recorded has been in C. elegans, and corresponds to an almost 10-fold 
increase with the mg44 nonsense mutation in the age-1 gene1,2. However, this hyperlongevity requires homozygo-
sity of the mutation for two generations, resulting in total pre-embryonal genetic disruption. In human subjects, 
sensible anti-aging therapies would instead be applied in adulthood, ideally at advanced ages. Sadly, the best 
C. elegans models of therapeutic interventions yield significant, but considerably smaller reported increases in 
life-span by treatments begun even as early as embryonic development (e.g., up to roughly +90% by let-363 
RNAi3). Late-life pharmacological interventions yielded even smaller effects on lifespan in flies4,5, nematodes6,7 
and mice8–10. It is not fully understood why a single nonsense mutation can dramatically extend animal lifespan, 
while an RNAi block of the same gene does not produce a comparable effect, especially when administered later 
in life. In many cases, temperature-sensitive mutations extend lifespan without completely eliminating the bio-
synthesis of the gene product, so the difference is unlikely to be incomplete suppression of transcripts by RNAi. 
Neuronal resistance to RNAi is another likely explanation for the reduced impact of some RNAi constructs. 
Perhaps the mutation dramatically changes the molecular machinery of the whole organism during development 
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such that the course of aging of the super-long-living strains is qualitatively different both regarding rates and 
form, and hence could not be easily reproduced therapeutically. Alternatively, perhaps the gene regulatory net-
work is sufficiently robust that a therapy can reduce the pace of aging without qualitative alterations of the rele-
vant molecular mechanisms.

To address these alternatives, we compiled an RNA-seq dataset of age-dependent transcriptomes produced 
from C. elegans isogenic strains and populations that have vastly different lifespans. Among them are three 
long-lived isogenic strains carrying mutations: daf-2(e1370), age-1(mg44) [at the first and second generations of 
homozygosity], and daf-2(e1391); daf-12(m20) double mutant1,11; three RNAi treatments (daf-4, che-3 and cyc-1); 
and two independent control runs represented by wild-type (Bristol-N2, DRM stock). The overall range of adult 
lifespans across all the experiments extends from 17 to 160 days. For each of the mutants or interventions, we 
measured gene-expression levels over time, across their lifespans, collecting 60 transcriptomes in total (9 different 
biological time-series, each in duplicate).

Principal Component Analysis (PCA) of gene expression reveals aging in all strains and treated groups as a 
transcriptomic drift in a single direction, consistent across the vastly diverse biological conditions and coinciding 
with the first principal component of the combined dataset, which is a hallmark of the criticality of the underlying 
regulatory network12. We therefore expected that the organism’s physiological aging state can be characterized by 
a single stochastic variable having the meaning of biological age and coinciding approximately with the first prin-
cipal component score. The aging trajectory, i.e., the dependence of the biological age variable on chronological 
age, is then universally determined by the underlying regulatory interactions and the experimental conditions 
through a single phenomenological property describing the effective regulatory-network stiffness. The quantity 
imposes a natural time scale proportional to the mortality rate doubling time, the fundamental dynamic charac-
teristic of the aging process12.

To identify a set of genes universally associated with aging across many different biological conditions, 
the aging signature, and to evaluate the theoretical model, we performed a meta-analysis of publicly available 
gene-expression measurements in C. elegans (more than 4000 samples in total). The identified aging signature 
comprises a set of genes, many of which have no known role in the regulation of aging or longevity. We used the 
same data to introduce a robust transcriptomic biomarker of aging, as a read-out or predictor of “biological age”, 
and demonstrated its utility across the datasets. The biological age dynamics in our experiments reveal a universal 
“aging trajectory”: the rescaling of age by lifespan simultaneously brings together the time-dependent trajectories 
of the transcriptomic biomarker on age and the survival curves. Throughout the paper, “age” means the chrono-
logical adult age (post-L4/adult molt for C. elegans). Therefore, the universality of aging trajectories may provide 
a natural molecular basis for the scaling universality of survival curves recently observed13 and independently 
confirmed in the survival data of all the strains and treatments in our experiments. We investigated the relation-
ship between the stochastic evolution of the biological age variable and mortality using the survival data from an 
independent experiment. We also experimentally confirmed the model prediction of the equivalence between the 
mortality rate doubling exponent (inferred at the cross-over age, corresponding to the average lifespan) and the 
limiting mortality value (corresponding to the mortality plateau). Finally, we used the transcriptomic signature 
of age to identify possible life-extending drug compounds and successfully tested a handful of them in C. elegans 
survival assays.

Results
Selection of long-lived strains and life-extending interventions.  Several mutations leading to 
exceptional longevity of C. elegans have been identified1,14–19 and studied extensively for their remarkable eleva-
tions of both lifespan and stress resistance1,2. We focused on the most long-lived isogenic C. elegans strains, carry-
ing mutations in a long-lived wild-type (Bristol-N2 DRM) background: daf-2(e1370) [strain SR806], age-1(mg44) 
[SR808, at the first and second generations of homozygosity], and the longest-lived daf-2(e1391); daf-12(m20) 
double mutant [strain DR1694]. The average lifespans in the series range from twofold to nearly tenfold longer 
than that of the wild type.

To assess whether the same transcriptomic signature reflects both genetic and later-onset epigenetic life 
extension in adult nematodes, we chose five target genes for RNAi inactivation; daf-4, che-3, cyc-1, cco-1, and 
eat-4. Mutation or RNAi disruption of most of them had been reported to prolong life-spans: +40–120% by daf-
4(e1364)14; +37% by che-3(e1124) and +100% by che-3(p801)15; +87%20, +60–100%21 and +110%22 by cyc-1 
RNAi; +61%20 and +57–80% by cco-1 RNAi21; whereas the effect of eat-4 RNAi has not been quantified in the 
context of aging yet.

We confirmed the longevity of worm strains subjected to these five RNAi interventions at 20 °C (see Table 1 
and Fig. 1). The extensions of mean lifespan ranged from 5–16%, often well below those previously reported, 
which was likely due to the different mode of action (mutation or RNAi treatment), or variation in the study 
protocols, including RNAi-efficacy, exposure times and/or culture temperatures. Neuronal resistance to RNAi 
may also contribute, and could also impinge on non-neuronal tissues through an inter-tissue feedback loop23–25. 
Current and previous lifespan data are summarized in Table 2. The most substantial relative effect obtained by 
RNAi corresponds to an increase in mean lifespan from 20.1 days to 23.3 days (+16.2%) by RNAi of che-3.

Age-dependent transcriptomes of long-lived C. elegans strains.  The age-dependent RNA-seq 
experimental dataset consists of the four mutant groups (daf-2(e1370), age-1(mg44) [at the first and second gen-
erations of homozygosity], and daf-2(e1391); daf-12(m20) double mutant), the three examples of life-extending 
RNAi (daf-4, che-3 and cyc-1, representing knockdown of diverse pathways) and two independent control runs 
represented by C. elegans wild-type (Bristol-N2, strain DRM) from Table 1; 60 transcriptomes in total (see 
Methods for RNA-seq data processing details).
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We started by performing an exploratory analysis of all the gene-expression data with the help of principal 
component analysis (PCA). The first principal component (PC1), along which the variance of the data is maxi-
mal, is the only component significantly correlated with age (r = 0.75, p < 10−10, accounting for r2 = 56% of total 
variance). PC1 simultaneously arranges the mutants, Fig. 2(a), and the RNAi treated strains, Fig. 2(b), according 
to their respective values of chronological age. The total amplitude of change from youngest to oldest ages is 
approximately the same for all 9 groups despite their wide range of longevities.

Our gene expression data suggest that the aging signature, i.e., the set of genes transcriptionally associated 
with age, is robust and remains consistent under a reasonably broad range of experimental conditions and genetic 
or epigenetic interventions. No other principal component score has a statistically significant correlation with 
age after correction for multiple comparisons. It is therefore plausible to assume that the state of the organism 
concerning development and aging can be characterized by a single number, such as PC1 score, indicating nor-
malized biological age. This, however, by no means implies that the system state dynamics along the first principal 
component alone can explain all transcript-level variation caused by altered biology, mutations or gene silencing. 
Therefore, the positions of the strain-representing markers in Fig. 2(a,b) can fluctuate along PC1 or in orthogonal 
directions.

Mutant straina LS* (d) LS ext. p value

SR806 [daf-2(e1370)]2, N2-DRM background 39 +130% <0.0001

SR808 [age-1(mg44)]1,2, second-generation homozygotes in N2-DRM background 160 +840% <0.0001

SR808 [age-1(mg44)]1,2, first-generation homozygotes (“F1”) in N2-DRM 
background 38 +120% <0.0001

N2-DRM (WT)1,2 17

DR1694 [daf-2(e1391); daf-12(m20)] 60.5 +140% <0.0001

N2-DRM (WT) 25.5

Gene for RNAib Protein encoded LS* (d) LS ext. p value

N2, FV (none) 20.1

daf-4 RNAi TGF-beta receptor ortholog 23.2 +15.5% <0.0001

che-3 RNAi Dynein H chain iso 1b 23.3 +16.2% <0.0001

cyc-1 RNAi Cytochrome C1 22.3 +11.1% 0.001

cco-1 RNAi Cytochrome C oxidase 21.1 +4.9% 0.0005

eat-4 RNAi BNPI glutamate transporter** 22.0 +9.4% 0.0035

Table 1.  Summary of survivals for the mutant strains and the confirmatory RNAi interventions. aThe long-
lived-mutant C. elegans strains used for mRNA preparation and analysis by RNA-seq. The relative lifespan was 
calculated with respect to the wild-type control from the corresponding series. bThe survival analysis summary 
for the RNA interference experiments against the five selected C. elegans target genes. Three successful RNAi 
interventions (in bold) representing apparently different mechanisms of action were selected for further 
transcriptomic measurements. Abbreviations: LS, mean adult lifespan; LS ext., relative lifespan extension in %;  
N2, the DRM stock of wild-type strain Bristol-N2; FV, empty feeding vector in place of RNAi. *Mean adult 
lifespan, days post-L4/adult molt. **Affecting pharyngeal pumping.

Figure 1.  Confirmatory survivals for five groups of N2 wild-type worms treated with life-prolonging RNAi or 
bacteria carrying only the empty feeding vector (FV) without an RNAi insert. Markers and lines are colored 
according to the mean lifespan of each group (see Table 1 for the summary of survivals).
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Meta-analysis of aging dynamics in C. elegans transcriptomes.  Small-scale experiments, including 
ours, yield a massive number of transcript levels, measured in a relatively small number of samples. The accu-
rate PCA inference of the aging signature and the biomarker of age is challenging due to the lack of consistency 
of PCA in high dimensions26,27. The procedure is only appropriate for exploratory purposes since it is prone to 
over-fitting and false-positive errors even if all of the samples are collected in the same laboratory under the 
same conditions. A direct comparison of gene expression data obtained in different laboratories is further com-
plicated by divergence in experimental procedures, leading to uncontrollable batch effects requiring extensive 
normalization28–30.

To address this hurdle, we proposed that a robust transcriptomic biomarker of age could also be obtained 
from a sufficiently large collection of publicly deposited “shallow” datasets from small, independent experiments 
(a dozen samples each, on average) since all the transcriptomes would have to share the same essential biology 
of aging. In contrast, the specific experimental conditions and uncontrollable batch differences should be mostly 
uncorrelated, and thus would comprise “noise” in a combined dataset of sufficient overall size.

To investigate such a possibility, we compiled a comprehensive transcriptomic collection for C. elegans by 
combining almost all publicly available gene-expression data for aging cohorts into a single database. The result-
ing “MetaWorm” dataset contains, in total, more than 400 different transcriptomic experiments with N = 3724 

Treatment
Dev. Temp. 
(°C),

LS, control* 
(d)

LS, treatment* 
(d) Effect on LS

daf-4 RNAi 20 20.1 23.2 +15.5%

daf-4(e1364)*** 20 15.8 22.1 +40%a 14

daf-4(e1364)*** 20 14.2 31 +120%a,** 14

che-3 RNAi 20 20.1 23.3 +16.2%

che-3(p801)*** 20 18.8 37.5 +100%15

che-3(e1124)*** 20 18.8 25.7 +37%15

cyc-1 RNAi

20 20.1 22.3 +11.1%

25 13.6 25.4 +87%20

20 19.6 31.3 +60%b 21

20 16.8 31.9 +90%b 21

20 20.1 42.1 +110%b 22

cco-1 RNAi

20 20.1 21.1 +4.9%

25 15.2 24.5 +61%20

20 19.6 30.8 +57%c 21

20 16.8 30.3 +80%c 21

eat-4 RNAi 20 20.1 22.0 +9.4%

Table 2.  Summary of survivals for the mutant strains and the confirmatory RNAi interventions. The survival 
experiment for the RNA interference of the five selected C. elegans target genes. a,b,cBoth experiments were 
done in parallel. *Mean adult lifespan, days post-L4/adult molt. **Quote14: “daf-4(e1364) mutants lived more 
than twice as long as the wild-type in one trial”. ***These studies involved mutant strains rather than RNAi 
treatments. Abbreviations: Dev.Temp., development temperature; LS, mean adult lifespan.

Figure 2.  Principal components analysis (PCA) of the experimental RNA-seq datasets for (a) four long-lived 
mutants and C. elegans wild-type (Bristol-N2, strain DRM), and (b) three life-prolonging RNAi-treated groups 
and C. elegans FV controls (fed bacteria harboring empty feeding-vector plasmid). The marker type denotes 
strains and RNAi groups (see Table 1 for lifespans). The markers in (a,b) are colored according to age rescaled 
to the average lifespan in the groups: 0 and 1 correspond to the L4/adult molt and the mean adult lifespan 
respectively (see the color bar).
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nematode samples characterized by G = 4861 of the most commonly expressed/detected genes in the samples (see 
Methods for more detail on the composition of the dataset and its normalization).

The gene-expression variance in the combined MetaWorm dataset is dominated by batch effects, and hence 
we do not expect PCA to reveal aging in association with the first principal component in an entirely unsuper-
vised way. Instead, we attempted to identify the aging signature by testing many individual genes for differential 
expression during aging. Our MetaWorm dataset is sufficiently large to generate the cross-validation ensemble 
of single-gene association tests using exhaustive random resampling. We further reduced the number of candi-
date genes by thresholding the transcripts based on the frequency of significant associations in the resampling; 
we estimate that the chosen cross-validation threshold corresponds to p < 10−6 uncorrected, or p < 0.005 after 
Bonferroni correction. The final list of genes robustly associated with aging in the MetaWorm study consists of 
327 genes (7% of all genes in MetaWorm): 260 up- and 67 down-regulated with age. We suggest using this gene set 
as the transcriptomic signature of aging. It is noteworthy that approximately 4000 out of 4861 genes never showed 
a significant association with aging during the resampling (see Electronic Supplementary Materials for the full list 
of genes implicated in aging in our calculations).

The transcriptomic signature of age may not be exhaustive, and yet by design, it was reproducible across 
independent experiments and hence should be useful for future C. elegans aging studies. In our experimental 
RNA-seq dataset, for example, 902 genes are significantly associated with age rescaled by lifespan (for the same 
threshold as for MetaWorm, p < 0.005 after Bonferroni correction) out of 4861 genes most commonly detected 
in the MetaWorm samples. Even though the selection using Bonferroni correction is conservative, the list of 
significant gene-associations in our dataset is larger than for MetaWorm. The “extra” genes in our list may reflect 
an association with any laboratory-specific external parameter changing monotonically in time; meta-analysis 
of data obtained under different external conditions in different laboratories would strongly suppress such 
age-associations, thus leaving a smaller number of significant hits. There may also be strong correlations among 
genes governed by a transcription factor whose abundance varies with time within any one laboratory, but which 
may be lost from the MetaWorm database due to inter-laboratory variation in its induction. The prominence 
of transcription factors among the genes that are age-dependent would inevitably lead to a gene-set with high 
internal cross-correlation, and a far higher-than-expected fraction of age-associated genes. The MetaWorm list 
of 327 candidate is congruent to the list of 902 genes from our experimental dataset, since the Mann-Whitney 
U test shows that 327 MetaWorm candidate genes are significantly enriched with the genes having the most 
significant correlation with age rescaled by lifespan among 902 most significant ones in our RNA-seq data. 
The corresponding area-under-curve (AUC) statistic for the receiver operating characteristic (ROC) curve is 
AUC = 0.610 ± 0.015, at the significance level p < 10−30. This implies that the MetaWorm set of “aging signa-
ture” genes very likely includes the same genes that determined PC1 in our RNAseq data, among many more 
co-varying (and hence partially redundant) genes with age-dependent expression.

A correlation with age does not necessarily imply a causal relation to aging, yet genes correlated with age 
are usually the primary target in aging studies. As a first approach to inference of the regulators of aging, we 
checked whether the transcriptomic signature of aging is enriched for the targets of known gene-expression 
regulators (see Table 3). We used four databases for the enrichment analyses: a curated database for transcription 
factors and RNA-binding proteins from published high-throughput expression studies in C. elegans, WormExp31; 
a high-quality protein-DNA interaction network32; and two databases of miRNA-target interactions: the in silico 
predicted TargetScan33 and the experimentally validated MirTarBase34. Enrichment analysis of the list detected 
ten hits already experimentally characterised as regulators of aging: DAF-1635, ELT-236, ELT-637, PMK-138,39, 
PQM-140, NHR-1, NHR-10, NHR-8641, let-742,43, and miR-6044.

Universal transcriptomic biomarker of age.  The robust nature of the gene-expression signature of age 
across widely varying experimental conditions suggests that at any given time, the organism’s aging state can be 
characterized by a single number representing biological age. A typical approach for biological age modeling 
relies on linear regression of measured parameters, gene expression in our case, on chronological age. Naturally, 
due to the high internal cross-correlation among the gene expression levels and a limited number of samples, the 
multivariate regression problem is ill-defined, and any number of convenient biomarkers of age could be obtained 
by applying additional constraints to the regression problem. In this work we impose a requirement of sparsity on 
the transcriptomic biomarker of age, i.e., the number of genes used in the biomarker model should be minimized 
while preserving its predictive power. This is possible to do by performing a cross-validated lasso regression of 
gene expression in the MetaWorm dataset on age rescaled by lifespan in the transcriptomic signature of aging 
comprising 327 genes. To ensure that the obtained transcriptomic biological age model is not over-fitted and 
hence retains its predictive power, we have not used our experimental RNA-seq data during training. The final 
version of the sparse transcriptomic biological age predictor comprises the contributions of only 71 genes (see 
Electronic Supplementary Materials for the list of regression weights).

Simultaneous temporal scaling of survival curves and aging trajectories.  The biological age 
predictor can now be used to transform our multi-dimensional experimental RNA-seq data representing every 
sample as a single number, the biological age. In Fig. 3(a,b) we plotted the aging trajectories (the dependence of 
the biological age on chronological age) and the survival plots. We choose to plot the age-dependent quantities 
not as a function of age, but as a function of age rescaled by lifespan, in contrast to Fig. 4(a,b) where the same 
data are plotted as a function of age without rescaling. The scaling transformation works exceptionally well and 
simultaneously brings together the survival curves and the aging trajectories of animals with drastically different 
average adult lifespans: from 17 days for wild-type N2-DRM control worms to 160 days for age-1(mg44) mutants 
(the Pearson correlation of the biological age with age rescaled by lifespan is r = 0.86 (p = 2 · 10−18), cf. r = 0.54 
(p = 8 · 10−6) for the correlation of the biological age with chronological age (see Fig. 4(a)).
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It is worth noting that the biological age naively inferred from the small dataset as a first principal component 
score from Fig. 2(a,b) is not sufficiently accurate to reveal the temporal scaling of the aging trajectories in the 
same experiment.

Mortality deceleration.  The scaling property of the aging trajectories and the survival functions can be 
naturally explained using the “aging-at-criticality” model, providing a coarse-grained description of the biological 
age variable and gene expression dynamics with the help of a simple stochastic Langevin equation and allowing 
an analytic solution for mortality and the survival fraction12.

Early in life, up to approximately the average lifespan, mortality increases exponentially with age, 
M(t) ≈ M0 exp (αt), where M0 is the initial mortality rate (IMR). The Gompertz exponent α is determined by the 
regulatory network stiffness and is inversely proportional to the mortality rate doubling time (see Methods for 
a summary of the model). We predicted, however, that the exponential rise in mortality rates would cease at late 
ages, approaching a plateau determined at the value of α12.

High-quality mortality records13 were used to test the theoretical prediction. In that study, nematodes were 
subjected to various life-shortening stresses and had their lifespans reduced in such a way that any two survival 
curves could be transformed one into another by a simple rescaling of age. We computed the approximate values 
of the mortality rate doubling exponent using the data in mid-life and the mortality plateau estimates later in life 
for all the reported conditions (see Methods for details of the calculations). The results, summarized in Fig. 5, 
demonstrate a remarkably tight correlation between the parameters, in good semi-quantitative agreement with 
the theoretical calculation, across a life-span range of almost two orders of magnitude.

Using the signature of aging to identify novel life-extending pharmacological interventions.  
The results presented so far confirm our conjecture of an association between aging and critical dynamics of the 
underlying regulatory network. Aging appears to be a consequence of intrinsic instability manifesting itself as 
lack of dynamic control over the expression of genes comprising the signature of aging. We therefore predicted 
that interventions exerting perturbations opposing the aging change in the animals would reduce the rate of aging 
and extend lifespan.

Transcription factors or RNA-binding proteins (WormExp)a FDR

DAF-16 targets97 4.6e-7

CEC-3 targets (spr-5 mutant, generation 10)98 2.0e-4

small RNAs decreased by starvation at P099 1.3e-3

PQM-1 L3 targets100 1.4e-3

Rb/E2F pathway (DPL-1, EFL-1, LIN-35), intestine101 2.7e-3

PMK-1 targets down in Day 15 vs. Day 638 3.8e-3

age-regulated ELT-2 targets36 3.8e-3

up by CSR-1 and w/out CSR-1-bound 22G RNA102 7.1e-3

proteins interacting with CEY-1103 7.1e-3

MUT-14, SMUT-1 (DEAD box)104 1.6e-2

Hox gene targets (LIN-39, MAB-5, EGL-5)100 3.3e-2

Transcription factorsa,b 32

NHR-1, NHR-10, NHR-8641

ELT-637

ZTF-9105

MAB-3

miRNA (TargetScan)a,c

miR-57

miR-244

miR-253

let-7/miR-48/84/241/79542,43

miR-245

miRNA (MirTarBase)a,d

miR-59-3p

miR-256

miR-1819-3p

miR-60-3p44

miR-52-5p

Table 3.  Transcription factors, RNA-binding proteins and miRNAs whose targets are significantly enriched in 
the list of potential transcriptomic biomarkers of age (327 genes). aLongevity-related regulators are highlighted in 
bold. bThe top six transcription-factor hits are reported. c,dThe top five miRNA hits from each of the databases.
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To illustrate the predictive value of our gene-expression signature of age, we attempted to identify novel 
life-extending pharmacological interventions by comparing the signature of aging from this study with gene 
expression profile changes in response to pharmacologic perturbations from the Connectivity Map (CMAP) 
database45,46. This is no trivial task since most of the available transcriptomic studies represent the results of 
experiments characterizing the effects of drug compounds in human cancer cell strains. We transformed the list 
of genes associated with aging in C. elegans into the form recognizable by CMAP and obtained a list of prospective 
medicines with gene expression signatures opposing the aging direction and thus presumably capable of reversing 
the progression of aging in these animals (see Methods for the necessary details). A similar approach for drug 
repurposing against aging has been already demonstrated, e.g., using human brain tissue transcriptomics as the 
input47 and in48 We observed, however, that the list of the predicted compounds turned out to be sensitive to 
minor variations in our worm-to-human gene conversion pipeline and the difference between the latest CMAP 
versions49.

From the top-10 list of predicted compounds (see Table 4) we selected 5 drugs, spanning the entire range of 
p-values: anisomycin, camptothecin, alsterpaullone, azacytidine and metamizole. Because camptothecin did not 
pass our initial screen for a sparing effect on aggregation (see Methods), it was not tested for lifespan effects. The 

Figure 3.  The temporal scaling of survival curves and aging trajectories. (a) The aging trajectories as a function 
of age rescaled by lifespan for the in-house collection of gene-expression data for four long-lived mutants 
and C. elegans wild-type (Bristol-N2, stock DRM), and three groups of N2 wild-type worms treated with life-
prolonging RNAi or bacteria carrying only the empty feeding vector (FV) without an RNAi insert. The dashed 
line is a guide-to-eye. (b) The survival curves from (a) as a function of age rescaled by lifespan. In both panels, 
all markers are colored according to the lifespans of the strains (see Table 1 for the lifespans): red for small and 
green for large lifespans. Overall, the scaling spans almost tenfold variation in median adult lifespan, ranging 
from 17 to 160 days.

Figure 4.  The survival curves and the aging trajectories as a function of age with no rescaling. (a) The aging 
trajectories as a function of age for the in-house collection of gene-expression data for four long-lived mutants 
and C. elegans wild-type (Bristol-N2, stock DRM), and three groups of N2 wild-type worms treated with life-
prolonging RNAi or bacteria carrying only the empty feeding vector (FV) without an RNAi insert. (b) The 
corresponding survival curves from (a) as a function of age. In both panels, all markers are colored according to 
the lifespans of the strains (see Table 1 for the lifespans): red for small and green for large lifespans. Overall, the 
adult lifespan ranges from 17 to 160 days.
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other four compounds were assessed in the C. elegans lifespan assay using two concentrations (1 μM and 10 μM) 
at 20 °C; see Table 5 for a summary of the experimental results. All four compounds turned out to be more effec-
tive at the lower concentration, which suggests toxicity at the higher dose, probably due to off-target effects. In 
Fig. 6, we show the survival curves in the respective cohorts. Remarkably, temporal rescaling of survival curves 
accounts for all variation in survival of the stocks treated with these drugs at both concentrations (compare Fig. 6 
to 7 and 8).

Discussion
The key findings from this study are reduction of gene-expression dynamics to a one-dimension manifold 
revealed by principal component analysis (PCA), the stability of the aging signature across biological condi-
tions, scaling self-similarity of both aging transcript trajectories and survival curves, plateauing of experimental 
mortality at the predicted level of the Gompertz exponent, and identification of new potential life-extending 
pharmaceutical treatments.

The observed features of aging dynamics can be explained with the help of an “aging-at-criticality” hypothesis12.  
This hypothesis proposes that the gene regulatory networks of most species operate near an order-disorder bifur-
cation point50 and are intrinsically unstable. In close proximity to the bifurcation, the dynamics of an organism’s 
physiological state are effectively one-dimensional. Such a reduction of physiological-state vector trajectory in the 
multidimensional gene-transcript space lets us quantify aging progress by a single stochastic variable representing 
biological age. This natural indicator of the organism’s aging is directly associated with mortality (see Methods 
for further details). This property of the underlying gene regulatory network is a common feature of complex net-
works; no matter how complex and large the network is, one can characterize the system by its natural state and 
control variables, thus effectively describing the system by a one-dimensional nonlinear equation51,52. In doing so, 

Figure 5.  The plateau mortality M t t( ) versus the Gompertz exponent α calculated from the experimental 
C. elegans survival curves13. The predicted behavior is shown by the dotted line. The values of the average 
lifespan t  are depicted by the pseudo-color: red for small and green for large values.

Compounda PubChemID p valuea

anisomycin 253602 <0.0001

camptothecinb 24360 <0.0001

GW-8510 6539118 <0.0001

H-7 3542 <0.0001

lanatoside C 3879 <0.0001

alsterpaullone 5005498 0.0001

doxorubicin 31703 0.0002

azacitidine 9444 0.0003

tonzonium bromide 11102 0.0004

metamizole sodium 522325 0.0004

Table 4.  A list of top-10 compounds predicted by CMAP to reverse the progression along the aging direction. 
aCompound names and p values are taken from the CMAP database. bThe compounds initially chosen for 
lifespan testing are highlighted in bold. Camptothecin did not pass the initial test for a sparing effect on 
aggregation, thus it was not tested for lifespan effects.
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one introduces an effective organism-level parameter combining all microscopic features of a network topology 
into a single number, stiffness or resilience of the network (a counterpart of the rate of aging). The effective state 
variable is another macroscopic parameter (the order parameter), that plays a role of the aging process indicator 
and can be ascribed the meaning of biological age.

The apparent stability of the aging signature across vastly different biological conditions is not surprising from 
the theoretical perspective since the lifespan and aging signatures are related to the smallest eigenvalue and the 
corresponding eigenvector of the gene-gene interaction matrix, respectively. Small perturbations, such as effects 
of mutations or RNAi, thus produce small shifts in the already small eigenvalue and hence may yield very large 
variations in lifespan. At the same time, alterations of the aging direction by a weak perturbation are expected to 
be small. The conclusion is rather general and applies to aging in other species, see, e.g., PCA of gene expression 
levels in normally fed and calorically restricted flies53,54.

Given the robust and effectively one-dimensional character of changes during aging, a sufficiently large data-
set could be used to produce a universal transcriptomic biological age model, such as, in its simplest form, a 
regression of the gene expression levels on the chronological age, suitable for future aging studies in C. elegans. 
The magnitude and sign of contributions of individual transcripts to the biological age are not unique due to high 

Interventiona
Conc. 
(μM)

Mean LS* 
(d)

Max LS* 
(d)

Mean LS 
ext. Max LS ext. p value

Control 23.7 31.0

Alsterpaullone 1 26.9 37.0 +13.5% +19.4% <0.0001

Anisomycin 1 29.3 37.0 +23.7% +19.4% <0.0001

Azacytidine 1 29.8 37.0 +25.8% +19.4% <0.0001

Metamizole 1 28.1 37.0 +18.3% +19.4% <0.0001

Control 23.3 28.0

Anisomycin 1 28.4 35.0 +21.8% +25.0% <0.0001

Anisomycin 1 28.1 35.0 +20.4% +25.0% <0.0001

Control 23.9 32.0

Alsterpaullone 10 25.3 33.0 +6.0% +3.1% 0.016

Anisomycin 10 22.4 31.0 −6.0% −3.1% 0.07

Azacytidine 10 26.5 33.0 +11.0% +3.1% 0.00013

Metamizole 10 25.5 33.0 +6.8% +3.1% 0.018

Control 22.9 30.0

Alsterpaullone 10 27.3 36.0 +19.1% +20.0% <0.0001

Anisomycin 10 22.1 29.0 −3.4% −3.3% 0.76

Azacytidine 10 25.2 36.0 +9.9% +20.0% 0.0075

Metamizole 10 29.7 43.0 +29.8% +43.3% <0.0001

Table 5.  Summary of survivals for the pharmacological interventions. aAll survivals were run at 20 °C. *Adult 
lifespan, days post-L4/adult molt. Abbreviations: LS, adult lifespan; Conc., concentration; Ext., extension. All p 
values were calculated using the Log-rank (Mantel-Cox) method.

Figure 6.  Pharmacological interventions: survivals and their temporal scaling. (a) The survival curves for 
Bristol-N2 DRM stocks subjected to pharmacological treatments with alsterpaullone, anisomycin, azacytidine, 
and metamizole at 1 μM. (b) The survival curves from (a) as a function of age rescaled by lifespan. In both 
panels, all markers are colored according to the measured lifespans of the strains (see Table 5) from red to green 
for the smaller and for the larger values of lifespans, respectively.
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covariance within each subset of coordinately expressed genes. The model should be fixed by any reasonable addi-
tional requirement, such as sparsity, and hence has no direct physical or biological meaning other than providing 
a convenient tool for experimental data analysis.

The biological age as a function of chronological age defines the aging trajectory and can thus be used to 
distinguish the progression of aging across strains. Early in life, up to approximately the average lifespan, the 
age-dependent rise of biological age is a universal function of a dimensionless age variable, obtained by rescaling 
the chronological age to the strain life expectancy. This is easy to interpret if the influence of stochastic forces 
is small beyond a certain age, and therefore the progression is almost deterministic with the same time scale 
defining the shape of the gene expression variations and the value of the average lifespan. In theory, this happens 
whenever the average lifespan greatly exceeds the mortality rate doubling time. In practice, the assumption is only 
qualitatively correct, but still provides a reasonable explanation of the experimental situation. According to the 
model, the temporal scale is defined by the underlying gene regulatory network stiffness and thereby mechanis-
tically relates the organism-level properties, such as lifespan, with potentially modifiable molecular-level inter-
action properties of the underlying regulatory network, such as the characteristic molecular and genetic damage 
and repair rates54.

We expect that the dynamics of gene expression and mortality should increasingly depend on non-linearity 
of the gradually disintegrating gene regulatory network, as the aging drift and stochastic forces perturb it. Large 
deviations of gene expression levels from the youthful state are incompatible with survival. Hence the stochastic 
dynamics of the biological age variable provide a mechanistic coupling to mortality. The scaling universality of 
the variation in gene transcript levels, along the aging trajectory exemplified by Fig. 3(a), should in turn be the 
molecular basis for the temporal scaling of survival curves13. In that study, nematodes were subjected to various 
life-shortening stresses, and had their lifespans reduced in such a way that any two survival curves could be super-
imposed by a simple rescaling of age. Our survival data with life-extending mutations, RNA interference, and 
pharmacological interventions, follow the same pattern. The scaling transformation works exceptionally well and 
brings together the aging trajectories of animals with drastically different average adult lifespans: from a mere 17 
days for wild-type N2-DRM control worms to 160 days for age-1(mg44) mutants. Whether the temporal scaling 
of aging trajectories can be generalized to life-shortening interventions has not been investigated yet, and may be 
complicated by the multiplicity of pathways whose disruption curtails lifespan.

The temporal scaling of aging trajectories and survival curves is, of course, an approximate statement, since 
gene expression and lifespans also depend on random environmental and endogenous factors. This may be an 
explanation behind the deviations from the temporal scaling of survival curves in different replicates of the same 

Figure 7.  Pharmacological interventions: survivals and their temporal scaling. (a,c) The survival curves for 
Bristol-N2 DRM stocks subjected to pharmacological treatments with alsterpaullone, anisomycin, azacytidine 
and metamizole at 10 μM dose. (b,d) The survival curves from (a,c) respectively, as a function of age rescaled 
by lifespan. In both panels, all markers are colored according to the lifespans of the strains (see Table 5 for the 
lifespans): red for small and green for large lifespans.
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strain in ref.13. Certain external conditions or therapeutic interventions, in principle, may produce a developmen-
tal delay or acceleration without a change in the rate of aging, and thus produce deviations from the universal 
scaling behavior. The DR1694 strain, demonstrating the most discordant survival curve in our analysis, may be an 
example of such behavior and deserves an independent study. DR1694 is the only strain harboring two mutations 
(to genes encoding the insulin/IGF1 receptor and a nuclear hormone receptor). Those two mutated genes interact 
in allele-specific ways, such that some combinations are short lived while others are quite long-lived. This suggests 
a delicate balance between the gene products as they impact lifespan.

The biological age should plateau at roughly the average lifespan, which is indeed observed in all our experi-
mental cohorts across a 10-fold range of lifespan difference (Fig. 3(a)). As the biological age approaches the limit-
ing value, mortality also decelerates and reaches a plateau at the level of the Gompertz exponent obtained from an 
exponential fit in the age range close to the mean lifespan12. Using high-quality survival data13, we fully confirmed 
the theoretical prediction and showed that age-dependent mortality in C. elegans indeed decelerates and reaches 
a plateau at late ages near the expected level. This phenomenon is not limited to experiments with nematodes55 
and presumably underlies the plateau in mortality rates observed previously in very large populations of medflies 
and fruit flies56–61, which we have extended here to relatively small and homogeneous populations of C. elegans 
(Fig. 5). The results match expectations and, together with the scaling universality of the aging trajectory, both in 
transcriptomes, Fig. 3(a), and corresponding survival curves, Fig. 3(b), support our theoretical model.

For humans, the existence of mortality plateaux is a subject of debate62–68, mostly due to lack of survivors to 
ages largely exceeding the average human lifespan. The lack of such data results in high sensitivity of a human 
mortality plateau to demographic errors66,68. In contrast, for C. elegans high-quality mortality data are available 
for ages up to double the average nematode lifespan, thus, in this particular case, the artifactual nature of mortal-
ity plateaux is unlikely.

Multiple explanations have been proposed, for plateauing mortality at advanced ages69–71, all involving 
multi-parametric models. The main advantage of our approach is that, at least in C. elegans, the exponential 
increase of mortality earlier in life and the saturation of mortality late in life are explained within the framework 
of a simple reaction-kinetics theory dependent only on a single parameter. This parameter is identifiable with the 
mortality rate doubling exponent measured at midlife on the population level, and with the underlying regulatory 
network stiffness on the microscopic molecular levels.

Quantification of aging progress using a single number, such as a regression on age of physiological variables 
representing an organism state, is gaining traction in the aging research community. One of the most successful 
models of the kind is “DNA methylation age”, which is a weighted sum of DNA methylation features, trained to 

Figure 8.  Pharmacological interventions: survivals and their temporal scaling. (a,c) The survival curves for 
Bristol-N2 DRM stocks subjected to pharmacological treatments with anisomycin at 1 μM dose. (b,d) The 
survival curves from (a,c) respectively, as a function of age rescaled by lifespan. In both panels, all markers are 
colored according to the lifespans of the strains (see Table 5 for the lifespans): red for small and green for large 
lifespans.
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“predict” chronological age in humans72–74 and mice75,76. We note, however, that practical utility of the biological 
age concept implicitly depends on the assumed lack of variability of the rate of aging in a study. The scaling uni-
versality of the aging trajectory reported here suggests that this assumption is not necessarily true, at least in the 
experiments with C. elegans. Nevertheless, the rate of aging is apparently stable in mice77 and in humans78–80, sug-
gesting that lifespan is much more tightly regulated in mammals than in nematodes–consistent with the dearth of 
spontaneous, very long-lived mutants among “higher” organisms.

The increasing stochastic heterogeneity effects (including the leveling-off of mortality and bioage) help 
explain when an anti-aging treatment should be applied to obtain the largest possible effect. We speculate that at 
pre-embryonal and embryonal stages in the simplest animals, or early in life in humans, the growth of an organ-
ism is to a large degree determined by a developmental program. At more advanced ages, the stochasticity of the 
gene regulatory network kinetics takes its toll and leads to increasing phenotypic heterogeneity at every level. 
Accordingly, we expect that anti-aging interventions at the early stages have a broader and more generic effect on 
aging across diverse species. In contrast, interventions applied at late ages should be precisely selected to help treat 
specific conditions of an individual at a given point along the aging trajectory; a consequence of life history in the 
form of stochastically accumulated errors.

The universal aging signature consists of relatively few genes (less than 7% of all the available transcripts), and 
these are enriched with the targets of gene-expression regulators that promote longevity via disparate pathways, 
such as DAF-16 (a well-studied FOXO transcription factor that mediates key longevity pathways)81, ELT-2 (a 
transcription factor regulating downstream components of the intestinal DAF-2/DAF-16 pathway; overexpres-
sion extends lifespan 15–25%36), ELT-6 (RNAi extends lifespan37), NHR-1, NHR-10, NHR-86, ZTF-9, let-7, and 
miR-60 (see Table 3 for the complete analysis of over-representation). It would thus be of interest to experimen-
tally test some of the uncharacterized hits from our lists. We tested whether the pharmaceutical interventions 
(azacytidine, metamizole, alsterpaullone and anisomycin) predicted to exert perturbations opposing the aging 
change would reduce the rate of aging and extend lifespan, and showed that they indeed prolong lifespan. A ver-
sion of the extensive LOPAC compound-database with 1280 entries was already screened for lifespan-extending 
effects in C.elegans6. Nevertheless, three of our four hits (metamizole, alsterpaullone and anisomycin) were not 
tested there, and the fourth (azacytidine) was tested with a negative outcome, which is probably due to toxicity at 
the higher dose of 33 μM used for the primary screening. In our experiment, all drugs were more effective at 1 μM 
than at 10 μM, suggesting some toxicity at the higher dose. This is most evident for anisomysin, which is neutral 
or deleterious at 10 μM.

Alsterpaullone is an ATP-competitive inhibitor of cyclin-dependent kinases (Cdk1/cyclin B, Cdk2/cyclin A, 
and Cdk5/p25), and with even greater potency, of glycogen synthase kinase GSK-3β. Through the latter activity, 
it inhibits pathogenic phosphorylation of tau in Alzheimer’s disease, and may have other pathogenic targets. 
Metamizole, or dipyrone, is an inhibitor of cyclooxygenase-3 (Cox-3), observed to activate opioid and cannabi-
noid receptors; however, it is not considered to be either an opioid or an NSAID. Clinically, it is employed as an 
analgesic with antipyretic and spasmolytic properties, but only minimal anti-inflammatory effects. It reduces 
lipopolysaccharide-induced fever (via prostaglandin-dependent and -independent pathways), and disrupts bio-
synthesis of inositol phosphate. Anisomycin, also known as flagecidin, is a bicyclic derivative of tyrosine that is 
produced by Streptomyces griseolus and inhibits peptidyl transferase activity of eukaryotic ribosomes. It second-
arily interferes with DNA synthesis, induces apoptosis in diverse cell types, and is also used as an anti-protozoan 
agent. It would be interesting to see if it preferentially induces apoptosis in senescent cells, like azithromycin. It 
activates stress- and mitogen-activated protein kinases (SAP and MAP kinases) including Jnk and p38/Mapk. 
Azacytidine is an analog of cytidine, which upon incorporation into DNA (and possibly RNA) irreversibly binds 
and inactivates DNA methyltransferases. We note that it may inhibit additional targets, e.g. enzymes or transcrip-
tion factors that bind cytidine or deoxycytidine. Azacytidine and its deoxy derivative, 5-aza-2′-deoxycytidine, are 
used in the treatment of myelodysplastic syndrome, and of numerous cancers in which anti-oncogenes have been 
epigenetically silenced. Given the diverse mechanisms of these drugs, they are quite likely to complement one 
another in a multiple-drug “cocktail”. Moreover, each drug has known, deleterious side effects, which might be 
avoided or minimized at the low doses evidently required for gero-protection, and especially in drug-combination 
formulations.

The observed temporal scaling of survival curves and aging trajectories, together with the robust pattern 
of gene-expression changes associated with aging, appeared to be universal across extremely diverse biological 
conditions tested in our experiments. From this, we deduce that life-extending effects are achieved by stabilizing 
the gene regulatory network and by slowing the rate of aging, rather than by qualitatively changing the molecular 
machinery of the whole organism. This means that the course of aging of the super-long-lived strains can be 
potentially mimicked therapeutically, and hence eventually would lead to dramatically increased lifespan without 
detrimental effects. The “aging at criticality” hypothesis emerges as a robust theoretical and practical framework 
for the understanding of a broad range of aging-dynamic and survival properties helpful for future efforts to 
identify anti-aging interventions in C. elegans and other species.

Methods
Strains.  The following C. elegans strains were used in this study: wild-type strain Bristol-N2, subline DRM 
(herein called “N2” or “N2-DRM”); SR806 [daf-2(e1370)]; DR1694 [daf-2(e1391); daf-12(m20)], and SR808 [age-
1(mg44)] at the first (“F1”) and second (“F2”) generations of homozygosity. Strains SR806-SR808 were outcrossed 
6 generations into N2-DRM; please see1 for details. The above mutant strains, and N2-DRM, were grown in 
35-mm Petri dishes, on the surface of NGM-agar (1% Bacto-Peptone, 2% agar in nematode growth medium) 
spotted with E.coli OP50 (a uracil-requiring mutant). Several RNAi treatments of genes (daf-4, che-3, cyc-1, cco-1, 
eat-4), mutation or RNAi of most of which were reported to prolong life-span, were also assessed. The animals 
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were maintained on NGM-agar plates at 20 °C, seeded with E. coli HT115 expressing double-stranded RNAs for 
target-gene knockdowns82 for both RNA-preparation and lifespan studies.

Survivals.  Lifespan assays were conducted at 20 °C, as described previously1. Briefly, synchronous cultures 
were initiated by lysis of gravid hermaphrodites in alkaline hypochlorite. Worms were selected at the L4 larval 
stage, placed 50 worms per plate, and transferred at 1- to 2-day intervals onto fresh plates during days 1–7, and at 
2- to 3-day intervals after that. A worm was scored as dead if it failed to move, either spontaneously or in response 
to a mechanical stimulus; lost worms were excluded (censored) from the survival analysis.

Our survival study confirms longevity of the worm strains subjected to the treatments targeting genes known 
to affect aging in previous studies. The relative lifespan modification effects in some cases proved to be somewhat 
smaller, which can probably be attributed to the use of mutation instead of RNAi or a different developmental 
temperature in the original studies, or neuronal resistance to RNAi, which may be required for full life extension 
(see Table 2 for comparison).

We note that the SR806/SR808 survivals and their controls from Table 1 were run quite a few years ago1,2, 
and while all results with those strains were consistent over a 4–5 year period preceding publication, the adult 
lifespans have not been repeated recently under our current lab conditions. The control lifespans for DR1694 
were anomalously long, but still indicate a roughly 2.5-fold life extension by the double mutant. We are currently 
planning additional experiments to see if it is the bacterial stock we use to feed “normal” controls, but it deserves 
an independent study and is left for future research.

Drugs were prepared in small volumes (60–100 μl per 10-cm plate), at levels calculated to achieve the indi-
cated concentrations upon equilibration with the full agar-medium volume. Plates were overlaid with drug solu-
tions and rocked with rotation as liquid was absorbed into agar, 24 h prior to use. Worms were transferred to fresh 
drug-equilibrated plates daily for 12 days and after that, on alternate days (M-W-F).

RNA isolation.  Synchronized strains of C. elegans were grown on 100-mm NGM plates, as above, and har-
vested for RNA extraction at the ages indicated. Worms were washed off plates and rinsed twice in survival buffer; 
after 30 min at 20 °C (to allow digestion of enteral bacteria), they were flash frozen and stored at −80 °C. Frozen 
worms were ground in a dry-ice-cooled mortar and pestle, and total RNA was extracted using RNeasy RNA 
extraction kits (Qiagen), followed by RNA purification for construction of transcript libraries using TruSeq RNA 
kits (Illumina, v.2). Sequences are generated as PE100 multiplexes, 100-bp paired-end reads from an Illumina 
HiSeq2500 or NextSeq instrument, producing 40–50 × 106 reads per sample. Paired samples are analyzed with 
DESeq2 (v1.4.5), and combined sequences are mapped to the C. elegans genome using TopHat83.

Experimental RNA-seq dataset.  RNA-seq reads were mapped to the C. elegans genome (WBcel235, 
Ensembl annotation) using TopHat 2.1.1 (with–b2-very-sensitive and–GTF options)83 and gene-level read counts 
were obtained using the htseq-count software84. Low-expressed genes with at least one zero read count per sample 
were removed from subsequent analysis. Raw read counts were normalized using the upper quartile method85 
and converted to RPKM values using the edgeR library86.

MetaWorm dataset.  The “MetaWorm” dataset was compiled from almost all publicly available information 
on gene-expression profiles for aging cohorts of C. elegans from GEO database87 and annotated with the corre-
sponding worms’ ages and strain lifespans. For individual genes represented by multiple probesets, the probeset 
with the largest signal was used. Gene expression in all datasets was normalized using the YuGene28 algorithm, 
which was specifically developed for gene expression comparisons among different platforms. The final dataset 
represents a 3724 × 4861 matrix (samples-x-genes) and incorporates more than 400 transcriptomic experiments 
(see Electronic Supplementary Materials). To visualize the composition of the MetaWorm dataset, in Table 6, we 
specify the top-13 largest datasets comprising in total more than 1000 samples; in Fig. 9, we plot the distribution 
of the datasets according to the number of samples in them.

Critical dynamics of gene regulatory networks.  We focus on transcriptomic data and describe 
time-evolution of gene expression by a matrix xi

n, where indices n = 1 … N and i = 1 … G enumerate samples and 
gene transcripts, respectively, G is the total number of genes and N is the total number of samples. The measure-
ments are taken at successive instances of time/age, tn. We characterize the gene-expression kinetics by a differen-
tial equation12: dxi(t)/dt = f(xi, t), where all the kinetic properties of an organism representing the gene-gene 
interactions are encapsulated into the function f(xi, t). The coarse-grained description of aging dynamics can be 
obtained from the linearized version, = + ∑x f K xi j ij j0 , assuming small deviations from the steady state. Here 
Kij = dfi/dxj is the matrix of interactions among the genes. The stability properties of this matrix determine, 
whether the corresponding gene regulatory network would be stable (all eigenvalues of Kij are negative), or unsta-
ble (at least one eigenvalue is positive).

In systems without evident symmetries, the system’s dynamics phenomenology near the critical point, sepa-
rating stable and unstable regimes (critical behaviour), is that of co-dimension-one bifurcation. More specifically, 
there is only one of all negative eigenvalues of the interaction matrix Kij approaching zero and becoming small 
and positive, α > 0. The system’s kinetics are mostly associated with fluctuations along the right eigenvector bi of 
the matrix Kij, corresponding to this eigenvalue. The gene expression variation is dominated by the critical mode 
associated with the singular eigenvalue of the interaction matrix K. Therefore, the transcriptome of aging animals 
can be accurately described by a one-factor model

ξ= + +x x b z , (1)i
n

i i
n

i
n
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where xi is the initial system state. To consider higher-order factor models, a trade-off between model complexity 
and a dearth of experimental data must be reached: a more complex model would require more experimental data 
to resolve true model vectors from stochastic noise. The data covariance matrix is highly singular, 〈δxi(t)δx-
j(t)〉 ~ bibj exp (αt) and hence the mode vector bi coincides with the first principal component, see Fig. 2(a,b).

The mode variable zn is the order parameter with the meaning of biological age, which follows the stochastic 
Langevin equation:

α η= + .z z (2)

here the random variable η represents the stochastic effects of external and endogenous stress factors. Over time, 
on average, the solution of the stochastic equation describes exponential deviations from the initial point, subse-
quent disintegration of the gene regulatory network, and, eventually, death of the organism.

The characteristic time scale in Eq. (2) is defined by the underlying gene regulatory network stiffness α 
and thereby mechanistically relates the organism level properties, such as the mortality rate doubling time and 
lifespan, with the regulatory network topology quantified by potentially modifiable molecular-level interactions 
variables encoded in Kij and characterizing molecular and genetic damage and repair rates54. Small perturbations 
modify the gene-gene interactions and produce a change of already small eigenvalue, α, and hence may result 
in huge variations in the lifespan. At the same time, alterations of the aging direction, bi by the very same weak 
perturbation would remain small. Therefore, we expect that aging trajectories corresponding to different lifespans 
are self-similar and different by a single time scale factor α.

Practically, one calculates biological age by projecting the gene expression data into it with the help of a tran-
scriptomic biomarker of age, ai

GEO accession number Number of samples

GSE41366106 146

GSE2180107 123

GSE12290108 104

GSE23528109 95

GSE42592106 80

GSE5395110 80

GSE21012111 72

GSE15923112 72

GSE38997113 69

GSE3169114 67

GSE17071115 54

GSE65851116 47

GSE52340117 47

Table 6.  The list of 13 GEO datasets comprising the largest number of samples from MetaWorm dataset, in 
total more than 1000 samples.

Figure 9.  Composition of the MetaWorm dataset: the histogram of the number of datasets with a specified 
number of samples.
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The definition of the transcriptomic biomarker ai is not unique, since any vector, orthogonal to bi can be added 
to the projector ai without changing the prediction results significantly, especially if the experimental noise (such 
as batch effects) is large. The best possible candidate for the transcriptomic biomarker of age ai is the left eigenvec-
tor of the interaction matrix Kij corresponding to the eigenvalue α.

Mortality analysis.  The discrepancy between the mortality behavior predicted by the Gompertz equation 
and experimental mortality for late ages in C. elegans is sufficiently large and thus can be used to test the aging 
theory predictions quantitatively with high-quality mortality data. In the mortality data of appropriate quality13, 
a temporal scaling law of aging in C. elegans was observed, similar to that inferred for D. melanogaster88. This 
scaling law states that under the influence of some intervention, survival curves are stretched along the age axis 
by a dimensionless factor.

To extract the Gompertz exponent α from the mortality data13, we used the corresponding survival curves and 
fitted them to the prediction of the Gompertz equation. The procedure is only sensitive to the behavior of the 
survival curves in the neighborhood of the average lifespan89. This is fortunate, since a gene regulatory network’s 
stiffness parameter α coincides with the Gompertz exponent in this interval only. The value of the plateau mor-
tality M t t( ) was then calculated from the tail of the cumulative hazard m(t), estimated from the raw mortality 
data by the well-defined Nelson-Aalen routine90 with the help of the Lifelines package91.

Since the mortality rate reaches a plateau at late ages for C. elegans55, the behavior of the cumulative hazard for 
these ages is linear and the value of M t t( ) can be extracted by linear regression of the cumulative hazard on 
age. We calculated the cumulative hazard m(t) from the experimental data and as the prediction of the Gompertz 
equation and compared them in Fig. 10, where the disagreement between the two is substantial and significant, 
both qualitatively (exponential growth for the Gompertz equation and linear growth for the plateau mortality) 
and quantitatively (the cumulative hazard for the Gompertz equation is several orders of magnitude larger for late 
ages).

Preparation of the signature of aging for the Connectivity Map screening.  To transform the list 
of genes associated with aging in C. elegans into the form appropriate for the Connectivity Map (CMAP) data-
base45,46, we first identified human orthologs for the genes from this list using OrthoList database92 compris-
ing information from four other databases: Ensembl Compara93, InParanoid94, NCBI HomoloGene Database, 
OrthoMCL95. Since, CMAP requires human genes to be presented by HG-U133A tags (Affymetrix Human 
Genome U133A Array), the g:Profiler database96 was used to map human Ensembl gene IDs to HG-U133A tags. 
Finally, the lists of up- and down-differentially expressed with age genes were formed and used to predict the list 
of prospective drugs-perturbagens using CMAP. These drugs are expected to reverse the gene-expression profiles 
to a younger state.

Figure 10.  Evidence for the deceleration and plateauing of experimental mortality in C. elegans. The 
normalized cumulative hazard αm t t( )/( ) calculated from the Gompertz equation (colored thick dashed) as 
derived from the experimental Kaplan-Meier plots13 (colored thick solid lines). The tail of the cumulative 
hazard (black thin dashed lines) was used for the calculation of the plateau mortality M t t( ) by linear 
regression. The values of the Gompertz exponent α are indicated by the pseudocolor: red for large and green for 
small values.
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Aggregation test.  The aggregation tests were done in the AM141 strain, a model of huntingin-like aggrega-
tion in which a tract of 40 glutamines is fused in frame to YFP. These worms have only diffuse YFP fluorescence as 
larvae, but as adults progressively accrue punctate aggregates over about 6 days. Drugs are usually introduced just 
before the start of adulthood (late L4 stage). We take pictures of the fluorescent signal and plot either aggregate 
count (using imageJ) or total YFP intensity within foci.
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