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Abstract

As a powerful tool in hyperspectral image (HSI) classification, sparse representation has

gained much attention in recent years owing to its detailed representation of features. In par-

ticular, the results of the joint use of spatial and spectral information has been widely applied

to HSI classification. However, dealing with the spatial relationship between pixels is a non-

trivial task. This paper proposes a new spatial-spectral combined classification method that

considers the boundaries of adjacent features in the HSI. Based on the proposed method, a

smoothing-constraint Laplacian vector is constructed, which consists of the interest pixel

and its four nearest neighbors through their weighting factor. Then, a novel large-block

sparse dictionary is developed for simultaneous orthogonal matching pursuit. Our proposed

method can obtain a better accuracy of HSI classification on three real HSI datasets than

the existing spectral-spatial HSI classifiers. Finally, the experimental results are presented

to verify the effectiveness and superiority of the proposed method.

Introduction

Remote sensing is of paramount importance for several application fields, including environmental

monitoring, urban planning, ecosystem-oriented natural resource management, urban change

detection, and agricultural region monitoring [1, 2]. Hyperspectral images (HSIs), whose structure

consists of two spatial dimensions and one spectral dimension [3, 4], are generally characterized by

hundreds or thousands of continuous observation bands throughout the electromagnetic spectrum

with high spectral resolution in the field of remote sensing. The abundance of spectral information

in HSI provides an opportunity for the precise classification of ground objects [5, 6]. HSI classifica-

tion, as one of the main challenges in remote sensing technology, has opened new avenues in
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remote sensing [7–10]. As a powerful image-processing tool, the support vector machine (SVM)

[11–14] and sparse representation (SR) model [15, 16] and its derivative model have attracted

much attention for HSI classification [17–20]. However, the noise and mixed spectral information

in HSI cause several theoretical and practical challenges for pixel-wise classification [21–23].

A large number of spatial-spectral combined HSI classifiers have been developed in recent

decades to incorporate spatial information in the classification. Reference [24] proposed an

image patch distance (IPD) that uses the observed pixels and spatial neighbors to measure the

pixel patch-wise similarity. Reference [17] presented a joint sparse representation (JSR) model,

which first defined a local region of fixed size for each test pixel. Reference [25] reported that a

multiscale adaptive sparse representation (MASR) model, which considers the regions of dif-

ferent scales for classification, can further improve classification performance. Reference [26]

showed a class-dependent SR classifier for HSI classification, which can effectively combine

the SR and k-NN classifiers models in a class-wise manner to exploit both the correlation and

Euclidean distance between training and test data. As the traditional joint k-NN algorithm

holds, the weight of each test sample in a local region is identical, which is not reasonable

because each test sample may have different importance and distribution. To solve this prob-

lem, Reference [27] recommended a weighted joint nearest neighbor and sparse representation

method, named WJNN-JSR, and can achieve better performance than several traditional joint

k-NN methods. More recent HSI classification techniques can be found in references [28–35].

With respect to the above descriptions, it can be concluded that all these methods ignore the

boundary information of different features in the HSI. The common shortcomings hindered

the achievement of more satisfactory classification accuracy.

Motivated by the above-mentioned discussions, by combining the spectral and spatial

information, we propose a new classification algorithm for HIS, which is termed the weighted

Laplacian smoothing constraint-based sparse representation (WLSC-SR) classifier. The pri-

mary contributions of this study are as follows.

(1) Inspired by the existing ordinary vector Laplacian, a smoothing-constraint weighted

Laplacian vector is constructed, which consists of the interest pixel and its four nearest

neighbors through their weighting factors [36–38].

(2) By forcing the weighted Laplacian vector of the pixel of interest to be zero, a new large

block sparse dictionary for sparse representation is developed.

(3) In contrast to several earlier studies, the boundary characteristics of the HIS were fully used.

Experiments on three real HSI datasets were conducted and compared with several state-

of-the-art spectral-spatial HSI classification classifiers to evaluate the performance of the pro-

posed WLSC-SR method. The results show that WLSC-SR can substantially improve the accu-

racy of the HSI classification.

Related works

In this section, we outline the basic theory for WLSC-SR.

Sparse representation

The mathematical essence of sparse representation (SR) is signal decomposition under sparse

normalization constraints [39–41]. A few atoms with the best linear combination are found in

the dictionary to represent a signal using the super-complete dictionary of redundant func-

tions as the basis function. It is demonstrated that the HSI pixel can be represented as a linear

combination of training pixels from all classes by an unknown test.
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Let y 2 Rh×l be a test sample in HSI, the label set of the whole training set be T = {1,2,3, � � �,

s}, where h denotes the spectral dimension of the HSI, and s is the number of training samples.

Therefore, a dictionary D 2 Rh×s can be constructed using the spectrum sets of y and T. Each

base of the redundant dictionary D is called an atom. Therefore, y can be represented by a lin-

ear combination of atoms of D. However, a linear combination is unlikely to be unique. The

sparsest coefficient can help us find a better linear combination. Assuming that there is no

noise in the HSI, then the SR model of the clean sample y is defined as:

min k a k
0

s:t: y ¼ Da
ð1Þ

However, there must be noise in the HSI, and the SR model for noisy data can be defined as:

min k a k0

s:t: k y � Da k
2
� s

ð2Þ

Using the Lagrangian multiplier method, the SR model can be regularized as:

min k a k
0
þ
g

2
k y � Da k2

2
ð3Þ

where σ is the error tolerance and γ denotes the regularization parameter.

Generally, the orthogonal matching pursuit (OMP) or simultaneous orthogonal mutation

pursuit (SOMP) algorithm is used to calculate formula (3). When the original signal is atomic,

the OMP can be unified as the SOMP. The SOMP is selected according to the characteristics of

the WLSC-SR algorithm.

Image patch distance

In hyperspectral imagery, the pixels within a small neighborhood usually consist of similar

materials whose spectral characteristics are highly correlated.Based on this fact, the image

patch distance (IPD) exploits the observed pixels and corresponding spatial neighbors to mea-

sure the pixel patch-wise similarity.

For the observed pixel xij, its ω2 neighbors in the ω × ω spatial neighborhood can be defined

as:

Ωðxi;jÞ ¼ fxst : s ¼ i � r; i � r þ 1; � � � ; i; � � � ; iþ r;

t ¼ j � r; j � r þ 1; � � � ; j; � � � ; jþ rg
ð4Þ

in which r = (ω – 1)/2.

Let al and bl be the lth elements of the pixel sets O(xij) and O(xpq). The distance between al
and spatial neighborhood O(xpq) is defined as dðal;ΩðxpqÞÞ ¼ minb2ΩðxpqÞdðal; bÞ, and the undi-

rected distance between two pixels al and bl can be defined as follows:

duðal; blÞ ¼ maxðminb2ΩðxpqÞdðal; bÞ;mina2ΩðxijÞdða; blÞÞ ð5Þ

where d(�) is a spectral similarity function, such as the Minkowski Distance (MD) and spectral

cosine distance (SCD).
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Then, the similarity between the observed pixels xij and xpq can be defined as follows:

dIPDðxij; xpqÞ ¼
Xw2

l¼1

duðal; blÞ

¼
Xw2

l¼1

fmax ðminb2ΩðxpqÞ d ðal; bÞ;

mina2ΩðxijÞ d ða; blÞÞg

ð6Þ

This spatial-spectral similarity measure combines the spatial and spectral features into dis-

tance, which improves the classification accuracy.

Proposed classifier

The pixels in the HSI dataset are high-dimensional vectors that reflect the spectrums of the

ground objects. The spectrum vectors of the same class label are more likely to be similar to

those of the different class labels. Based on this assumption, the WLSC-SR method exploits the

spatial neighborhood to extract spatial-spectral information.

Procedure of WLSC-SR

The WLSC-SRattempts to construct a smoothing-constraint Laplacian vector, which is forced

to be zero. The vector consists of the sparse vector of the pixel of interest and its four nearest

neighbors through their weighting factor, by which the aggregation of homogeneous data and

the separability of heterogeneous data in HSI can be effectively enhanced. Based on the

smoothing-constraint Laplacian vector, a new large block sparse dictionary for SOMP is con-

structed with six times as many rows and five times as many columns as the original dictio-

nary. Furthermore, the WLSC-SR classifier distinguishes the boundaries of adjacent types of

ground objects in HSI, which is beneficial for HSI classification. The procedure for the pro-

posed method is shown in Fig 1.

Weighted Laplacian smoothing constraint

We assumed that the size of the HSI was k × l × h. The spectrum vector xij(h,l) 2 Rh × l rep-

resents the pixel in row i and column j in the HSI. At first, we choose a spatial window

Fig 1. The procedure of WLSC-SR.

https://doi.org/10.1371/journal.pone.0254362.g001
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parameter ω, which is an odd positive integer, and then construct a ω × ω spatial window

with central pixel xij. At the same time, the HSI boundaries are extended by (ω – 1)/2 pixels

in a mirror manner, which is convenient for processing pixels at the edge or corner of the

image.

We can obtain the IPD between pixel sets O(xij) and O(xpq). However, generally, the IPD

method requires a large spatial window to exploit the spatial information in HSI, while the

time-consuming steps in the iteration process limit its real applications.

The IPD between pixel sets O(xij) and O(xpq) is replaced by the distance between the central

pixels in the pixel sets to simplify the IPD calculation method. Thus, the image patch distance-

based center (IPDC) calculation method is defined as follows:

dIPDCðΩðxijÞ;ΩðxpqÞÞ ¼ dIPDðxij; xpqÞ ð7Þ

Thus,the weighting factor can be defined as:

wðΩðxijÞ;ΩðxpqÞÞ ¼ expð�
dðxij; xpqÞ

t
Þ ¼ expð�

k ~xij � ~xpq k
2

2

t
Þ ð8Þ

where the trade-off parameter t> 0 controls the proportion of spatial information, and xij and

xpq are normalized to ~xij and ~xpq, respectively. These factors affect the value of the reconstruc-

tion weight W.

Using the weights obtained, we constructed the weighted Laplacian vector. Let xst be the

four nearest neighbors of xij, where s = i– 1, i + 1; t = j– 1, j + 1, as shown in Fig 2.

Let be αij be the sparse vector associated with xij (i.e., Dαij = xij). Then, we construct the

weighted Laplacian vector at the pixel xij as:

2ðxijÞ ¼ w1xij � w2xi� 1;j � w3xi;j� 1 � w4xiþ1;j � w5xi;jþ1

¼ Dðw1aij � w2ai� 1;j � w3ai;j� 1 � w4aiþ1;j � w5ai;jþ1Þ
ð9Þ

where w1 ¼ S5

i¼2
wi.

To incorporate the smoothness across the neighboring spectral pixels, 2(xij) is set to zero,

based on which a new large block sparse dictionary for SOMP is constructed with six times as

many rows and five times as many columns as the original dictionary. Taking the Indian pines

dataset with 10% training samples as an example, the dimension of the original dictionary was

200 × 1027, and the block sparse matrix dimension we built was 1200 × 5135. Then, the opti-

mization problem in (1) can be redefined as a new sparse recovery problem with the Laplacian

smoothing constraint, and it is formulated as:

min k ~a k0; S:t: DL arg e BlockSparse~a ¼ ~x ð10Þ
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where

DL arg e BlockSparse

w1D � w2D � w3D � w4D � w5D

D 0 0 0 0

0 D 0 0 0

0 0 D 0 0

0 0 0 D 0

0 0 0 0 D

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

ð11Þ

~a ¼

aij

ai� 1;j

ai;j� 1

aiþ1;j

ai;jþ1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð12Þ

~x ¼

0

xij
xi� 1;j

xi;j� 1

xiþ1;j

xi;jþ1

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

ð13Þ

w1 ¼ S5

i¼2
wi ð14Þ

Normally, we can assign, w1 = 1, and wi (i = 2, . . .,5) are normalized as ~wi ¼
wi
@

, where

@ ¼
X5

i¼2
wi.

For the pixels at the center, all weights are present. However, for the pixels on the edge or

corner, some weights will not be present, which will cause an imbalance. To avoid the imbal-

ance, we assign wi = 0.25 (i = 2, . . .,5).

We all pointed out that the L0 norm is a non-deterministic polynomial hard (NP-hard)

problem, while the L1 norm is the optimal convex approximation of the L0 norm, and the L1

norm is easier to solve than the L0 norm. Additionally, the equality constraints in (11) cannot

be satisfied completely, it allows approximation error, thus the problem can be written as:

min k ~a k
1
þ
g

2
k ~x � DL arg e BlockSparse~a k

2

2
; ð15Þ

where γ denotes the regularization parameter.

The problem in (15) is a standard sparse recovery problem, and SOMP can be implemented

to solve it. Once the problem in (15) is solved, the total class-dependent reconstruction residu-

als between the original test samples and the approximations obtained from each of the K class

sub-dictionaries can be calculated as:

rkðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX5

i¼1
k xst � Dk

L arg e BlockSparsei
~akst k

2

2

q

ð16Þ
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where k 2 κ = {1,2,3,. . .,K}, s = i– 1, i +1; t = j– 1, j + 1. x represents a concatenation of the

five pixels, xij, xi– 1,j, xi,j−1, xi+1,jxi,j+1, as shown in Fig 2, and ~akst denotes the portion of the

recovered sparse vector xst associated with the kth-class subdictionary, Dk
L arg e BlockSparsei

. The

Fig 2. Four nearest neighbors of a pixel xij and their weights between xij.

https://doi.org/10.1371/journal.pone.0254362.g002
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test sample is xij assigned to the class that minimizes the residual:

identityðxijÞ ¼ arg min
k¼1;2;...;K

rkðxÞ ð17Þ

Experiments and discussion

Datasets

Three well-known publicly available HSI datasets, namely the Indian Pines, University of

Pavia, and Salinas, were used to evaluate the performance of WLSC-SR in this study. The num-

ber of samples in the Indian Pines, Pavia University, and Salinas scene images are shown in

Table 1, in which the background color was used to distinguish different classes.

Quantitative metrics

Normally, overall accuracy (OA), average accuracy (AA), class accuracy (CA), and Kappa coef-

ficient are adopted to evaluate the quality of the classification results of HSI.OA refers to the

ratio between the number of correctly classified categories and the total number of categories,

AA represents the mean of the percentage of correctly classified pixels for each class, CA mea-

sures the separate classification accuracy of various ground objects in the dataset, and the

Kappa coefficient estimates the percentage of classified pixels corrected by the number of

Table 1. Number of samples in the Indian Pines, Pavia University, and Salinas scene image.

Indian Pines Pavia University Salinas scene

# Class Names SampleNumber # Class Names SampleNumber # Class Names SampleNumber

1 Alfalfa 46 1 Asphalt 6631 1 Brocoli_green_weeds_1 2009

2 Corn-notill 1428 2 Meadows 18649 2 Brocoli_green_weeds_2 3726

3 Corn-mintill 830 3 Gravel 2099 3 Fallow 1976

4 Corn 237 4 Trees 3064 4 Fallow_rough_plow 1394

5 Grass-pasture 483 5 Painted metal sheets 1345 5 Fallow_smooth 2678

6 Grass-trees 730 6 Bare Soil 5029 6 Stubble 3959

7 Grass-pasture-mowed 28 7 Bitumen 1330 7 Celery 3579

8 Hay-windrowed 478 8 Self-Blocking Bricks 3682 8 Grapes_untrained 11271

9 Oats 20 9 Shadows 947 9 Soil_vinyard_develop 6203

10 Soybean-notill 972 10 Corn_senesced_green_weeds 3278

11 Soybean-mintill 2455 11 Lettuce_romaine_4wk 1068

12 Soybean-clean 593 12 Lettuce_romaine_5wk 1927

13 Wheat 205 13 Lettuce_romaine_6wk 916

14 Woods 1265 14 Lettuce_romaine_7wk 1070

15 Buildings-Grass-Trees-Drives 386 15 Vinyard_untrained 7268

16 Stone-Steel-Towers 93 16 Vinyard_vertical_trellis 1807

Total Number 10249 Total Number 42776 Total Number 54129

Indian Pines: This scene was gathered by the AVIRIS sensor over the Indian Pines test site in northwestern Indiana and consists of 145 × 145 pixels and 224 spectral

reflectance bands in the wavelength range 0.4 to 2.5 μm. This scene, which includes 16 different ground-truths, contains two-thirds of agriculture and one-third of forest

or other natural perennial vegetation. The number of bands was reduced to 200 by removing the 24 water absorption bands.

Pavia University: This scene was acquired by the ROSIS sensor during a flight campaign over Pavia, northern Italy. The number of spectral bands was 103 at Pavia

University. It is a 610 × 340 pixel image containing nine different ground objects with a geometric resolution of 1.3 meters.

Salinas: This scene was collected by the 224-band AVIRIS sensor over the agricultural area of Salinas Valley, California and is characterized by high spatial resolution

(3.7-m pixels). After discarding 20 water absorption bands, the size of this data image was 512 × 217, with 204 bands. Salinas ground-truth contains 16 classes, including

vegetables, bare soils, and vineyard fields.

https://doi.org/10.1371/journal.pone.0254362.t001
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agreements that would be expected purely by chance. It is believed that the classification per-

formance of the classifier is good when the Kappa coefficient is greater than 0.75. However,

when the Kappa coefficient is less than 0.40, the performance is poor [10, 42].

Parameter analysis

In the proposed classification method, there are two primary impact parameters: the sparsity

level Sl and the WLSC-SR model test region scale Sc, which can affect the classification perfor-

mance from different aspects. Experiments on the Indian Pines, Pavia University, and Salinas

showed the OAs of different Sl and Sc, based on which the optimal parameters were deter-

mined. Fig 3A–3C show the effects of Sl and Sc in the three datasets, respectively. The optimal

classification result is shown in the graph.

As shown in Fig 3, when the value of the test region scale Sc is fixed, the OA for Indian

Pines, Pavia University, and Salinas Scene can consistently achieve the best performance when

the sparsity level Sl is 1 or 2. As Sl increases, the solution of (16) converges to the pseudo

inverse solution, which is no longer sparse, which deteriorates the classification performance.

Additionally, when the sparsity level Sl is small, if Sc is too large, the neighboring pixels cannot

be faithfully approximated by a few training samples. In other words, the OA is reduced.

Fig 3. Effect of Sl and Sc. (a) Indian Pines, (b) Pavia University, and (c) Salinas Scene.

https://doi.org/10.1371/journal.pone.0254362.g003
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Moreover, the value of Sc for a large dataset is relatively large, and vice versa. For example,

when Sl for Indian Pines, Pavia University, and Salinas Scene are 1, 2, and 3, respectively, the

OA can obtain the best value when Sc is 5, 7, and 5, respectively. On the contrary, the experi-

mental results show that when Sc is equal to 40, the classification performance is far worse

than the best value.

Additionally, since the Pavia University image is larger than the Indian Pines and Salinas

Scene image, OA obtains the best value when Sc = 7 in Pavia University image classification.

For Indian Pines and Salinas Scene images, the corresponding Sc is equal to 5.

Comparison of different classifiers

In this section, the proposed methods are compared with the SVM method [5], JSR classifica-

tion method [17], SR classification method [16], and sparse representation nearest neighbor

(NN-SR) classification method [18]. Additionally, the original nearest neighbor classification

methods, such as multiscale adaptive sparse representation (MASR) [19] as well as the joint

sparse representation joint nearest neighbor(JNN-JSR) [27], are also compared with the joint

sparse representation weighting joint nearest neighbor method (WJNN-JSR) [27]. These clas-

sification methods were implemented using optimal parameters.

Three different experiments were conducted on three different datasets: Indian Pines, Pavia

University, and Salinas. For each class of every dataset, 30% of the labeled pixels were ran-

domly sampled for training, while the remaining 70% were used to test the classifiers. Figs 4–6

illustrate different classification maps obtained by different methods on different datasets.

The first experiment was performed using the Indian Pines dataset. Table 2 shows the clas-

sification performance with the corresponding OA, AA, and Kappa values. The bold values

indicate the best classification accuracy. As can be observed, the classification maps of the

SVM and SR methods have a very noisy appearance. By considering the spatial context, the

JSR, MASR, NN-SR, and WJNN-JSR algorithms can deliver a comparatively smooth result but

fail to detect meaningful regions. Although the JNN-JSR algorithm shows improvements in

detecting the details, some noisy behavior will exist on the obtained classification maps for

these approaches.

Fig 4. The Indian Pines image. (a) SVM [1] (OA = 72.26%); (b) JSR [17] (OA = 91.71%); (c) SR [16] (OA = 63.89%);

(d) MASR [19] (OA = 96.91%); (e) NN-SR [18] (OA = 65.44%); (f) JNN-JSR [27] (OA = 93.12%); (g) WJNN-JSR [27]

(OA = 93.65%); (h) WLSC-SR (OA = 98.21%).

https://doi.org/10.1371/journal.pone.0254362.g004
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In contrast, the proposed WLSC-SR algorithm has a limited improvement in the average

classification accuracy, denoising, and misclassification at the edges of the data, and the overall

scene is significantly reduced. Therefore, according to the classification results, the proposed

method still has advantages in terms of OA and kappa values. For example, compared with

other methods, the WLSC-SR algorithm achieves the highest classification accuracy in classes

2, 4, 8, 9, 11, and 12. Additionally, OA and Kappa reached their highest values. The second and

third experiments were conducted on the Pavia University and Salinas datasets, respectively.

The training sample selection was the same as in the first experiment.

Table 3 presents the classification performance with the corresponding OA, AA, and Kappa

values for Pavia University. As shown in the table, the proposed WLSC-SR algorithm obtains

higher accuracy than the other compared methods in terms of OA, AA, and Kappa. These

spectral-spatial joint algorithms, such as JSR, MASR, NN-SR, JNN-JSR, WJNN-JSR, and

WLSC-SR, perform better than SVM and SR which only use spectral information. For exam-

ple, the OA of the SR algorithm is only 72.01%, and compared with the SR algorithm, the OA

of the WJNN-JSR and WLSC-SR algorithms were improved by 25.41% and 27.17%,

respectively.

Table 4 presents the classification performance with the corresponding OA, AA, and Kappa

values for the Salinas image. It can be seen that because WJNN-JSR effectively utilizes multi-

scale spatial information through an adaptive sparse strategy, the AA of WJNN-JSR has been

significantly improved, but some noise still exists around the boundary of different ground

Fig 5. The Pavia University image. (a) SVM [1] (OA = 85.42%); (b) JSR [17] (OA = 89.31%); (c) SR [16]

(OA = 72.01); (d) MASR [19] (OA = 88.01%); (e) NN-SR [18] (OA = 73.27%); (f) JNN-JSR [27] (OA = 96.60%); (g)

WJNN-JSR [27] (OA = 97.42%); (h) WLSC-SR (OA = 98.18%).

https://doi.org/10.1371/journal.pone.0254362.g005
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Fig 6. The Salinas image. (a) SVM [1] (OA = 88.67%); (b) JSR [17] (OA = 92.99%); (c) SR [16] (OA = 85.09); (d)

MASR [19] (OA = 93.43%); (e) NN-SR [18] (OA = 85.37%); (f) JNN-JSR [27] (OA = 94.46%); (g) WJNN-JSR [27]

(OA = 95.61%); (h) WLSC-SR (OA = 99.71%).

https://doi.org/10.1371/journal.pone.0254362.g006

Table 2. Classification accuracy (in percent) of the Indian Pines in the SVM [1], JSR [17], SR [16], MASR [19], NN-SR [18], JNN-JSR [27], WJNN-JSR [27], and

WLSC-SR.

# SVM JSR SR MASR NN-SR JNN-JSR WJNN-JSR WLSC-SR

1 81.25 85.42 43.90 78.05 74.07 98.15 90.57 96.77

2 86.28 94.88 63.34 96.19 66.67 92.96 96.96 98.20

3 72.80 94.93 51.27 95.18 63.55 94.96 99.95 98.62

4 58.10 91.43 37.27 90.14 51.28 85.90 96.73 96.97

5 92.39 89.49 82.94 98.16 90.34 95.99 100.00 98.23

6 96.88 98.51 91.62 99.54 97.46 99.60 96.18 99.22

7 43.48 91.30 67.60 100.00 76.92 99.18 88.14 84.21

8 98.86 99.55 94.62 99.30 97.96 100.00 96.65 100.00

9 50.00 0.00 34.44 50.00 30.00 45.00 94.10 94.29

10 71.53 89.44 63.76 95.66 78.51 93.49 99.94 97.94

11 84.38 97.34 71.12 97.87 78.08 96.72 95.03 98.14

12 85.51 88.22 42.47 92.88 65.31 93.81 95.81 97.84

13 100.00 100.00 91.19 90.76 98.58 96.79 92.61 92.25

14 93.30 99.14 89.75 99.56 90.80 99.30 91.86 99.43

15 64.91 99.12 36.13 99.42 78.95 94.47 93.13 99.26

16 88.24 96.47 88.21 100.00 90.53 96.84 94.54 92.42

OA 72.26 91.71 63.89 96.91 65.44 93.12 93.65 98.21

AA 73.36 94.20 68.94 92.67 69.25 94.32 95.48 94.61

Kappa 73.86 90.39 58.66 96.47 60.34 93.02 92.76 97.96

https://doi.org/10.1371/journal.pone.0254362.t002
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objects, so the improvement of OA and Kappa is limited. By contrast, considering the bound-

aries of adjacent ground objects in the image, the OA, AA, and Kappa of our proposed

WLSC-SR method were improved by 4.1%, 2.89%, and 4.8%, respectively.

Computational complexity

Experiments were performed using MATLAB 2018b on a computer with an Intel-2.60GHz

CPU, 16GB memory, and a 64-bit Windows 7 system. On three real HSI datasets, complete

execution of our algorithm may take several minutes to several hours, but the other compared

Table 3. Classification accuracy (in percent) of the Pavia University in the SVM [1], JSR [17], SR [16], MASR [19], NN-SR [18], JNN-JSR [27], WJNN-JSR [27], and

WLSC-SR.

# SVM JSR SR MASR NN-SR JNN-JSR WJNN-JSR WLSC-SR

1 95.61 71.60 57.98 82.46 57.75 98.88 98.84 99.96

2 94.95 91.06 73.02 96.15 75.55 96.62 95.84 98.90

3 69.93 95.63 64.16 72.91 70.65 97.04 97.32 100.00

4 76.19 95.55 90.01 90.82 89.49 86.44 98.00 98.65

5 94.89 99.05 99.5 98.51 99.33 99.90 99.88 97.77

6 69.22 96.60 63.11 70.82 60.97 98.24 97.64 99.97

7 60.03 97.98 86.33 84.10 88.05 99.16 99.51 99.14

8 82.64 92.07 68.86 82.04 74.53 99.17 98.71 99.26

9 99.92 69.4 96.01 96.07 96.44 98.86 99.17 96.37

OA 85.42 89.31 72.01 88.01 73.27 96.60 97.42 99.18

AA 82.60 89.88 78.15 85.99 79.60 97.15 98.32 98.89

Kappa 81.08 86.07 64.23 83.97 65.69 95.88 96.27 98.91

https://doi.org/10.1371/journal.pone.0254362.t003

Table 4. Classification accuracy (in percent) of the Salinas scene in the SVM [1], JSR [17], SR [16], MASR [19], NN-SR [18], JNN-JSR [27], WJNN-JSR [27], and

WLSC-SR.

# SVM JSR SR MASR NN-SR JNN-JSR WJNN-JSR WLSC-SR

1 99.65 100.00 99.06 99.72 98.97 100.00 100.00 100.00

2 99.44 99.97 98.62 99.81 98.42 99.97 100.00 100.00

3 94.33 99.39 97.25 99.42 97.64 100.00 100.00 100.00

4 97.55 95.37 99.46 98.57 99.54 90.85 95.95 99.28

5 98.39 98.38 94.16 98.45 94.61 98.28 91.52 97.65

6 99.98 99.92 99.50 99.82 99.51 99.90 100.00 99.89

7 98.94 99.75 99.38 98.92 99.22 99.91 99.43 99.60

8 78.94 86.07 61.06 86.64 62.75 73.83 84.48 99.87

9 99.33 99.74 96.84 99.17 96.66 99.90 100.00 100.00

10 85.40 93.63 89.31 95.47 90.17 99.07 99.69 99.91

11 90.84 99.72 98.51 99.20 98.73 99.60 98.81 99.20

12 96.99 98.48 99.92 100.00 99.83 98.66 92.77 99.93

13 97.02 92.96 98.12 92.50 97.57 97.66 99.18 98.58

14 91.01 98.21 93.34 94.39 94.38 99.90 86.93 98.26

15 64.73 65.56 64.44 78.30 64.49 80.09 91.40 99.94

16 97.52 98.38 97.73 99.76 97.81 100.00 100.00 100.00

OA 88.67 91.54 85.09 93.43 85.37 94.46 95.61 99.71

AA 93.13 95.35 92.92 96.26 93.12 96.56 96.62 99.51

Kappa 87.39 90.57 83.43 92.68 83.75 93.61 94.88 99.68

https://doi.org/10.1371/journal.pone.0254362.t004
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methods in this study do not take that long. Specifically, the main computational cost of this

method is the operation of weighted parameters and the large block sparse dictionary in

SOMP. With the development of computing hardware and cloud computing technology, we

believe that the consumption time will be significantly reduced. Additionally, the ideal param-

eters or hyperparameters used by the various algorithms for the results are listed in Table 5.

Conclusions

In this context, we proposed a new classification method for HSI. The proposed WLSC-SR

strengthens the spatial information between the center pixel and its four nearest neighborpix-

els by constructing a smoothing constraint Laplacian vector. The vector can overcome the

boundary characteristics of adjacent ground objects in the HSI. Experiments on three real HSI

datasets revealed that the proposed WLSC-SR method outperforms several other well-known

classifiers in terms of OA, AA, Kappa, and visual comparison of classification maps. Finally,

we verified the effectiveness and superiority of WLSC-SR. Another method that the authors

will explore in future work to further improve the classification accuracy is employing discrim-

inative learning algorithms and optimizing the dictionary structure. Therefore, the focus of

our future research is to explore more efficient solutions to optimize this method.
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