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a b s t r a c t

The aim of this study was to develop a diagnostic strategy for esophageal squamous cell carcinoma
(ESCC) that combines plasma metabolomics with machine learning algorithms. Plasma-based untargeted
metabolomics analysis was performed with samples derived from 88 ESCC patients and 52 healthy
controls. The dataset was split into a training set and a test set. After identification of differential me-
tabolites in training set, single-metabolite-based receiver operating characteristic (ROC) curves and
multiple-metabolite-based machine learning models were used to distinguish between ESCC patients
and healthy controls. Kaplan-Meier survival analysis and Cox proportional hazards regression analysis
were performed to investigate the prognostic significance of the plasma metabolites. Finally, twelve
differential plasma metabolites (six up-regulated and six down-regulated) were annotated. The pre-
dictive performance of the six most prevalent diagnostic metabolites through the diagnostic models in
the test set were as follows: arachidonic acid (accuracy: 0.887), sebacic acid (accuracy: 0.867), indoxyl
sulfate (accuracy: 0.850), phosphatidylcholine (PC) (14:0/0:0) (accuracy: 0.825), deoxycholic acid
(accuracy: 0.773), and trimethylamine N-oxide (accuracy: 0.653). The prediction accuracies of the ma-
chine learning models in the test set were partial least-square (accuracy: 0.947), random forest (accu-
racy: 0.947), gradient boosting machine (accuracy: 0.960), and support vector machine (accuracy: 0.980).
Additionally, survival analysis demonstrated that acetoacetic acid was an unfavorable prognostic factor
(hazard ratio (HR): 1.752), while PC (14:0/0:0) (HR: 0.577) was a favorable prognostic factor for ESCC.
This study devised an innovative strategy for ESCC diagnosis by combining plasma metabolomics with
machine learning algorithms and revealed its potential to become a novel screening test for ESCC.
© 2020 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Esophageal squamous cell carcinoma (ESCC), a predominant
histological subtype of esophageal cancer, occurs most frequently
in developing countries such as China [1]. It is difficult to diagnose
ESCC at an early stage due to a lack of typical symptoms as well as
specific and sensitive biomarkers of this tumor [2]. Consequently,
patients are often diagnosed at a relatively advanced stage, usually
accompanied by lymph node metastasis and invasion. Unfortu-
nately, no effective treatment has been reported available for such
plight currently [3]. Despite significant improvements in diagnostic
University.
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modalities and treatments including surgery, radiation, chemo-
therapy, and their combination, the prognosis for ESCC still remains
unsatisfactory [4,5]. Furthermore, the 5-year overall survival rate is
about 20% and only 1% for those with advanced stages [6]. There-
fore, early detection is extremely important with an urgent need for
a novel and accurate means by which to diagnose ESCC.

A hallmark of malignancy is metabolic changes [7] through
which cancer cells reprogram normal metabolic pathways that
support uncontrolled proliferation. Some of the most striking al-
terations include elevation of glycolysis [8], up-regulation of amino
acid [9] and lipid metabolism [10,11], as well as macromolecule
biosynthesis [12]. Thus, the investigation of metabolic perturba-
tions in cancer may be a promising means to discover novel cancer
biomarkers and therapeutic targets.

Metabolomics is a powerful and efficient tool for the discovery
of metabolic biomarkers and targets within biological specimens.
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Table 1
Clinical information of the patients.

Feature ESCC patients Healthy controls Refs.

Sex
Male 70 (79.5%) 32 (60.4%)
Female 18 (20.5%) 20 (39.6%)

Age
� 60 52 (59.1%) 22 (42.3%)
< 60 36 (40.9%) 30 (57.7%)

Smoking
Yes 63 (71.6%) -
No 25 (28.4%) -

Drinking
Yes 55 (62.5%) -
No 33 (37.5%) -

pTa stage [24]
2 12 (13.6%) -
3 76 (86.4%) -

pNa stage [24]
0 43 (48.8%) -
1 28 (31.8%) -
2 15 (17.1%) -
3 2 (2.3%) -

pTNMa stage [24]
I 6 (6.8%) -
II 37 (42.0%) -
III 43 (48.9%) -
IV 2 (2.3%) -

a Pathological TNM classification was used based on the American Joint Committee
on Cancer, 8th edition.
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Previously, plasma- and tissue-based ESCC metabolomic studies
have identified potential diagnostic and prognostic metabolites
(e.g., tryptophan and kynurenine), suggesting metabolic reprog-
ramming to be associated with the initiation and development of
ESCC [2,13e17]. Also, liquid biopsy for cancer diagnosis has many
advantages, such as relatively low invasiveness [18]. Herein,
plasma/serum-based metabolomics is an attractive approach for
the discovery of ESCC diagnostic biomarkers.

For diagnosis, metabolomics data analysis requires statistical
and machine learning-based classification methods [19]. Machine
learning is a type of computer algorithm focusing on prediction
through pattern recognition [20]. Principal component analysis
(PCA) and partial least-square discriminant analysis (PLS-DA) are
the two most widely used multivariate analysis methods for
metabolomic studies [21]. In addition to these two well-known
methods, the application of other machine learning algorithms,
such as random forest (RF), gradient boosting machine (GBM), and
support vector machine (SVM), has emerged in recent years and
shown a promising diagnostic potential when combined with
metabolomics data [19,22]. However, when reviewing previously
published ESCC metabolomics studies, most of themwere found to
solely focus on the discovery of differential metabolites, and use
single-metabolite diagnostic models with a rare evaluation of
multiple-metabolite-based machine learning models [15,16,23].
Therefore, further studies employing a combination of plasma
metabolomics and machine learning algorithms are encouraged,
which might have potential clinical usefulness.

Initially, an untargeted plasma metabolomics study was con-
ducted in a cohort consisting of 88 ESCC patients and 52 healthy
controls. Based on the differential metabolites annotated, both
single-metabolite-based receiver operating characteristic (ROC)
curves and multiple-metabolite-based machine learning models,
including PLS, RF, GBM, and SVM, were established in the training
set (n ¼ 100). In the test set, the predictive performance of the
machine learning models had an accuracy range of 0.947e0.980,
which was higher than that of single-metabolite models (an accu-
racy range of 0.653e0.887). These findings indicate that plasma-
metabolites-based machine learning models are an excellent
diagnostic strategy for ESCC.

2. Materials and methods

2.1. Reagents

High-performance liquid chromatography (HPLC) grade aceto-
nitrile and methanol were purchased from Tedia Co. Inc. (Fairfield,
OH, USA). HPLC grade formic acid was purchased from Roe Scien-
tific Inc. (Newark, DE, USA). Distilled water was from Wahaha
Group Co., Ltd. (Hangzhou, China).

2.2. Plasma samples

ESCC plasma samples were collected from 88 patients recruited
after histopathologic confirmation of ESCC and radical resection at
Zhejiang Cancer Hospital, China, fromMay 2010 to December 2012.
The clinical stages of ESCC patients were determined based on the
American Joint Committee on Cancer 8th edition staging system
[24]. Participants were followed up until December 2017, and the
overall survival (OS) from their surgery to the date of death or the
last follow-up visit was evaluated. Healthy controls, recruited from
our health examination center, were matched with ESCC patients
based on age and sex. Fasting blood samples were collected from
preoperative patients and healthy controls at approximately 8 a.m.,
with plasma immediately separated from whole blood by centri-
fugation at 1000 g, 4 �C for 10 min. Di-potassium salt of
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ethylenediaminetetraacetic acid was used as the anticoagulant. All
the plasma samples were stored at �80 �C until analysis. The basic
characteristics of these samples are listed in Table 1.

The study protocol was performed in accordance with the
Declaration of Helsinki, approved by the Research Ethics Commit-
tee of Zhejiang Cancer Hospital, with written informed consent
obtained from all individuals.

2.3. Sample preparation

Sample preparation was conducted according to Huang et al.
[25]. Briefly, each plasma sample (50 mL) was thawed on ice and
immediately mixed with 200 mL of ice-cold acetonitrile. After vor-
texing for 1 min, the mixture was centrifuged at 16,000 g, 4 �C for
15 min. The supernatant (150 mL) was transferred into a fresh tube
and lyophilized till dry. Residues were dissolved by mixing for
1minwith 80 mL of a solution consisting of 25% acetonitrile and 75%
water. After centrifuging for 15 min at 16,000 g and 4 �C, 60 mL of
the supernatant was transferred into a sample vial. An aliquot of
5 mL supernatant was used for liquid chromatographyemass
spectrometry (LC-MS) analysis.

2.4. LC-MS analysis

An Ultimate 3000 UPLC system (Dionex, Idstein, Germany)
linked to a Q Exactive Orbitrap mass spectrometer (Thermo Fisher
Scientific, Bremen, Germany) was used for this un-targeted
metabolomics study. Separation was performed on an ACQUITY
UPLC HSS T3 column (2.1 mm � 100 mm, 1.8 mm, Waters, Milford,
MA, USA) at 35 �C. The mobile phase was water containing 0.1% (V/
V) formic acid (phase A) and acetonitrile (phase B), with a flow rate
of 0.3 mL/min. The linear gradients of phase B were as follows: 2%
for 0e1 min, 2%e100% for 1e10 min, 100%e2% for 10e13 min, and
2% for 13e16 min. Linear gradients of phase A changed accordingly
complementary to that of phase B. The electrospray voltages were
3.5 kV in positive mode and 2.5 kV in negative mode. The probe
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heater temperatures were set at 320 �C and 350 �C in positive and
negative modes, respectively. The sheath gas was set at 35 and 40
arb in positive and negative modes, respectively. For collecting MS/
MS spectra, a data-dependent acquisition mode for top 10 ions was
conducted with a mass resolution of 17,500 and stepped collision
energies of 10, 20, and 40 eV.

Quality control (QC) samples were prepared by pooling re-
dissolved samples in equal amounts (15 mL) and periodically
analyzed throughout the entire analytical run to monitor instru-
ment stability.
2.5. Metabolomics data analysis

Metabolomics data analysis was performed according to Yang
et al. [26]. Briefly, R package XCMS (version 3.8.2) was utilized for
processing mass raw data, including peak detection, retention time
alignment, peak matching, and correction. R package MetaX pack-
age (version 1.4.16) was used for ion filtration based on the
following exclusion criteria: (1) ions not detected in over 50% of all
QC samples or over 80% of all non-QC samples; (2) ions with rela-
tive standard deviation > 30% in QC samples. QC-based robust
LOESS signal correction was applied to reduce the influence of
signal shift.

The cohort data (n ¼ 140, ESCC case (C): 88, healthy control (N):
52) were randomly divided into a training set (n¼ 100, C: 63, N: 37)
and a test set (n ¼ 40, C: 25, N: 15). To discover differential me-
tabolites, an unsupervised PCA was first conducted to investigate
the trends for all samples in the training set. Then supervised PLS-
DA was performed to identify the most discriminating ion features
between ESCC plasma and non-cancerous counterparts based on
VIP values. Finally, those with VIP > 1, false discovery rate
(FDR) < 0.05, and |log2 (fold change)| > 0.584 were defined as
differential ion features. Metabolite annotation was performed
using Progenesis QI (Waters, Milford, MA, USA) software based on
METLIN (http://metlin.scripps.edu) and HMDB (http://www.
hmdb.ca/). Metabolism pathway analysis was conducted using
the online tool, Metaboanalyst (https://www.metaboanalyst.ca/
MetaboAnalyst/home.xhtml).
2.6. Development of diagnostic models using single-metabolite ROC
curves and metabolite-based machine learning models

For single metabolites, ROC curves were first analyzed for each
metabolite in the training set. Youden's index (sum of sensitivity
and specificity minus one) was used as a criterion for selecting the
optimum cut-off point for each metabolite. With cut-off points for
each metabolite, predictive classes were calculated for each un-
known sample in the test set. The predictive performance including
accuracy, sensitivity, and specificity was then calculated for the test
Fig. 1. Principle component analysis (PCA) score plot of plasma metabolic profiles of
ESCC patients and healthy controls. (A) Training set and (B) test set. C: ESCC patient; N:
healthy control.
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set.
For metabolite-based machine learning modeling, data in the

training set were preprocessed with “scaling” and “centering”. The
same preprocessing methods with the same parameters were
applied to the test set. Algorithms including PLS, RF, GBM, and SVM
were investigated for cancerous and non-cancerous classification. R
package caret (version 6.0e85) was utilized to train and test PLS, RF,
and GBM models, while R package e1071 (version 1.7e3) was used
to train and test SVM model. Ten repeated and five-fold cross-
validationwas performed to train themodels PLS, RF, and GBM, and
optimization was conducted using R package caret, in which the
number of components in PLS, “mtry” in RF, as well as “n.trees”,
“interaction.depth”, “shrinkage”, and “n.minobsinnode” in GBM,
were tuned. For the SVMmodel, linear kernel was used and value of
“cost” was screened from 1 to 10. To reduce model complexity,
models with different amounts of top features, which were ranked
in each model, were tested. Predictive accuracy in the test set was
used to evaluate the predictive performance of models.

2.7. Survival analysis for plasma metabolites in ESCC

Kaplan-Meier curves were used to identify the relationships
between metabolite levels in ESCC patients and their OS through
log-rank test with a median split. Proportional hazard regression
was performed for each metabolite to calculate the hazard ratio
(HR) value. Factors with P values < 0.05 were considered signifi-
cantly prognostic.

2.8. Statistical analysis

Statistical analysis was performed using R software (version
3.6.2). Normality of the variables was tested by the Shapiro-Wilk
normality test in R. Cox proportional hazard regression analysis
was conducted using R package survival (version 3.1e8). ROC
analysis was performed by R package pROC (version 1.15.3). Stu-
dent's t-test was used to compare the means between two groups,
whereas ANOVA test was used to compare the means among three
or more groups. A two-tailed P value < 0.05 was considered to be
statistically significant.

3. Results

3.1. Metabolic shift in plasma of ESCC patients

Un-targeted metabolomics was performed to investigate dif-
ferential metabolites within the plasma of ESCC patients and
healthy controls. A total of 3090 metabolic features in electrospray
ionization positive (ESIþ) mode and 3399 metabolic features in
electrospray ionization negative (ESI-) mode were obtained from
the metabolomics data. PCA analysis demonstrated a significant
separation trend in plasma between ESCC patients and healthy
controls, indicating a metabolic shift in ESCC plasma (Fig. 1).
Furthermore, PLS-DA analysis demonstrated that ESCC patients
weremarkedly separated from healthy controls, suggesting a global
metabolic shift between the two groups (Fig. 2A). Volcano plots
illustrating differential metabolomic features are shown in Fig. 2B.
A total of 840 differential metabolic features were obtained based
on the criteria VIP > 1, |log2 fold change| > 0.584, and FDR < 0.05.
Among these, 12 features were annotated with specific metabolites
(Table 2, Table S1). The heatmap demonstrated that 12 differential
metabolites were able to distinguish ESCC patients from healthy
controls (Fig. 2C). Pathway analysis of the 12 differential metabo-
lites revealed that the top 3 significant metabolism pathways were
synthesis and degradation of ketone bodies, butanoate metabolism,
and lysine degradation (Fig. 2D).

http://metlin.scripps.edu
http://www.hmdb.ca/
http://www.hmdb.ca/
https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml
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3.2. Predictive performance of single-metabolite models

For single metabolite-based biomarker development, ROC
curve analysis for metabolites in the training set showed that
there were six metabolites with AUC values of over 0.85: indoxyl
sulfate, phosphatidylcholine (PC) (14:0/0:0), sebacic acid, trime-
thylamine N-oxide, arachidonic acid, and deoxycholic acid (Fig. 3).
These six metabolites were further used to develop single-
metabolite-based diagnostic models for ESCC. After calculating
the predictive classes for the unknown samples in the test set,
confusion matrices were obtained, and the testing predictive
performance of each metabolite is listed in Table 3. Arachidonic
acid displayed the highest predictive accuracy (0.887, 95%CI:
0.732e0.958), followed by sebacic acid (0.867, 95%CI:
0.701e0.943), indoxyl sulfate (0.850, 95%CI: 0.701e0.942), PC
(14:0/0:0) (0.825, 95%CI: 0.672e0.926), deoxycholic acid (0.773,
95%CI: 0.644e0.910), and trimethylamine N-oxide (0.653, 95%CI:
0.535e0.834).
Fig. 2. Metabolic shift in plasma of ESCC patients compared with healthy controls. (A) PLS-D
(B) differential ion features were defined as VIP > 1, |log2 FC| > 0.584, and an FDR < 0.05; (
ESCC patients compared with healthy controls; (D) pathway analysis of 12 differential metabo
healthy control.
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3.3. Predictive performance of multiple-metabolite-based machine
learning models

For the PLS model, the optimized number of components used
in the model was 1, and the AUC of the ROC curve (AUCROC) was
0.981 (95%CI: 0.906e1.000) in the training set (Fig. 4A), and 0.973
(95%CI: 0.924e1.000) in test set (Fig. 4E). The predictive accuracies
in the training set and the test set were 0.955 (95%CI: 0.887e0.984)
and 0.947 (95%CI: 0.830e0.994), respectively (Table 3 and
Table S2).

For the RF model, the optimized value for entry was 2, and the
AUCROC was 1.000 (95%CI: 0.906e1.000) in the training set (Fig. 4B),
and 0.997 (95%CI: 0.989e1.000) in test set (Fig. 4F). The predictive
accuracies in the training set and the test set were 1.000 (95%CI:
0.964e1.000) and 0.947 (95%CI: 0.831e0.994), respectively (Table 3
and Table S2).

For the GBMmodel, the final optimizedmodel had the following
parameters: n.trees value of 150, interaction depth value of 2,
A score plot derived from partial least-squares discriminant analysis in the training set;
C) heatmap analysis of 12 plasma differential metabolites revealed a metabolic shift in
lites. FC: fold change; FDR: Benjamini-Hochberg false discover rate; C: ESCC patient; N:



Table 2
Summary of the 12 differential metabolites found in plasma of ESCC patients and healthy controls a.

Metabolite Ion mode m/z RT (min) FDR log2 FC VIP value AUC

Indoxyl sulfate Negative 212.0018 5.2 5.4 � 10-12 �1.68 1.75 0.937
PC (14:0/0:0) Positive 468.3071 9.0 2.0 � 10-11 �1.06 1.72 0.908
Arachidonic acid Negative 303.2332 12.0 4.0 � 10-10 0.82 1.63 0.888
Deoxycholic acid Negative 391.2859 9.6 1.3 � 10-9 �2.00 1.61 0.885
Piperidine Positive 86.0968 1.3 3.3 � 10-8 1.95 1.47 0.810
Trimethylamine N-oxide Positive 76.0762 1.0 2.0 � 10-7 �1.65 1.43 0.889
Carnitine Positive 162.1119 1.3 8.8 � 10-6 0.84 1.33 0.758
7Z,10Z,13Z,16Z,19Z-docosapentaenoic acid Negative 329.2490 12.1 2.1 � 10-5 0.99 1.21 0.812
Pipecolic acid Positive 130.0860 1.0 2.5 � 10-5 �1.54 1.20 0.724
Hydrocinnamic acid Positive 151.0749 7.6 1.3 � 10-4 �0.78 1.11 0.779
Sebacic acid Negative 201.1126 6.8 1.6 � 10-4 1.67 1.05 0.897
Acetoacetic acid Positive 103.0392 0.9 3.4 � 10-4 1.16 1.06 0.811

a Differential metabolites were discovered with the training set, in which a total of 100 samples including 63 from ESCC patients and 37 from healthy controls were evaluated.
RT: retention time; FDR: Benjamini-Hochberg false discover rate; FC: fold change; AUC: as area under the ROC curve.

Fig. 3. Receiver operating characteristic (ROC) curves of single-metabolite models and boxplots of peak intensity distribution; (A) indoxyl sulfate, (B) PC (14:0/0:0), (C) sebacic acid,
(D) trimethylamine N-oxide, (E) arachidonic acid, (F) deoxycholic acid. AUC: area under the curve. Two-tailed student's t-test was used with P value < 0.05 considered significant.
**** P < 0.0001.
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Table 3
Predictive performance of different diagnostic models with the test seta.

Model Predictive performance

Accuracy (95%CI) Sensitivity Specificity

Single metabolite model
Arachidonic acid 0.887 (0.732, 0.958) 0.933 0.887
Sebacic acid 0.867 (0.701, 0.943) 0.800 0.933
Indoxyl sulfate 0.850 (0.701, 0.942) 0.920 0.733
PC (14:0/0:0) 0.825 (0.672, 0.926) 0.760 0.933
Deoxycholic acid 0.773 (0.644, 0.910) 0.880 0.773
Trimethylamine N-oxide 0.653 (0.535, 0.834) 0.467 0.840
Machine learning model
PLS b 0.947 (0.830, 0.994) 0.960 0.933
RF c 0.947 (0.831, 0.994) 0.960 0.933
GBM d 0.960 (0.830, 0.994) 0.830 0.994
SVM e 0.980 (0.868, 0.999) 0.960 1.000

a A total of 40 samples for the test set, including 25 samples from ESCC patients
and 15 samples from healthy controls.

b Partial least-square.
c Random forest.
d Gradient boosting machine.
e Support vector machine.

Z. Chen, X. Huang, Y. Gao et al. Journal of Pharmaceutical Analysis 11 (2021) 505e514
shrinkage value of 0.1, n.minobsinnode value of 10, with the AUCROC
1.000 (95%CI: 0.906e1.000) in the training set (Fig. 4C), and 1.000
(95%CI: 1.000e1.000) in test set (Fig. 4G). The predictive accuracies
in the training set and the test set were 1.000 (95%CI: 0.964e1.000)
and 0.960 (95%CI: 0.830e0.994), respectively (Table 3 and
Table S2).
Fig. 4. ROC curves of different machine learning models of training set: (A) PLS; (B) RF; (C) G
RF; (G) GBM; (H) SVM. (I) Computational times of different machine learning models. (J)
machine learning models in the test set. PLS: partial least-square; RF: random forest; GBM
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For the SVM model, linear SVM was finally selected with “C-
classification” as the type, “cost” value of 3, and 16 support vectors,
with the AUCROC of 0.996 (95%CI: 0.866e1.000) in the training set
(Fig. 4D), 0.979 (95%CI: 0.935e1.000) in test set (Fig. 4H). The
predictive accuracies in the training set and the test set were 0.987
(95%CI: 0.946e0.999) and 0.980 (95%CI: 0.868e0.999), respectively
(Table 3 and Table S2).

In comparison to the single-metabolite models, the four
metabolite-based machine learning models displayed higher pre-
dictive performance (Fig. 4J; Table 3), demonstrating the ascen-
dancy of combined metabolomics data and machine learning
approaches. Among the four machine learning models, SVM
showed the highest accuracy of 0.980 in the test set among the four
models. In terms of computational time (Fig. 4I), the fastest model
was SVM (0.05 s), followed by PLS (1.43 s), GBM (3.5 s), and RF
(4.53 s). Taken together, four machine learning models, especially
SVM, were all considered as promising diagnostic models for ESCC.
3.4. Feature metabolite selection

By ranking the feature importance of annotated metabolites via
different machine learning models, it was reported from all models
that several metabolites were of high importance, including
indoxyl sulfate, arachidonic acid, and trimethylamine N-oxide. On
the other hand, some were of low importance, including aceto-
acetic acid, pipecolic acid, and carnitine. Moreover, inter-model
variations in feature importance of the same metabolite were
BM; (D) SVM. ROC curves of different machine learning models of test set: (E) PLS; (F)
Predictive performance of six single-metabolite and four multiple-metabolite-based
: gradient boosting machine; SVM: support vector machine.



Fig. 5. (A) Feature importance of 12 metabolites in different machine learning models, and (BeE) machine learning models with different feature metabolites. The curves of
predictive accuracy values increase as the number of feature metabolites grows in the (B) PLS model, (C) RF model, (D) GBM model, and (E) SVM model.
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noted. For instance, deoxycholic acid was reported of relatively high
importance in PLS, RF, and SVM, while of relatively low importance
in GBM (Fig. 5A).

To reduce model complexity, optimization of machine learning
models can be achieved through the use of fewer variables. Thus,
models with different amounts of top features were investigated
(from top 2 to top 12). The results showed that three models (i.e.,
PLS, RF, and GBM) reached accuracies of over 0.900 for the training
set and over 0.850 for the test set, for the top 3 variables
(Figs. 5BeD). A constant accuracy of 1.000 was reported in the
training set of RFs, while in the corresponding test set a downward
trend was observed when modeling with top 8e12 (Fig. 5C). The
SVM model showed an escalating accuracy and achieved 0.987 for
the training set and 0.980 for the test set (Fig. 5E).
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3.5. Prognostic value of plasma metabolites for ESCC

To assess the prognostic value of the 12 differential metabolites,
survival analysis was performed, and the results demonstrated
acetoacetic acid to be negatively associated with OS for ESCC, with
an HR of 1.752 (95%CI: 1.012e3.033) (Fig. 6A). PC (14:0/0:0) was
positively related to OS, with an HR of 0.577 (95%CI: 0.333e1.002)
(Fig. 6B). Two metabolites, acetoacetic acid and trimethylamine N-
oxide, were significantly increased in ESCC patients with advanced
stages (TNM IIIeIV) comparedwith early stages (TNM IeII) (Figs. 6C
and D). Compared with healthy controls, ESCC patients had an
evident increase in acetoacetic acid levels, while a significant
decrease in trimethylamine N-oxide level. With regard to smoking
status, the levels of 7Z, 10Z, 13Z, 16Z, and 19Z-docosapentaenoic



Fig. 6. Prognostic significance of plasma metabolites. KaplaneMeier survival curves for ESCC patients stratified by plasma metabolites with a median-split: (A) acetoacetic acid; (B)
PC (14:0/0:0). Relative plasma concentrations of (C) acetoacetic acid, and (D) trimethylamine N-oxide among healthy controls, ESCC patients with early stages (I, II) and patients
with advanced stages (III, IV). Relative plasma concentration of (E) 7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenoic acid among healthy controls, smoking ESCC patients and non-smoking
ones. Log-rank test was used with P value < 0.05 considered significant. Two-tailed student's t-test and ANOVA test were used with P value < 0.05 considered significant.
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acid were lower in smoking ESCC patients than in non-smoking
ones, while the level of this metabolite was higher in ESCC pa-
tients than in healthy controls independent of their smoking status
(Fig. 6E). Based on these results, plasma acetoacetic acid was an
unfavorable prognostic factor for ESCC and might be related to the
progression of ESCC.

4. Discussion

ESCC patients survive longer when diagnosed at an early stage.
Therefore, it is urgent to develop accurate and convenient diag-
nostic methods for early stage ESCC diagnosis. Previous metab-
olomic studies have demonstrated metabolic reprogramming to be
a significant feature of ESCC, with the associated metabolites
considered potential diagnostic biomarkers [2,14e17,23,27].
Plasma/serum are the most common clinical fluid biopsies. These
specimens are an excellent and relatively non-invasive source of
precise, rapid, and real-time diagnostic biomarkers [28]. Previously,
several plasma/serummetabolomic studies [15,23,27] have found a
group of metabolites differentially present in ESCC patients
compared with healthy controls. For example, Cheng et al. [2] have
found an increase in tryptophan metabolites including kynurenine,
5-hydroxytryptamine, 5-hydroxytryptophan, and 5-
hydroxyindole-3-acetic acid in ESCC serum. Mir et al. [15] have
revealed a dysregulation of serum PC in ESCC patients. Liu et al. [23]
have demonstrated six plasma phospholipids, phosphatidylserine,
phosphatidic acid, phosphocholine, phosphatidylinositol, phos-
phatidylethanolamine, and sphinganine 1-phosphate, to be signif-
icantly up-regulated in ESCC. However, these studies have
limitations as follows: diagnostic significance of the metabolites
was not clearly elucidated by proper validation design, such as
splitting the data set into a training set and a test set; current
multivariate analysis methods used for metabolomics data are PCA
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and PLS-DA (one form of PLS when Y is categorical), which can
result in classifications that are over-optimistic or over-fitting. In
order to have an in-depth understanding of the diagnostic signifi-
cance of ESCC plasma metabolites and to enhance the clinical
application of metabolomics, the present study developed and
assessed metabolite-based machine learning models to discrimi-
nate between plasma samples of ESCC patients and healthy
controls.

Four machine learning algorithms, PLS, RF, GBM, and SVM, are
all widely used in the healthcare field, particularly in the area of
medical diagnosis. However, with the exception of PLS, the other
three machine learning algorithms have not been fully investigated
for metabolomic data analysis yet. Based on our results, the
metabolite-based machine learning models used in this study
showed satisfactory predictive performance (accuracy range of
0.947e0.980), which was significantly higher than that of single-
metabolite-based models (accuracy range of 0.653e0.887). The
SVM exhibited highest predictive performance among the four
models, both in the training set (0.987) and in the test set (0.980).
Meanwhile, it had the lowest computational cost, altogether indi-
cating SVMmay bemost suitable for analysis of largemetabolomics
data sets. Taken together, this study demonstrated machine
learning methods other than PLS to be useful for clinical metab-
olomics studies, encouraging the use of combined metabolomics
and machine learning approaches for the development of diag-
nostic cancer tools.

In the present study, a significant relationship was observed
between TNM stage and acetoacetic acid, which was herein evi-
denced as the most prominent metabolite, possessing both diag-
nostic and prognostic value. Acetoacetic acid was originally
considered as a ketone body, mainly produced in the liver during
periods of nutrient deprivation, that served as high-energy fuel for
extrahepatic tissues like the brain, heart, and skeletal muscle [29].
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Consistent with our results, other studies have reported up-
regulated ketone bodies in ESCC cancerous tissues [13]. These
were characterized as an accumulation of ketone bodies (acetone
and acetoacetic acid) as well as up-regulated ketone transporter-
monocarboxylate transporter 1 in ESCC [13,30]. Taken together,
these results suggested a potential functional role for acetoacetic
acid in ESCC. However, contradicting results regarding ketones in
cancer also exist. For example, Poff et al. [31] claimed cancer cells to
be unable to efficiently utilize ketones, while ketones slow the
proliferation of tumor cells. Martinez-Outschoorn et al. [32] illus-
trated an opposite effect of ketones which increased the stemness
of cancer cells, resulting in recurrence, metastasis, and poor clinical
outcomes in breast cancer. Therefore, it is essential to clarify
whether ESCC cancer cells utilize ketones as an energy resource as
well as to determine the biological role of acetoacetic acid in ESCC.

Lipids are essential to cancer cell structure, signal transduction,
and cancer cell proliferation [33e35]. Our results showed a signif-
icantly decreased PC (14:0/0:0) level in ESCC, which is favorable to
this cancer. Similarly, Mir et al. [15] also detected a group of
decreased serum phosphatidylcholines, such as PC (18:2/0:0), PC
(18:1/18:2), and PC (20:4/0:0) in ESCC. Meanwhile, Kamphorst et al.
[34] proposed the capability of cancer cells in lipid uptake and
utilization from the circulation through macro-pinocytosis.
Collectively, these findings suggested that alterations in circu-
lating lipids may be associated with enhanced lipid consumption
by cancer cells. It is herein evident that lower circulating PC (14:0/
0:0) levels, corresponding to higher consumption of PC (14:0/0:0)
by cancer cells, are related to poorer survival of ESCC.

Our results exhibited an indicative decrease in indoxyl sulfate.
The highest AUC value in ROC analysis was observed for this
metabolite in the training set when performing single-metabolite-
based diagnostic model analysis (AUC¼ 0.917). Its AUC value in test
set, though not the greatest, was also very high. Moreover, great
importance of indoxyl sulfate was observed in all multiple-
metabolite-based diagnostic models combined with machine
learning models. These results thus suggest that indoxyl sulfate
might be a promising diagnostic biomarker for ESCC. In addition, a
previous study revealed that indoxyl sulfate is related to microbial
tryptophan catabolism [36]. In accordance with these results,
Cheng et al. [2] reported disturbed tryptophan metabolism in ESCC.
Altogether, tryptophan metabolism, especially microbial trypto-
phan catabolism, is potentially associated with ESCC initiation or
progression.

Deoxycholic acid is a secondary bile acid, the metabolic by-
product of intestinal bacteria. It is known to increase intracellular
production of reactive oxygen as well as reactive nitrogen species,
and higher levels are associatedwith increased frequencies of colon
cancer [37e39]. Additionally, deoxycholic acid has multifunctional
biological activities, such as disrupting the intestinal mucosal bar-
rier [40] and enhancing Wnt signaling [41]. However, there have
been no reports about deoxycholic acid in ESCC yet; thus it is
worthy to further investigate its biological functions.

7Z,10Z,13Z,16Z,19Z-docosapentaenoic acid is an Omega-3 poly-
unsaturated fatty acid with 5 double bonds in 7-, 10-, 13-, 16-, 19-
positions. The present study detected a significant increase in
7Z,10Z,13Z,16Z,19Z-docosapentaenoic acid levels in ESCC patients,
which indicates a diagnostic potential for ESCC. Consistently, Liu
et al. [42] have recently reported that people with high docosa-
pentaenoic acid levels are vulnerable to lung cancer, indicating a
biological role of docosapentaenoic acid in cancer initiation and
development. Therefore, more work is needed to investigate the
potential mechanisms of docosapentaenoic acid in ESCC.

This study also presented conflicting results: down-regulated
trimethylamine N-oxide was found in ESCC patients at early stage
compared with healthy controls, while an accretionwas denoted at
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advanced stage in comparison to early stage, though the levelswere
still lower than those of healthy controls. A plausible explanation
for such outcome is that levels of trimethylamine-N-oxide are
determined by two factors: trimethylamine production from pre-
cursor molecules such as choline and L-carnitine by themetabolism
of gut microbiota; and dietary intake of trimethylamine-N-oxide-
rich foods such as high-choline or high-carnitine diet [43].
Accordingly, plasma levels of trimethylamine-N-oxide in ESCC pa-
tients might be altered by both changes in dietary compositions
and intestinal bacteria. Meanwhile, controversial results are sug-
gested in previous studies. Bae et al. [44] postulated a positive
correlation between incidence of colorectal cancer (CRC) and
plasma levels of trimethylamine N-oxide in US women, while
Guertin et al. [45] indicated no correlation between this metabolite
and risks of CRC. It remains opaque, thus requiring further re-
searches to investigate, whether an increase in trimethylamine N-
oxide level is a cause or a consequence of cancer.

Limitations of this study must be addressed. First, the sample
size was relatively small for machine learning algorithms. A larger
cohort is needed to validate model performance and finely opti-
mize model parameters. Second, metabolite annotation efficiency
was relatively low due to a lack of an in-house database and online
MS2 spectral data, resulting in many diagnostic metabolite ions not
being annotated. Third, the current prediction capacity of machine
learning models is limited to two classes of plasma samples, so
more diverse samples are needed to improve future performance of
machine learning algorithms. Last but not least, the detailed func-
tion of the identified metabolites, such as acetoacetic acid, is
required to be further clarified.

In conclusion, this study successfully established plasma
metabolite-based machine learning models to distinguish ESCC
cancer patients from healthy controls, demonstrating that the
combination of metabolomics and machine learning is a novel and
efficient diagnostic strategy for ESCC and possibly for other cancers.
Although this study was a pilot in nature, due to relatively small
sample size and limited diversity within the training set, the results
could encourage future applications of machine learning algo-
rithms to clinical metabolomics studies and accordingly aid medi-
cal diagnostic development. In addition to the discovery of
diagnostic metabolites, this study explored progression-associated
metabolites, which may provide potential prognostic biomarkers
for ESCC. The findings of this study contribute to an understanding
of the molecular pathogenesis of ESCC and provide useful infor-
mation for individualized cancer therapy. In summary, further
studies with larger cohorts should be conducted through a com-
bined application of metabolomics and machine learning. This
approach is promising in cancer diagnosis and will contribute
significantly to cancer treatment.
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