
sensors

Article

Radial Basis Functions Intended to Determine the
Upper Bound of Absolute Dynamic Error at the
Output of Voltage-Mode Accelerometers

Krzysztof Tomczyk 1,* , Marcin Piekarczyk 2 and Grzegorz Sokal 2

1 Faculty of Electrical and Computer Engineering, Cracow University of Technology, Warszawska 24,
31-155 Krakow, Poland

2 Faculty of Mathematics, Physics and Technical Science, Pedagogical University of Cracow, 2 Podchorazych
Ave, 30-084 Krakow, Poland; marcin.piekarczyk@up.krakow.pl (M.P.); grzegorz.sokal@up.krakow.pl (G.S.)

* Correspondence: ktomczyk@pk.edu.pl; Tel.: +48-126-282-543

Received: 3 September 2019; Accepted: 23 September 2019; Published: 25 September 2019 ����������
�������

Abstract: In this paper, we propose using the radial basis functions (RBF) to determine the upper
bound of absolute dynamic error (UAE) at the output of a voltage-mode accelerometer. Such functions
can be obtained as a result of approximating the error values determined for the assumed-in-advance
parameter variability associated with the mathematical model of an accelerometer. This approximation
was carried out using the radial basis function neural network (RBF-NN) procedure for a given
number of the radial neurons. The Monte Carlo (MC) method was also applied to determine the
related error when considering the uncertainties associated with the parameters of an accelerometer
mathematical model. The upper bound of absolute dynamic error can be a quality ratio for comparing
the errors produced by different types of voltage-mode accelerometers that have the same operational
frequency bandwidth. Determination of the RBFs was performed by applying the Python-related
scientific packages, while the calculations related both to the UAE and the MC method were carried
out using the MathCad program. Application of the RBFs represent a new approach for determining
the UAE. These functions allow for the easy and quick determination of the value of such errors.

Keywords: radial basis function; upper bound of dynamic error; voltage-mode accelerometer

1. Introduction

Acceleration, which is measured by accelerometers [1–3], is a feature of which instantaneous
values are constantly changing [4]. A similar situation occurs when measuring other dynamic
quantities (e.g., pressure, temperature, etc.) [5–8]. For those quantities, no explicit comparative
criterion [9] has been developed so far, as is the case with the accuracy class of the instruments intended
for static measurements [10,11]. When measuring acceleration, as is the case with other dynamic
quantities [12–15], it is convenient to use the two best-known quality factors: The integral-square
error [9,16,17] and the absolute error [12]. The first factor, for the assumed time of testing, allows one to
determine the value of signal energy at the output of the sensor, while the second factor measures the
maximum value of magnitude of this signal. However, both of these factors allow the determination of
the numerical values of dynamic error for any measurement signal [9,12–15,17–19]. After the time
corresponding to the time of the steady state of the sensor impulse response, the time characteristic of
the integral-square error is linear [16,19], while the absolute error takes a constant value in time [12,18].
The time that it takes for the steady state of impulse response can be considered to be transient due to
its very short duration.

Since the set of dynamic signals at the sensor input is infinite [9], in order to determine the upper
bound of dynamic error [9,12–14] for the considered quality factor, the critical case of the input signal
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with limitations [20] should be determined. It can be carried out using the dedicated calculation
algorithm intended for this purpose [12–15,18,19]. For the needs of such an algorithm, it is necessary
to know the parameters of the mathematical model [2–4] of the considered sensor. Taking into account
that from a practical point of view, only the error for the sensor’s operating band is of interest for the
purposes of implementing such an algorithm, it is necessary to use the special standard as a reference
to determine the error [9,12,21].

The main subject of this paper is the absolute dynamic error (UAE) for the absolute error
criterion [12]. It is produced by the signal with limitations on both the magnitude and its duration [16,20].
An example of testing a voltage-mode accelerometer was considered in this work. It was assumed
that the accelerometer is a low-pass system with an operating band limited by the cut-off frequency.
Examples of the numerical values of the UAE for any time of accelerometer testing are presented
in [17–19]. In addition, polynomial approximation was performed in [18] to determine the relationship
between the error and the time of sensor testing. It was carried out using the Curve Fitting toolbox [22]
built into MATLAB software. However, this type of approximation has a significant limitation due
to the difficulties of determining the optimal order of the polynomial approximating the error [23,
24]. Therefore, based on the Neural Network toolbox [25] built into MATLAB, the procedure for
determining the optimal order of the polynomial approximating the error was presented in [26,27].
However, neither the structure nor the parameters of this polynomial were determined there.

This paper proposes the use of the radial basis function neural network (RBF-NN) to determine
the RBFs [28–32] for an assumed number of radial neurons. In this work, the RBFs were obtained
using Python-related scientific packages that allow the easy and quick determination of the upper
bound of absolute dynamic error. The error obtained based on the RBF is denoted below as the
UAERBF. The RBFs were determined on the basis of previously obtained values of the UAE for the
assumed-in-advance ranges of variability of the accelerometer model parameters. Section 3 presents
the mathematical models with associated descriptions of both the voltage-mode accelerometer and the
model of the standard, which is the reference for determining the error. Based on these models, Section 4
presents a detailed description, along with the relevant mathematical relations of the algorithm used
for determining the UAE. Then, Section 5 discusses the procedure used for determining the RBF.

The values of the accelerometer model parameters intended for substitution into the RBF can be
assumed in advance or obtained as a result of the parametric identification of such a model. In order to
precisely determine both the parameters of the model and the associated uncertainties, the identification
procedure should be based on the measurement points of both frequency responses (amplitude and
phase). For this purpose, it is convenient to use the weighted-least-squares (WLS) method discussed in
detail in [33,34].

When the parameters and uncertainties are assumed-in-advance or obtained on the basis of the
WLS method, it is not possible to apply the RBF directly because it is unclear for which values of the
parameters from the ranges determined by the associated uncertainties the maximum error can be
obtained. This maximum error is denoted below as the UAERBF(max). It is therefore necessary to use
a parametric optimization method to determine this error. The solution of using the Monte Carlo (MC)
method [34–36] based on a pseudorandom number generator with uniform distribution is discussed
in detail in Section 6. It was convenient to employ here the Wichmann–Hill generator [37], which is
recommended by the guide [34].

Section 7 presents the matrix containing the values of the UAE. These errors were determined for
the case of changes of two parameters of a voltage-mode accelerometer for the assumed-in-advance
ranges of these changes and quantization steps. Based on the matrix of errors, the optimal order,
structure, and parameters values of the RBF were determined. The 5, 10, and 15 radial neurons were
considered. Based on these functions, the error UAERBF was determined for the selected values of the
accelerometer parameters. Then, the values of uncertainties were assumed for the parameters and the
UAERBF(max) values were calculated by employing the MC method.



Sensors 2019, 19, 4154 3 of 15

The procedure for determining the RBF function as well as an application of the MC method to
establish the error UAERBF constitute the novelty of this paper.

2. General Guidelines for the Proposed Procedure

Figure 1 shows the block diagram of the procedure intended for determining the RBF and then
the value of UAERBF.
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Figure 1. Block diagram of the procedure intended for determining the radial basis function (RBF) and
the value of absolute dynamic error (UAERBF).

The procedure above involves the algorithm for determining the UAE, which is presented in detail
in Section 4. The input data for this algorithm are the parameters of the voltage-mode accelerometer
and the standard, as well as the value of the signal limitation. The cut-off frequency of the standard
was selected to be equal to the operational frequency bandwidth of the accelerometer. In the first step,
denoted by 1 in Figure 1, the parameters of the voltage-mode accelerometer are generated with the
assumed quantization steps and from the assumed ranges of their variability. The value of the UAE
was determined for each set of a such parameters. In this way, the matrix of UAE values was obtained,
which then serves as the input data for the procedure intended for determining the RBF. The procedure
for determining the RBF based on the RBF-NN is discussed in detail in Section 5.

In the second step, denoted by 2, we can easily obtain the values of the error UAERBF for the
voltage-mode accelerometer by substitution of any set of parameters from the ranges assumed earlier.
The RBF, therefore, allows the determination of the values of the UAERBF without the need to use
the procedures described in Section 4. If the values of parameters are known (without the associated
uncertainties), then it is not necessary to carry out the parametric identification of the accelerometer
model. Thus, the procedures described in Sections 3 and 6 are also not necessary. However, it should
always be kept in mind that the RBF is valid only for the ranges of variability of the accelerometer
parameters for which it was determined earlier.

For the assumed-in-advance ranges covering only the parameters obtained as a result of parametric
identification (neglecting the uncertainties), the procedure shown in Figure 1 should be executed to
determine the RBF. The block diagram of the procedure intended for determining the UAERBF(max) is
shown in Figure 2.
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The procedure above employs the previously determined RBF, as well as the parameters of the
testing accelerometer and the associated uncertainties assumed-in-advance or obtained as a result of
modeling carried out by the WLS method. This procedure is based on the MC method, which was
employed to determine the values of accelerometer parameters from the ranges set by the associated
uncertainties. As a result of implementation of this procedure, the UAERBF(max) was obtained.
The MC-based procedure is presented in detail in Section 6.

3. Mathematical Models of the Voltage-Mode Accelerometer and the Standard

The mathematical model of the voltage-mode accelerometer is most often represented by the
transfer function:

KV(s) =
−SVω2

0

s2 + 2βω0s +ω2
0

(1)

where
ω0 = 2π f0 (2)

while SV , β, and f0 are the voltage sensitivity (V/ms−2), dimensionless damping ratio, and nondamped
natural frequency (Hz), respectively.

The observer canonical form of the state-space representation associated with Equation (1) is

KV(s) = CV(sI1 −AV)
−1BV (3)

where I is the 2× 2 dimensional identity matrix, while AV, BV, and CV are

AV =

[
−2βω0 1
−ω2

0 0

]
,BV =

[
0 −SVω2

0

]
,CV =

[
1 0

]
. (4)

Let the model of the standard with the cut-off frequency fc be given by the K-th order
Butterworth filter:

Ks(s) =
nK

sK + d1·sK−1 + d2·sK−2 + . . .+ dK−1·s + dK
=

Sv∏K
k=1

[
s

2π fc
− e

j(2k+K−1)π
2K

] . (5)

The cut-off frequency fc of the standard is equal to the accelerometer operational
frequency bandwidth.

The observer canonical form of the state-space representation related to the transfer Function (5) is

Ks(s) = Cs(sI2 − As)
−1Bs (6)
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where

As =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1
e f g . . . h i


, Bs =

[
0 0 . . . 0 0 nK

]T
, Cs =

[
1 0 . . . 0 0 0

]T
(7)

and the variables in the last row of the matrix As are e = −dK, f = −dK−1, g = −dK−2, h = −d2,
and i = −d1. The matrix I2 is the 6 ×6 dimensional matrix.

The difference between KV(s) and Ks(s) is

K(s) = KV(s) −Ks(s) = C(sI−A)−1B (8)

where

A =

[
Av 0
0 As

]
,B =

[
Bv

Bs

]
, C =

[
Cv

−Cs

]
,I =

[
I1

I2

]
. (9)

4. Algorithm for Determining the UAE

The upper bound of absolute dynamic error is determined by the following formula [12]:

UAE = a
∫ T

0

∣∣∣L−1[K(s)]
∣∣∣dt = RL,L, LεN (10)

where a and T are the magnitude limitation of the input signal and the time of the accelerometer testing,
respectively, while L−1 denotes the inverse Laplace transformation.

The component RL,L in Equation (10) is the bottom-right element of the Romberg array and allows
avoiding the numerical integration of the first component of UAE—Equation (10).

The Romberg array can be determined by

Rn,0 = a
[
Rn,m−1 +

1
4m − 1

(Rn,m−1 −Rn−1,m−1)
]
,n, m = 1, 2, . . . , L (11)

where
R0,0 = 0.5·

{∣∣∣L−1[K(s)]t=0

∣∣∣+ ∣∣∣L−1[K(s)]t=T

∣∣∣} (12)

and

Rn,0 = 0.5·Rn−1,0 +
T
2L

2L−1∑
p=1

∣∣∣∣∣k[2p− 1]
T
2L

∣∣∣∣∣. (13)

The value of L is determined by the stop condition for the Romberg method.
The signal producing the error UAE is

xA(t) = a·sgn
[
L
−1[K(s)]t=T−t

]
(14)

where sgn denotes the signum operation [12].

5. Procedure for Determining the RBF Based on the RBF-NN

The RBF-NN was proposed as a formal tool for mathematical modeling of error space [28–32].
The classical network architecture is applied where its structure consists of three layers: An input layer,
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a hidden layer with a nonlinear two-dimensional RBF activation function, and a linear output layer.
This type of the network is characterized by the overall response function:

RBF(x) =
P∑

p=1

ap·ϕ (||x− cp||) (15)

where P denotes the number of radial neurons, while ap, cp, and ϕ are the inner parameters and
function, respectively.

The Gaussian kernel as the nonlinear RBF is presented as

ϕ (||x− cp||) = e[−γ||x−cp ||
2] (16)

where γ and ||· ||2 denote the inner parameter and squared Euclidian distance, respectively.
Given the assumptions, the RBF network can be treated as a universal approximator [28–32].

This means that such a system with a sufficient number of neurons is able to approximate any
continuous function on a closed and bounded dataset with arbitrary precision. Here, the aim is to map
the multivariate function of two arguments as follows:

f : R2
→ R. (17)

Hence, the network includes the input layer of size two and a single output. The hyperparameters
ap, cp, and γ must be determined in a way that optimizes the match between ϕ and the given data.
For model simplification, the parameter γ is fixed as the same for every Gaussian kernel function
existing in the hidden layer.

The equations describing the approximator model can be presented in the form of a matrix
notation as below:

Gw = b (18)

where the p × q dimensional matrix and the vectors denoted as G, w, and b respectively, have the
following structure 

g11 . . . g1P
...

. . .
...

gq1 . . . gqP




w1
...

wp

 =


b1
...

bq

 (19)

where p and q denote the number of RBF neurons in the hidden layer and the number of input samples,
respectively.

The elements of matrix G are the values of the RBFs evaluated at the points indicated by the input
data according to the formula

x j : g ji = ϕ (||x j − ci||) (20)

where x j ∈ R2 are samples of the input data and ci ∈ R2 are centers of RBF for individual neurons.
In turn, the vector b consists of the values of the original function known in the finite number of points,
such that

f (xi) = bi (21)

and the values of the linear output weights are stored as the vector w.
Finally, the following training scheme was used to obtain the network hyperparameters relevant

to the correct approximation:

1. The RBF centers were randomly sampled among the domain of the input dataset.
2. The value of parameter γ was selected from the set range with a given step.



Sensors 2019, 19, 4154 7 of 15

3. For every value of parameter γ, the appropriate weights were calculated using
a pseudoinverse solution. After the RBF centers ci are fixed, the weights that minimize the error
at the output can be directly computed using a linear pseudoinverse method:

w = G+b (22)

where G+ denotes the Moore–Penrose pseudoinverse of the matrix G [38,39].
4. The determination coefficient (R2) and the mean squared error (MSE) were calculated.
5. Steps 2–4 were repeated for all indicated γ ranges to find the hyperparameters which optimize

the value of the coefficient R2.

6. MC-Based Procedure for Determining the UAERBF(max)

Let the variables S̃V , f̃0, and β̃denote the parameters of the mathematical model of the voltage-mode
accelerometer assumed in advance or determined based on the WLS method [33,34], while the variables
u(S̃V), u( f̃0), and u(β̃) are the uncertainties associated with these parameters. Also, let

S̃V
u = S̃V + u(S̃V), S̃V

l = S̃V − u(S̃V)

f̃0u = f̃0 + u( f̃0), f̃0l = f̃0 − u( f̃0)
β̃u = β̃+ u(β̃), β̃l = β̃− u(β̃)

(23)

where (u) and (l) denote the upper and the lower ranges of the parameter changes by the values of
associated uncertainties.

If the RBF was determined on the basis of the accelerometer model parameters for the
assumed-in-advance ranges 〈SV−, SV+〉, 〈 f0−, f0+〉, and 〈β−, β+〉, and if the below conditions

S̃V
u
∈ 〈SV−, SV+〉, S̃V

l
∈ 〈SV−, SV+〉

f̃0u
∈ 〈 f0−, f0+〉, f̃0l

∈ 〈 f0−, f0+〉
β̃u
∈ 〈β−, β+〉, β̃l

∈ 〈β−, β+〉
(24)

are met, then it is possible to use the MC method to determine such values of the accelerometer
model parameters S̃V

max, f̃0max, and β̃max from the ranges 〈S̃V
l, S̃V

u
〉, 〈 f̃0l, f̃0u

〉, and 〈β̃l, β̃u
〉, respectively,

for which the value of UAERBF(max) is obtained. It is carried out on the basis of RBF(S̃V
max, f̃0max, β̃max).

Figure 3 shows the block diagram of the MC-based procedure intended for determining the
UAERBF(max). The lower number M of the MC trials is calculated based on the formula

M > 104/(1− p) (25)

according to the guide [34], where p is the assumed coverage probability. The value of p is usually
taken as equal to 0.95. During each MC trial (m = 0, . . .M− 1), the values of parameters S̃V

m, f̃0m,
and β̃m are generated from the ranges 〈S̃V

l, S̃V
u
〉, 〈 f̃0l, f̃0u

〉, and 〈β̃l, β̃u
〉, respectively. Based on them,

the following value of RBF(S̃V
m, f̃0m, β̃m) is determined. The current maximum value of this function

and the corresponding number m of trials are stored in memory (carried out by an assignment of these
values to the variables i and j, respectively). For the trial equal to M− 1, the value of RBF(S̃V

j, f̃0 j, β̃ j)
corresponding to the UAERBF(max) is determined. The parameters S̃V

j, f̃0 j and β̃ j correspond to the
parameters defined above by S̃V

max, f̃0max and β̃max.
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Uncertainties associated with the parameters S̃V
j, f̃0 j and β̃ j are determined based on the formula

u(δ) =

√√√
1

M− 1

M−1∑
m=0

(δm − δ)
2

(26)

where

δ =
1
M

M−1∑
m=0

δm (27)

and δ denotes the variable that should be substituted by this parameter of the accelerometer model
for which the uncertainty is determined [11,34]. The uncertainty associated with the UAERBF(max) is
determined in an analogous way (Figure 3).
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7. Results and Verification

Table 1 includes the values of the UAE obtained based on the parameters from the ranges
Sv ∈ 〈0.100, 0.150〉 and β ∈ 〈0.0100, 0.0150〉, as well as for the constant value of parameter f0 equal to
1 kHz.

Table 1. Values of the UAE.

β

0.0100 0.0102 0.0104 0.0106 0.0108 0.0110 0.0112 0.0114 0.0116 0.0118 0.0120 0.0122 0.0124

Sv

0.100 0.634 0.621 0.610 0.598 0.587 0.576 0.566 0.556 0.547 0.537 0.528 0.520 0.511
0.102 0.660 0.647 0.634 0.622 0.611 0.600 0.589 0.579 0.569 0.559 0.550 0.541 0.532
0.104 0.686 0.672 0.659 0.647 0.635 0.623 0.612 0.602 0.591 0.581 0.571 0.562 0.553
0.106 0.712 0.698 0.685 0.672 0.659 0.648 0.636 0.625 0.614 0.604 0.594 0.584 0.575
0.108 0.739 0.725 0.711 0.698 0.685 0.672 0.660 0.649 0.638 0.627 0.616 0.606 0.596
0.110 0.767 0.752 0.738 0.724 0.710 0.697 0.685 0.673 0.661 0.650 0.639 0.629 0.619
0.112 0.795 0.780 0.765 0.750 0.736 0.723 0.710 0.698 0.686 0.674 0.663 0.652 0.641
0.114 0.824 0.808 0.792 0.777 0.763 0.749 0.736 0.723 0.710 0.698 0.687 0.675 0.664
0.116 0.853 0.836 0.820 0.805 0.790 0.776 0.762 0.748 0.735 0.723 0.711 0.699 0.688
0.118 0.883 0.865 0.849 0.833 0.817 0.803 0.788 0.774 0.761 0.748 0.736 0.724 0.712
0.120 0.913 0.895 0.878 0.861 0.845 0.830 0.815 0.801 0.787 0.774 0.761 0.748 0.736
0.122 0.943 0.925 0.907 0.890 0.874 0.858 0.843 0.828 0.813 0.800 0.786 0.773 0.761
0.124 0.975 0.956 0.937 0.920 0.902 0.886 0.870 0.855 0.840 0.826 0.812 0.799 0.786
0.126 1.006 0.987 0.968 0.950 0.932 0.915 0.899 0.883 0.868 0.853 0.839 0.825 0.812
0.128 1.039 1.018 0.999 0.980 0.962 0.944 0.927 0.911 0.895 0.880 0.866 0.851 0.838
0.130 1.071 1.050 1.030 1.011 0.992 0.974 0.957 0.940 0.924 0.908 0.893 0.878 0.864
0.132 1.104 1.083 1.062 1.042 1.023 1.004 0.986 0.969 0.952 0.936 0.921 0.905 0.891
0.134 1.138 1.116 1.095 1.074 1.054 1.035 1.016 0.999 0.981 0.965 0.949 0.933 0.918
0.136 1.172 1.149 1.128 1.106 1.086 1.066 1.047 1.029 1.011 0.994 0.977 0.961 0.946
0.138 1.207 1.183 1.161 1.139 1.118 1.098 1.078 1.059 1.041 1.023 1.006 0.990 0.974
0.140 1.242 1.218 1.195 1.172 1.150 1.130 1.109 1.090 1.071 1.053 1.036 1.019 1.002
0.142 1.278 1.253 1.229 1.206 1.183 1.162 1.141 1.121 1.102 1.083 1.065 1.048 1.031
0.144 1.314 1.289 1.264 1.240 1.217 1.195 1.174 1.153 1.133 1.114 1.096 1.078 1.060
0.146 1.351 1.325 1.300 1.275 1.251 1.229 1.207 1.185 1.165 1.145 1.126 1.108 1.090
0.148 1.388 1.361 1.335 1.310 1.286 1.262 1.240 1.218 1.197 1.177 1.157 1.138 1.120
0.150 1.426 1.398 1.372 1.346 1.321 1.297 1.274 1.251 1.230 1.209 1.189 1.169 1.150

β

0.0126 0.0128 0.0130 0.0132 0.0134 0.0136 0.0138 0.0140 0.0142 0.0144 0.0146 0.0148 0.0150

Sv

0.100 0.503 0.495 0.488 0.480 0.473 0.466 0.459 0.453 0.447 0.440 0.434 0.428 0.423
0.102 0.524 0.515 0.507 0.500 0.492 0.485 0.478 0.471 0.465 0.458 0.452 0.446 0.440
0.104 0.544 0.536 0.528 0.520 0.512 0.504 0.497 0.490 0.483 0.476 0.470 0.463 0.457
0.106 0.565 0.557 0.548 0.540 0.532 0.524 0.516 0.509 0.502 0.495 0.488 0.481 0.475
0.108 0.587 0.578 0.569 0.560 0.552 0.544 0.536 0.528 0.521 0.514 0.507 0.500 0.493
0.110 0.609 0.599 0.590 0.581 0.573 0.564 0.556 0.548 0.540 0.533 0.526 0.518 0.512
0.112 0.631 0.621 0.612 0.603 0.594 0.585 0.576 0.568 0.560 0.552 0.545 0.537 0.530
0.114 0.654 0.644 0.634 0.624 0.615 0.606 0.597 0.589 0.580 0.572 0.564 0.557 0.549
0.116 0.677 0.667 0.656 0.646 0.637 0.627 0.618 0.609 0.601 0.593 0.584 0.577 0.569
0.118 0.701 0.690 0.679 0.669 0.659 0.649 0.640 0.631 0.622 0.613 0.605 0.597 0.589
0.120 0.725 0.713 0.702 0.692 0.681 0.671 0.662 0.652 0.643 0.634 0.625 0.617 0.609
0.122 0.749 0.737 0.726 0.715 0.704 0.694 0.684 0.674 0.665 0.655 0.646 0.638 0.629
0.124 0.774 0.762 0.750 0.739 0.728 0.717 0.706 0.696 0.687 0.677 0.668 0.659 0.650
0.126 0.799 0.786 0.774 0.763 0.751 0.740 0.729 0.719 0.709 0.699 0.690 0.680 0.671
0.128 0.824 0.812 0.799 0.787 0.775 0.764 0.753 0.742 0.732 0.722 0.712 0.702 0.693
0.130 0.850 0.837 0.824 0.812 0.800 0.788 0.776 0.765 0.755 0.744 0.734 0.724 0.714
0.132 0.877 0.863 0.850 0.837 0.824 0.812 0.801 0.789 0.778 0.767 0.757 0.747 0.737
0.134 0.904 0.889 0.876 0.862 0.850 0.837 0.825 0.813 0.802 0.791 0.780 0.769 0.759
0.136 0.931 0.916 0.902 0.888 0.875 0.862 0.850 0.838 0.826 0.815 0.803 0.793 0.782
0.138 0.958 0.943 0.929 0.915 0.901 0.888 0.875 0.862 0.850 0.839 0.827 0.816 0.805
0.140 0.986 0.971 0.956 0.941 0.927 0.914 0.901 0.888 0.875 0.863 0.851 0.840 0.829
0.142 1.015 0.999 0.983 0.969 0.954 0.940 0.926 0.913 0.900 0.888 0.876 0.864 0.852
0.144 1.043 1.027 1.011 0.996 0.981 0.967 0.953 0.939 0.926 0.913 0.901 0.888 0.877
0.146 1.073 1.056 1.040 1.024 1.009 0.994 0.979 0.965 0.952 0.939 0.926 0.913 0.901
0.148 1.102 1.085 1.068 1.052 1.036 1.021 1.006 0.992 0.978 0.965 0.951 0.939 0.926
0.150 1.132 1.114 1.097 1.081 1.065 1.049 1.034 1.019 1.005 0.991 0.977 0.964 0.951



Sensors 2019, 19, 4154 10 of 15

The quantization steps for the parameters Sv and β were equal to 0.002 and 0.0002, respectively.
Taking into account the assumptions above, we have SV− = 0.100, SV+ = 0.150, β− = 0.0100,
and β+ = 0.0150 according to Equation (38). The values of the UAE were obtained by utilizing the
algorithm presented in Section 4 for the input parameters: a = Sv and T = 0.1 s. The 15th-order
Butterworth filter with the cut-off frequency fc was determined by solving the equation describing the
amplitude response obtained based on Equation (1).

On the basis of the values of the UAE tabulated in Table 1 and by applying the procedure presented
in Section 5, the RBF(SV, β) was determined. The cases of 5, 10, and 15 radial neurons based on
Equations (28)–(30) were checked.

1. For five radial neurons:

RBF5(SV, β) = 36131833920.92137e−0.020|(0.0134−β)2+(0.1400−SV)
2
|+

−11081182573.68980e−0.020|(0.0114−β)2+(0.1260−SV)
2
|47491590540.28882e−0.020|(0.0146−β)2+(0.1380−SV)

2
|+

−1065125193.52684e−0.020|(0.0116−β)2+(0.1100−SV)
2
| + 23506064273.49600e−0.020|(0.0148−β)2+(0.1280−SV)

2
|

(28)

2. For 10 radial neurons:

RBF10(SV, β) = −86057837.62482e−20|(0.0124−β)2+(0.1040−SV)
2
|+

−1137987870.37293e−20|(0.0130−β)2+(0.1220−SV)
2
| + 3414860359.97698e−20|(0.0128−β)2+(0.1280−SV)

2
|+

−426811407.83125e−20|(0.0142−β)2+(0.1140−SV)
2
|
− 3260248505.26396e−20|(0.0132−β)2+(0.1280−SV)

2
|+

+172825594.36315e−20|(0.0118−β)2+(0.1420−SV)
2
|
− 1390178.49538e−20|(0.0100−β)2+(0.1060−SV)

2
|+

+415316898.45332e−20|(0.0132−β)2+(0.1100−SV)
2
|
− 243670439.6692e−20|(0.0116−β)2+(0.1400−SV)

2
|+

+1153163476.99674e−20|(0.0138−β)2+(0.1220−SV)
2
|

(29)

3. For 15 radial neurons:

RBF15(SV, β) = 50217932.38037e−50|(0.0142−β)2+(0.1360−SV)
2
|+

−338803095.53718e−50|(0.0124−β)2+(0.1160−SV)
2
|
− 99592530.74858e−50|(0.0124−β)2+(0.1040−SV)

2
|+

+1438055151.11707e−50|(0.0126−β)2+(0.1240−SV)
2
|
− 15000132.12083e−50|(0.0100−β)2+(0.1460−SV)

2
|+

−19539648.46192e−50|(0.0148−β)2+(0.1480−SV)
2
| + 19065043.38108e−50|(0.0138−β)2+(0.1480−SV)

2
|+

+229678117.86818e−50|(0.0110−β)2+(0.1260−SV)
2
| + 166603554.85264e−50|(0.0132−β)2+(0.1080−SV)

2
|+

−777217752.67323e−50|(0.0124−β)2+(0.1280−SV)
2
|
− 665634775.90997e−50|(0.0120−β)2+(0.1240−SV)

2
|+

−112930795.30634e−50|(0.0150−β)2+(0.1200−SV)
2
| + 67735452.91154e−50|(0.0110−β)2+(0.1380−SV)

2
|+

+3949404.8155e−50|(0.0102−β)2+(0.1020−SV)
2
| + 53414134.78681e−50|(0.0110−β)2+(0.1060−SV)

2
|

(30)

Computational experiments were carried out for three given network structures with different
hidden layer parameters and including sizes of 5, 10, and 15 neurons. Optimal hyperparameters
and relevant criteria (statistical measures) regarding the quality of the model were calculated in each
experiment. The obtained results are presented in Table 2, where Max error, MSE, MAE, MedAE,
and R2 denote the maximum error, mean squared error, mean absolute error, median absolute error,
and determination coefficient, respectively.

Table 2. Summary of model quality assessment for various hidden layer sizes.

Number of Neurons Max Error (%) MSE MAE MedAE R2

5 2.680 1.27 × 10−4 0.00940 0.00860 0.997300
10 0.310 1.39 × 10−6 0.00098 0.00093 0.999970
15 0.098 9.94 × 10−8 0.00024 0.00017 0.999998

For the functions above, the coefficient R2 was equal to 0.997300, 0.999970, and 0.999998,
respectively. In turn, the values of MSE were: 1.27× 10−4, 1.39× 10−6, and 9.94× 10−8, respectively.
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For comparison, in the case of polynomial approximation presented in [18], the MSE was equal to 1.66
and 0.31, while in the case of using this approximation in [19], the fitting coefficient was equal to 0.797.
Thus, it can easily be concluded that the fitting indexes obtained by the RBF are significantly better
than those obtained with applying the polynomial approximation. In the case of 15 neurons, the values
of UAERBF obtained by substitution of the parameters SV and β from Table 1 into the RBF15(SV, β)
were, in most cases, the same as the values of the UAE tabulated in this table.

Figure 4a–d shows the values of the UAE tabulated in Table 1 and an approximation of the UAE
using the RBF according to Equations (28)–(30).

 

Figure 4. Visualization of the approximation surfaces obtained (blue wireframe), where original input dataset values are marked in 

red: (a) original data, (b) surface mapped with 5 neurons, (c) surface mapped with 10 neurons, and (d) surface mapped with 15 

neurons. 

 

Figure 4. Visualization of the approximation surfaces obtained (blue wireframe), where original input
dataset values are marked in red: (a) Original data, (b) surface mapped with 5 neurons, (c) surface
mapped with 10 neurons, and (d) surface mapped with 15 neurons.

The abovementioned approximation approach was implemented using Python 3.6 [40] and
computed on a hardware configuration that included an Intel Core i5 M430, 2.27 GHz, 8 MB RAM and
the operating system Windows 7 to obtain the experimental results. The following Python-related
scientific packages were used in the implementation: NumPy, SciPy, iPython, Scikit-learn, Pandas,
and Matplotlib for visualization purposes [41–45].

The values of UAERBF determined based on RBF15(SV, β) for the values of parameters S̃V and β̃
selected from the ranges 〈SV−, SV+〉 and 〈β−, β+〉 are shown in Table 3.
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Table 3. Values of the UAERBF for the selected values of parameters S̃V and β̃.

β̃

0.0101 0.0117 0.0133 0.0149

~
SV

0.101 0.641 0.552 0.487 0.434
0.117 0.859 0.742 0.653 0.582
0.133 1.11 0.959 0.843 0.753
0.149 1.392 1.204 1.058 0.945

Let us assume that the uncertainties associated with the parameters S̃V and β̃ included in Table 3
are: u(S̃V) = 0.001 and u(β̃) = 0.0001, respectively. In this case, according to Equation (23), we have
S̃V

u = 0.150, S̃V
l = 0.100, β̃u = 0.0150, and β̃l = 0.0100. The conditions given by Equation (24) are

therefore met. Hence, we can use the MC method based on the Wichmann–Hill pseudorandom number
generator to determine the parameters S̃V

max and β̃max, which produce the UAERBF(max). For p = 0.95,
the minimum number M of MC trials equal to 2× 105, obtained based on Equations (25), was applied
for the calculations below.

The results of the MC simulation, tabulated in Table 4, are shown in the following order:
UAERBF(max), S̃V

max
± u(S̃V

max), β̃max
± u(β̃max), and the number m of the corresponding MC trial.

Table 4. Results of MC simulation.

β̃±u(β̃)

0.01010±0.00001 0.01170±0.00001 0.01330±0.00001 0.01490±0.00001

~
SV±u(

~
SV)

0.1010±0.0001

0.643
1011·10−4

± 3·10−9

1009·10−5
± 4·10−11

133, 864

0.554
1010·10−4

± 6·10−9

1169·10−5
± 5·10−11

95, 693

0.488
1011·10−4

± 7·10−9

1329·10−5
± 8·10−11

77, 444

0.435
1012·10−4

± 2·10−9

1489·10−5
± 3·10−11

47, 515

0.1170±0.0001

0.862
1171·10−4

± 9·10−9

1009·10−5
± 2·10−11

17, 202

0.744
1171·10−4

± 7·10−9

1169·10−5
± 3·10−11

75, 560

0.654
1171·10−4

± 6·10−9

1329·10−5
± 3·10−11

23, 843

0.584
1171·10−4

± 3·10−9

1489·10−5
± 3·10−11

46, 042

0.1330±0.0001

1.110
1131·10−4

± 2·10−9

1009·10−5
± 5·10−11

166, 502

0.961
1331·10−4

± 3·10−9

1169·10−5
± 7·10−11

194, 645

0.845
1331·10−4

± 1·10−9

1329·10−5
± 4·10−11

70, 163

0.755
1331·10−4

± 3·10−9

1329·10−5
± 4·10−11

175, 809

0.1490±0.0001

1.401
1491·10−4

± 3·10−9

1009·10−5
± 6·10−11

181, 360

1.210
1491·10−4

± 2·10−9

1169·10−5
± 5·10−11

121, 431

1.062
1491·10−4

± 3·10−9

1329·10−5
± 8·10−11

76, 186

0.947
1491·10−4

± 4·10−9

1489·10−5
± 2·10−11

94, 832

Based on the obtained results, it can be easily concluded that, in most cases, the values of parameters
S̃V

max and β̃max were contained in the ranges 〈SV−, SV+〉 and 〈β−, β+〉. It confirms the advisability
of using the MC method to determine them. This is the only correct way to accurately determine
the parameters of a voltage-mode accelerometer, which produce the UAERBF(max). When assuming
the variability of all three parameters of the accelerometer, the functions of three variables are
obtained, similar to those presented by Equations (28). When the values of parameters with associated
uncertainties are obtained based on the WLS method, then the values of the parameters S̃V

max, f̃0max,
and β̃max and the value of UAERBF(max) are determined using the MC method in an analogous way to
that above.

8. Conclusions

This paper presents the procedure for determining the RBF based on the numerical values of the
UAE calculated for a voltage-mode accelerometer as an example. These UAEs were determined for
the both the assumed-in-advance ranges of variability of the parameters of the accelerometer model
and the quantization steps of these parameters. When the RBF is obtained in this way, we can easily
and quickly calculate the UAE for any values of the parameters of an accelerometer model from the
ranges above. The error obtained in this way is denoted by UAERBF. The above facility results from



Sensors 2019, 19, 4154 13 of 15

the fact that it is not always necessary to use the algorithm dedicated to determinining the UAE and
the related necessity of determining the cut-off frequency of the standard applied as a reference for
calculating the error.

The paper also discussed in detail the use of the MC method to determine the UAE (such error
is denoted by UAERBF(max)) when considering the uncertainties associated with the parameters
of an accelerometer model. To ensure the correct realization of the procedures for modeling
a voltage-mode accelerometer by applying the parametric identification, such uncertainties should
always be determined. The MC method is based on the previously determined RBFs for such
ranges of change in the parameters of the accelerometer model, which contain all parameters for the
accelerometer considered in a particular case. It is also important to underline that the parameters of
such accelerometer, in the case of their decrease or increase by the values of the uncertainties associated
with them, do not go beyond the lower and upper limits of the parameters for which the RBF was
earlier determined.

The solutions presented in this paper regarding the determination of the RBF using an RBF-NN
for an assumed number of radial neurons and the application of the MC method for determining the
UAERBF(max) are the first solutions in the subject of measurement traceability. Based on the results
obtained for the solutions above, in the case of 15 radial neurons, it can be seen that the statistical ratios
regarding the uncertainty of approximation of the values of UAE using the RBF are much higher than
those obtained using the polynomial approximation presented in [18] and [19]. The obtained values of
these ratios also confirm that the number of neurons equal to 15 is optimal in terms of the uncertainty
of an approximation of the UAE using the RBF.

The RBFs for the assumed range of variability of two accelerometer parameters were determined
in this paper. This assumption was required to limit the number of calculation results intended for the
presentation here. However, based on the displayed procedures, the RBF can be easily determined for
the assumed ranges of variability of all three parameters of the accelerometer model.

Based on the obtained low uncertainty of the approximation for 15 neurons, it can be concluded
that the RBFs determined for such a number of neurons can be successfully applied for the mutual
comparison of the UAERBF(max) obtained for different types of accelerometers. It should be kept in
mind, however, that the compared accelerometers should have the same frequency bandwidth of
operation and that the parameters associated with their models must be within the ranges of parameter
changes for which the RBF was determined.
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