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Targeted RNA sequencing (CaptureSeq) uses oligonucleotide probes to capture RNAs for sequencing, providing enriched

read coverage, accuratemeasurement of gene expression, and quantitative expression data.We applied CaptureSeq to refine

transcript annotations in the current murine GRCm38 assembly. More than 23,000 regions corresponding to putative or

annotated long noncoding RNAs (lncRNAs) and 154,281 known splicing junction sites were selected for targeted sequencing

across five mouse tissues and three brain subregions. The results illustrate that the mouse transcriptome is considerably

more complex than previously thought. We assemble more complete transcript isoforms than GENCODE, expand tran-

script boundaries, and connect interspersed islands of mapped reads. We describe a novel filtering pipeline that identifies

previously unannotated but high-quality transcript isoforms. In this set, 911 GENCODE neighboring genes are condensed

into 400 expanded gene models. Additionally, 594 GENCODE lncRNAs acquire an open reading frame (ORF) when

their structure is extended with CaptureSeq. Finally, we validate our observations using current FANTOM and Mouse

ENCODE resources.

[Supplemental material is available for this article.]

Advances in sequencing technology have permitted rapid high-
throughput sequencing of cDNA and the discovery of novel genes
and transcript isoforms. This has also fostered the rapid accumula-
tion of annotated long noncoding RNAs (lncRNAs) (Bussotti et al.
2013) and further recognition that the vast majority of genes ex-
press alternative isoforms (Katz et al. 2015). Current estimates of
human lncRNA loci range from 58,648 from a large compendium
of RNA-seq data sets (Iyer et al. 2015) to 15,900 lncRNA loci
(27,670 transcripts) in the more conservative GENCODE catalog
(Harrow et al. 2012). The FANTOM3 Consortium identified
34,040 mouse cDNAs lacking coding capability (The FANTOM
Consortium et al. 2005; Maeda et al. 2006), with only 6951
lncRNA loci (9962 transcripts) currently annotated in GENCODE
(M4). This number discrepancy suggests a pressing need to in-
crease and improvemouse gene annotations tomake themcompa-
rable to those that exist for human.

LncRNAs are commonly defined as transcripts longer than
200 bases lacking the potential to be translated into proteins
(Derrien et al. 2012). They exhibit a wide range of lengths. For ex-
ample, XIST has a 19-kb isoform in human (Pontier and Gribnau
2011), whereas NRON (Willingham et al. 2005) is just over 600

nt. They characteristically exhibit low expression (mostly 0.1–
0.001 fragments per kilobase of transcript per million mapped
reads [FPKM] in human), considerably below the protein-coding
expression range (0.1–10 FPKMs) (Derrien et al. 2012). Recently,
there has been increasing evidence that lncRNAs serve crucial bio-
logical roles (Mattick 2009). Examples include organism develop-
ment (Amaral et al. 2009; Mattick 2011), imprinting (Zhang
et al. 2014), epigenetic control (Nakagawa and Kageyama 2014),
X inactivation (Froberg et al. 2013), and cancer etiology (Yang
et al. 2014).

The discovery of functional but rare RNAs is limited by the
sensitivity of sequencing methods to low-abundance transcripts
and may be improved by depletion of ribosomal RNA or protein-
coding transcripts. Previous work (Jiang et al. 2011) showed that
43% of sequencing reads aligned to the 1.5% most common tran-
scripts, whereas only 1% of reads mapped to the 44% least abun-
dant transcripts. This low depth of coverage inhibits current ab
initio or de novo assemblers from identifying accurate transcript
models (Steijger et al. 2013), hampering evolutionary conserva-
tion analysis, transcript quantification, and differential expression
analyses. Additionally, lncRNAs typically exhibit highly tissue- or
condition-specific expression (Cabili et al. 2011; Derrien et al.
2012). As a consequence, the vast majority of lncRNAs can remain
undetected if samples are not enriched for specific cell types.
Hence, despite sequencing enabling identification of poorly
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expressed genes, the extent and complexity of higher eukaryotic
transcription remains elusive. Our motivation is to reliably uncov-
er the fraction of the genome that is expressed, the complexity of
this expression, and to better utilize this information for lncRNA
annotation (Mattick and Makunin 2006; Clark et al. 2011; Kellis
et al. 2014).

Together with the identification of thousands of novel genes,
sequencing has been readily utilized in the study of alternative
splicing (Bryant et al. 2012; Merkin et al. 2012). Alternative splic-
ing is a mechanism in which a single gene can produce different
transcript isoforms by combining together different exons. This
is an essential regulatory process.Many splicing factors display em-
bryonic lethality when knocked out, and genomic aberrations that
alter splicing are associated with a plethora of diseases (Tazi et al.
2009). In transcript model reconstructions, e.g., using Cufflinks,
Trinity, or StringTie (Trapnell et al. 2010; Grabherr et al. 2011;
Pertea et al. 2015), isoform reconstruction is driven by sequence
reads that cross exon–exon splicing junctions. Recent work
(Pervouchine et al. 2015) suggests that when analyzing Mouse
ENCODE RNA-seq data, it is possible to identify up to 200,000
mouse splice junctions unreported by GENCODE. This discrep-
ancy demonstrates that many exons and splice isoforms are miss-
ing from current annotations and suggests further transcriptome
complexity remains to be detected. If a splice junction is rare,
then the union of two exons is likely to be poorly supported. In
this scenario, most assemblers fail to correctly call the junction,
leaving two exons as independent units. This problem is com-
pounded by the fact that monoexonic transcripts are then often
discarded (Denoeud et al. 2008; Cabili et al. 2011) by de novo tran-
script detection.

Many of these issues can be addressed using targeted RNA se-
quencing (CaptureSeq). CaptureSeq utilizes magnetic bead-linked
oligonucleotide probes to dramatically enhance the abundance
of selected transcripts. Targeted cDNAs hybridize to the probes fa-
cilitating the purification of the RNA of interest prior to conven-
tional RNA sequencing (Mercer et al. 2011). Previously, we used
the CaptureSeq strategy to enrich and sequence targeted fractions
of the human transcriptome (Clark et al. 2015). This allowed
the discovery of novel transcripts, expressed beneath coverage
restrictions usually imposed by RNA-seq and the joining of previ-
ously fragmented annotations. In human leukemia cell lines
(K562), 42.1% of the transcriptome was expressed below 0.0366
attomole/µL and was better quantified by CaptureSeq (Clark
et al. 2015). This fraction of the transcriptome was enriched in
cancer and other disease associated loci (Clark et al. 2015). Given
the advantages of CaptureSeq to characterize and quantitate poor-
ly annotated, lowly expressed and high tissue-specific human
lncRNAs (Mercer et al. 2011; Clark et al. 2015), we applied this
method to the much less annotated mouse transcriptome.

We prepared a CaptureSeq design with 190,689 probes com-
prising 28,228 known and predicted mouse lncRNAs annotations.
Additionally, we created a secondCaptureSeq designwith 154,281
probes designed to target annotated splice junctions. We used
these two probe designs to profile transcriptome complexity in
five mouse tissues (including three brain subregions), revealing
bothnovel lncRNAand coding transcripts and simultaneously cor-
recting previous annotations.

Results

The two CaptureSeq probe designs were used to perform targeted
sequencing of the splice junctions and lncRNA loci of the mouse

genome. The lncRNA design was generated considering a combi-
nation of annotated and predicted loci (Methods). This data set
spanned 28,228 transcripts, an increase of ∼2.8-fold with respect
to lncRNAs annotated in GENCODE (M4). Transcript coordinates
and an accompanying annotation table of targeted lncRNAs are
provided (Supplemental Data S1, S2, respectively).We used probes
designed to perform targeted sequencing in five mouse tissues:
brain, heart, kidney, liver, and testis. Typically lncRNAs are highly
tissue specific and enriched in brain and testes (Cabili et al. 2011).
Furthermore, distinct neuronal populations have characteristic
lncRNA expression landscapes (Kadakkuzha et al. 2015). To better
represent the expression extent of brain lncRNAs, we included
in our experimental design three additional brain subregions:
cerebellum, cortex, and olfactory bulb. Starting from a total of
576,916,753 read pairs, 330,138,368 were successfully aligned to
the mouse genome. Principal-component analysis (PCA) and
clustering analyses based on expression levels and correlation
correctly recapitulated the expected sample-to-sample relation-
ships (Supplemental Figs S1, S2). In samples in which we per-
formed targeted sequencing of splice sites, we measured a three-
to sixfold increase in reads crossing splice junctions as compared
to the other samples (from ∼10% to ∼60% junction spanning
reads) (Supplemental Fig. S3A).Wemeasured a similar enrichment
when compared to standard RNA-seq from Mouse ENCODE
(Supplemental Fig. S3B).

The mapped reads together with GENCODE (M4) annota-
tions were used to guide assembly of the transcriptome.
Annotations of both lncRNA and splice junction CaptureSeq ex-
periments were merged together to generate a comprehensive as-
sembly of 59,206 genes encoding 137,562 transcripts. The
resulting data set incorporated the full GENCODE (M4) annota-
tions together with the genes defined in the CaptureSeq experi-
ments. As the CaptureSeq design included monoexonic ESTs and
cDNAs (Methods) derived from sense intronic regions of the ge-
nome, this comprehensive assembly includes a higher fraction of
unspliced transcripts with respect to GENCODE (24.4% versus
17.0%). When considering the spliced component only, the aver-
age number of isoforms per gene was comparable with GENCODE
annotations (3.8 versus 3.2, respectively). However, the average
number of exons per transcript was higher than in GENCODE
annotations (9.8 versus 7.5, respectively; Wilcoxon P-value
<2.2 × 10−16) (Supplemental Fig. S4). This indicates that newly
discovered exons are predominantly assigned to already character-
ized genes and do not constitute independent monoexonic iso-
forms. The average transcript length increased from 1909 nt in
GENCODE to 2759 nt, in agreement with the increased exons de-
tected (Supplemental Fig. S4). The phastCons (Siepel 2005) conser-
vation scores decreased from an average of 258.7 in GENCODE to
234.9 (Wilcoxon P-value <2.2 × 10−16), suggesting that many of
the newly discovered isoforms are likely to be recently evolved or
less constrained than annotated genes. This is in agreement with
previous reports that low abundance genes tend to have less evolu-
tionary constraint (Subramanian and Kumar 2004; Gout et al.
2010). This comprehensive unfiltered transcriptome assembly is
freely available to the community as Supplemental Data S3.

We next sought to curate a high quality selection of novel
transcripts (HQ set) by applying consecutive filtering steps to re-
move any mapping and assembly artifacts and to exclude previ-
ously annotated isoforms (Fig. 1).

Initially, we excluded transcriptsmapping to unplacedmouse
contigs (Methods). Then, we selected only those transcripts whose
exons overlap at least one CaptureSeq probe (either in the lncRNA
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or splice junction design). Transcripts overlapping solely to
control probes were discarded. Next, we discarded any poorly sup-
ported transcript isoforms. We utilized the known quantities
of RNA spiked-in controls to set a threshold below which we con-
sider the expression readings and transcript assemblies likely unre-
liable. The spike-in controls used were External RNA Controls
Consortium (ERCC) RNAs (Baker et al. 2005). These consist of a
set of unlabeled, polyadenylated transcripts of differing sizes and
concentrations in order to measure against defined performance
criteria. These controls have become widely accepted for normali-
zation and quantitation of RNA samples.

Previous reports demonstrated that transcript models with at
least eightfold sequence coverage can be confidently assembled
(Jiang et al. 2011). Thus, for each sample, we estimated the known
concentration and the FPKM for which the ERCC controls reach
a lower limit of 8× sequence coverage (Supplemental Figs. S5,
S6). Transcripts consistently expressed below the established sam-
ple-specific FPKM thresholds were discarded. We next removed all
transcripts for which Cufflinks/Cuffmerge failed to predict the
transcript orientation. This is mostly the case for monoexonic
and/or weakly supported transcripts. We then filtered out tran-
scripts located in highly repetitive or low complexity areas
(Methods). Although the vast majority of the transcripts had a
low content of repeats and low complexity regions, we neverthe-
less discarded all transcripts that included >90% masked nucleo-
tides (Supplemental Fig. S7B). As the RNA-seq library preparation
protocol does not reliably measure small RNA species (Ozsolak
and Milos 2011), we removed all isoforms shorter than 200 nt
(Supplemental Fig. S7A).

DNA contamination is an important consideration when de-
tecting transcripts from sequencing data. Even with DNase treat-
ment, it is possible for such contamination to produce short
spurious monoexonic transcripts. Hence, we applied a filter to
detect the presence of DNA contamination artifacts in our data.
We discarded monoexonic intergenic transcripts without at least
80% of their reads mapping on the annotated strand in at least
one sample. This filter affected only 45 transcripts, suggesting
that most monoexonic transcripts in the set are not in fact
DNA contamination (Supplemental Fig. S8). We then removed
transcripts already annotated in GENCODE (M4) (Methods).
Similarly, we tried to prevent the inclusion in the data set of mat-
uration leftovers of previous genes. We discarded the monoexonic
transcripts embedded into introns and expressed in the same ori-
entation of the host genes without independent supporting evi-
dence for transcriptional initiation (either overlap with FANTOM
Cap analysis of gene expression [CAGE] tags) (The FANTOM
Consortium and the RIKEN PMI and CLST [DGT] 2014) or ex-
pressed enhancers (Methods; Villar et al. 2015).

Next, we used gffread tool of the Cufflinks package to verify
annotations and discard multiexon transcripts that have any in-
tron with a noncanonical splice site (i.e., not GT-AG, GC-AG, or

AT-AC). Finally, we collapsed highly redundant transcript iso-
forms differing just by a few nucleotides (Methods). A summary
of the number of genes and transcripts discarded and retained at
each filtering step is shown (Table 1).

The final HQ assembly comprises 17,885 genes and 27,183
novel transcripts not present in GENCODE. These annotations in-
clude both novel transcripts from known GENCODE genes and
novel loci (Supplemental Fig. S9). In this set, 18,597 transcripts
are spliced, whereas the remaining 8586 are expressed as single ex-
ons. This filtered set of high quality novel transcripts is provided
(Supplemental Data S4) together with relevant genomic and ex-
pression features (Supplemental Data S5). Next, we sought to es-
tablish any protein-coding potential of the HQ transcript set
utilizing the CPAT algorithm for the detection of coding potential
(Supplemental Fig. S10A; Wang et al. 2013). These results suggest
that 11,756 transcripts have at least some significant coding
potential, and 15,427 are true lncRNAs. This prediction is also sup-
ported by BLASTx (Altschul et al. 1990) and rpstBlastN (Marchler-
Bauer et al. 2002) analyses (Supplemental Fig. S10B). The coordi-
nates of coding and noncoding transcripts, respectively, are pro-
vided (Supplemental Data S6, S7).

The population of HQ exons originating from spliced tran-
scripts and not overlapping GENCODE (M4) exon annotations
in any strand comprises both coding and noncoding elements
(Methods; Fig. 2A,B; Supplemental Fig. S11). These exons display
three distinctive conservation patterns (Fig. 2C). The first group

Figure 1. Filtering pipeline flowchart. The input is the comprehensive annotation returned by Cuffmerge. Then, we apply the series of 11 filters described
in the text. The output is the high quality set (HQ).

Table 1. Number of genes and transcripts remaining after each fil-
tering step of the pipeline shown in Figure 1 to generate the HQ set

Group Genes Transcripts
Filtered

transcripts

Cuffmerge set 59,206 137,562 –

Not mapping to an unplaced
contig

59,181 137,528 34

Overlapping CaptureSeq probes 39,809 105,912 31,616
Sample-specific FPKM filter 30,726 52,475 53,437
Stranded 30,695 52,444 31
Masking coverage below 90 29,902 51,588 856
Transcripts longer than 200 bp 29,773 51,425 163
Not DNA contamination 29,740 51,380 45
Not annotated in GENCODE 24,541 34,916 16,464
Not maturation leftover 18,240 28,528 6388
Canonically spliced 17,885 27,704 824
Nonredundant transcript 17,885 27,183 521
Not overlapping GENCODE

exons
9201 10,475 –

Overlapping GENCODE exons 8684 16,708 –

The number of entries overlapping GENCODE (M4) exons in the same
orientation (overlapping GENCODE exons) and the number of entries
corresponding to intergenic or intronic loci are also shown (not overlap-
ping GENCODE exons).

Refined mouse transcript annotation
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(comprising 657 exons) shows marked
evolutionary conservation compared
with their surrounding genomic context
and a median ORF coverage 38.2%
(Methods). The second group includes
1974 exons with moderate conservation
and lowerORF content (median coverage
24.1%). Interestingly, the last group
includes 10,259 exons overlapping
mouse-specific regions and repeats (Sup-
plemental Fig. S12). This group is likely
to be enriched in nonfunctional ele-
ments or RNAs for which their sequence
is not necessary to exert their function.
Interestingly, we also observed a conser-
vation of the splice sites for the exons
of the first two groups, consistent with
what was previously described (Nitsche
et al. 2015).

The HQ set was then divided into
two groups to separate transcripts not
overlapping any GENCODE exons from
those representing alternative isoforms
of known genes. Our capture arrays
were designed against known or predict-
ed gene loci, and so we would not expect
to identify a large number of novel loci.
Nevertheless, we can confirm the expres-
sion of 9201 loci previously unreported
in GENCODE (M4), mostly correspond-
ing to intergenic (53.9%) and intronic
(24.8%) regions. In total, 1339 intergenic
loci are also absent from additional com-
parison data sets (Supplemental Table
S1). Similarly to what was already shown
(Cabili et al. 2011; Derrien et al. 2012;
Clark et al. 2015), the set of spliced inter-
genic noncoding RNAs (61 genes, 70
transcripts not found in GENCODE or
the other catalogs) have a pronounced
tissue specificity expression pattern
(Supplemental Fig. S13). This fraction of
intronic transcripts is mainly caused by
probes designed to target GenBank
(Benson et al. 2014) mRNA regions
(Methods).

We found 8684 genes (16,708 tran-
scripts) overlapping known GENCODE
exons on the same strand, comprising
refined and expanded annotations
achieved using CaptureSeq. These in-
clude totally novel unreported exons
(8807), different isoforms of known ex-
ons (8981) and novel splice junctions
(11,933). The compendium originating
from the combination of these 16,708
transcripts and GENCODE (M4) is signif-
icantly more complex than GENCODE
alone (Fig. 3; Supplemental Fig. S14).
Overall both coding and noncoding
genes show an increased number of ex-
ons or isoforms per gene (Fig. 3).

Figure 2. Evolutionary conservation of HQ spliced exons not overlapping previous exon annotations
on either strand. 5′ (A) and 3′ (B) ends of the exons. The vertical axis shows themean phyloP conservation
score (Pollard et al. 2010), which measures the conservation of each single nucleotide independently of
its context. The shading indicates the standard error. Coding exons are shown in blue. The expectedORF
triplet pattern (Clark et al. 2015) is noticeable as a series of conservation peaks. Noncoding exons are
shown in green. For both coding and noncoding exons, conservation spikes are visible on the two first
nucleotides outside the exons, suggesting the presence of conserved splice donor/acceptors. Exons
are labeled as coding if the CPAT predicted ORF coverage is >70%. Exons are labeled as noncoding if
the CPAT predicted ORF coverage is <20%. Exons with ORF coverage between 20% and 70% are not
shown in A and B. In C, each row of the heatmap represents an exon plus 500 bp upstream of and down-
stream from the 5′ and the 3′ ends. Each exon is scaled to fit to a region of 1000 bp. Each row is divided
into bins of 1 bp. The color of each bin reflects the mean phyloP vertebrate conservation. The heatmap
shows a scale of colors saturating below 0.5 and above 2. Missing data are set to a score of 0. The three
divisions of the heatmap reflect the k-means clustering. The rows are sorted in descending order consid-
ering the mean value in each row. The bar on the right of the heatmap indicates the scale range. The pro-
file on top recapitulates the mean conservation score at the level of each bin.
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In this context, some of the HQ isoforms extend GENCODE
genes by adding alternative starts and ends. In total, 816 HQ tran-
scripts overlap one-to-one with GENCODE genes and their ex-
pression begins at least 400 nt upstream of the annotated start
(Methods). To independently validate alternative transcription
start sites, we analyzed Mouse ENCODE ChIP-seq profiles and
DNase I hypersensitivity (DHS) data on tissue samples matching
those considered in this work. A total of nine RNA polymerase II
and EP300 ChIP-seq data sets (Fig. 4A) along with five DHS data
sets (Supplemental Fig. S15A) were used (Methods). In all samples
considered, the results show a correspondence between new gene
starts and read density peaks. Since theHQ gene set resulted from a
combination of transcripts expressed in different tissues, some of
the HQ transcripts will not be expressed in each tissue utilized
for validation. As expected, when each data set was reanalyzed
with just the transcripts expressed in that tissue, the peaks became
more pronounced (Fig. 4A; Supplemental Fig. S15A). Similarly, we
repeated the analysis by selecting the tissue in which each gene
reached its maximal expression level and then asked whether
the gene has ChIP-seq/DHS support in that tissue. The results
show a clearer overall picture, with a marked peak corresponding
to the novel transcriptional start sites (Fig. 4B; Supplemental Fig.
S15B). As a complementary approach, we used FANTOM cage
peaks to validate new TSSs. For this analysis, we considered a set

of 16,752 nonredundant transcript start
sites mapping at least 400 nt away from
annotated GENCODE transcript starts.
In total, 4087 TSSs from this set are sup-
ported by at least one CAGE peak within
200 nt (Methods). We performed 1000
randomizations of the TSS coordinates
to the mouse genome to test the null hy-
pothesis that the CAGE peaks overlap
TSSs by chance. This result is highly sig-
nificant (empirical P-value <0.001)
(Methods; Supplemental Fig. S16).

The results also support the pres-
ence of 1080 HQ genes (matching the
same number of GENCODE genes), ter-
minating at least 400 nt downstream
from the annotated end. Interestingly,
for some cases, this increased sequence
coverage of lncRNAs and known junc-
tions allowed bridging between neigh-
boring genes, previously thought to be
independent units. We provide the 400
HQ genes that correspond to two or
more neighboring GENCODE genes in
the same orientation (Supplemental
Data S8). In 180 cases, the HQ genes
merged together adjoining protein-cod-
ing genes, and in 50 cases, the merged
genes belong to other GENCODE types,
including lncRNAs and transcribed
processed pseudogenes. One hundred
seventyHQ genesmerge together combi-
nations of coding and other GENCODE
types. One remarkable example is the
bridging of Grk4 to Htt, (G protein-cou-
pled receptor kinase 4 and huntingtin)
(Supplemental Fig. S14B). The splice
junction connecting the two genes is

supported by 14 and five reads, respectively, in olfactory bulb
and cortex (Supplemental Fig. S17). Although interesting, it would
be important for this finding to be validated with an orthogonal
approach, e.g., PCR or 5′ RACE.

The subset of 3253HQgenes enriched in brain is associated to
known protein-coding genes involved in the functioning and de-
velopment of the nervous system (Methods; Supplemental Fig.
S18). For instance, TCONS_ 00132850 and TCONS_00132849 are
brain-specific HQ transcripts divergently expressed from Tspan7.
The gene Tspan7 encodes for Tetraspanin 7, a transmembrane pro-
tein associated to X-linked mental retardation (Supplemental Fig.
S19A; Holinski-Feder et al. 1999; Zemni et al. 2000; Abidi et al.
2002; Maranduba et al. 2004). Another example is represented
by TCONS_00134637 and TCONS_00134636, a brain-specific HQ
transcript expressed on the promoter of the protocadherin gene
Pcdh11x in antisense orientation. Pcdh11x is crucial for the activity
of the central nervous system, and its mutation is linked to female
epilepsy and cognitive impairment (Supplemental Fig. S19B;
Dibbens et al. 2008).

The expanded HQ annotations led to an increase in the ORF
sizes of 594 known lncRNAs, allowing CPAT to reclassify a number
as protein coding. Thirty GENCODE lncRNAs without any sub-
stantial coding potential are now predicted to form 30 protein-
coding transcripts in the HQ transcript set (Fig. 5; Supplemental

Figure 3. GENCODE annotation expansion. The light gray box plots indicate GENCODE (M4) anno-
tations. The dark gray box plots indicate GENCODE genes combined with HQ genes. From left to right,
the first panel shows the number of exons per annotated GENCODE noncoding gene. The second panel
shows the number of exons per annotated GENCODE protein-coding gene. The third panel shows the
number of transcript isoforms per annotated GENCODE noncoding gene. The fourth panel shows the
number of transcript isoforms per annotated GENCODE protein-coding gene. All the comparisons are
statistically significant with a Wilcoxon P-value <0.05.

Refined mouse transcript annotation

Genome Research 709
www.genome.org

http://www.genome.org/lookup/suppl/doi:10.1101/gr.199760.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199760.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199760.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199760.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199760.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199760.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199760.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199760.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199760.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199760.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199760.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199760.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199760.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199760.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199760.115/-/DC1


Data S9). Similarly, the inclusion of exons can result in the
disruption of previous ORFs, thus supporting the lack of protein-
coding capability of the annotated lncRNA (965 cases) (Sup-
plemental Fig. S20). A summary of the relevant statistics of
genes and transcripts in the HQ set is shown (Supplemental
Table S2).

The overall conservation (phastCons) of the refined assembly
is lower than when compared to previous annotations (Wilcoxon
P-value 9.7 × 10−134) (Supplemental Fig. S21). This suggests that
with CaptureSeq, we have succeeded in identifying weakly ex-
pressed or fast evolving isoforms of GENCODE genes otherwise
undetected with standard RNA-seq and conservation approaches.
Similarly, the nucleotide sequence of the HQ intergenic monoex-
onic transcripts shows low levels of evolutionary conservation
(Supplemental Fig. S22).

Discussion

In this work, we generated and analyzed high coverage RNA se-
quencing of mouse lncRNAs and splice junctions via targeted
RNA sequencing. This approach has significantly improved on
previous gene annotations and further highlights the extraordi-
nary complexity of the transcriptional landscape in mouse.

We generated a comprehensive mouse lncRNA resource by
merging current annotations, homology predictions, and RNAs
lacking coding potential fromvarious sources.We designed probes
to target these lncRNA loci, trying to address the commonproblem
of poor sequencing coverage that can hamper reliable detection of
low abundance transcripts. Additionally, we designed probes to
cover annotated splice junctions with the aim of expanding and
improving the catalog of alternative splice sites for mouse.
To this end, we sequenced 16 RNA samples from five mouse
tissues and three brain subregions with external RNA spike con-

trols. These data together with GENCODE (M4) annotations
were used to generate a novel and comprehensive transcriptome
assembly.

The linear relationship between known concentrations of
RNA controls and measured quantities suggests that we have reli-
ablymeasured transcripts whose expression lies in a range between
0.06 and 117.19 attomole/µL. This remarkable sensitivity is due to
the use of CaptureSeq technology and has expanded considerably
the number of exons and isoforms associated to known genes
(Fig. 3). Additionally, we describe a comprehensive computational
pipeline, containing extra safeguards and filtering steps. This sys-
tem can detect previously unannotated transcripts and reduce
their number to a small high quality set suitable for further valida-
tion. Given the many artifacts still present in modern sequencing
and transcriptome assembly approaches, conservative filtering is
extremely important.

In the set of high-confidence transcripts, 20.4% of the newly
identified exons show evidence of negative selection and are more
highly conserved than the genomic context (clusters high and
moderate of Fig. 2C). This selective pressure is noticeable for
exons at 5′/3′ transcript extremities, suggesting conservation of
the splice acceptor and donor functions. As expected, new exons
containing ORFs tend to exhibit stronger purifying selection
(Supplemental Fig. S11). Surprisingly, the newly detected inter-
genic monoexonic transcripts are not as conserved as these novel
exons (Supplemental Fig. S22). Given their intergenic location, it is
unlikely these transcripts are degradation products of unknown
genes. The filtering pipeline also ruled out the possibility that
the monoexonic intergenic transcripts in the high-quality set rep-
resent DNA contamination, low complexity/repeat artifacts, or
short spurious read mappings. One possibility is that elements in
this set represent species-specific lncRNA or RNAs whose sequence
is not required for their function.

Figure 4. ChIP-seq support of the new gene starts. Same layout as in the profile of Figure 2C, but in this case, the bins are of 10 bp, the plots are centered
on the gene starts, and they show a surrounding area of ±1 kb. (A) The light gray curve represents the mean ChIP-seq support across all the HQ genes. The
dark gray curve represents the mean ChIP-seq support across just the HQ genes expressed in that specific tissue (FPKM >5). (B) The curve shows themedian
ChIP-seq support of the HQ genes in the tissue where they are the most highly expressed.
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WithCaptureSeq,we succeeded in the detectionof transcripts
with concentrations as lowas 0.02 attomole/µL (Supplemental Fig.
S5); deeper sequencing would still be needed to fully capture the
lowest end of the transcriptome expression range. For example,
the HQ transcript TCONS_00004285 improves on the annotation
ofGm42415byaddingnovel conserved exons (Fig. 5A). Yet this an-
notation is likely to be incomplete. The adjacent gene is the heavy
chain 14 of dynein (Dnah14, 17 exons), which is annotated in
GENCODE as representing just a fragment of a bigger dynein se-
quence for which there is insufficient evidence. We compared
the much longer human DNAH14 homolog (136 exons) with a
combination of mouse TCONS_00004285 and Dnah14 (Fig. 5B).
On one hand, this analysis shows that TCONS_00004285 aligns
with the human dynein and constitutes an additional fragment
of Dnah14. On the other hand, there is still a gap between the
two parts, suggesting that some exons are still missing.

Although the CaptureSeqmethodology represents a new par-
adigm for transcript annotation and detection, many challenges
still lie ahead. In particular, the problem of RNAs expressed in
very specific cell types or developmental stages remain difficult
to quantitate and characterize. However, we propose that other
model organism annotations could benefit greatly by the
CaptureSeq strategy as described herein and as shown previously
for human transcripts (Clark et al. 2015). These novel transcripts
together with revised and improved annotations can shed more
light onto the multifaceted transcriptional landscape of the mu-
rine genome and our understanding of transcriptional regulation
in general. For example, 1193 of these high-quality novel tran-
script models are associated with Ensembl genes linked to disease
(Yates et al. 2016). We believe the methods, approaches, data, and
annotations generated by this studywill be of significant benefit to
the mouse community.

Figure 5. UCSC Genome Browser (Kent et al. 2002) snapshot. (A) Example of a GENCODE lncRNA, whose matching HQ gene shows protein-coding
capability. From top to the bottom: the GENCODE (M4) annotations, lncRNA and splice junction CaptureSeq probes, the predicted ORF, all the assem-
bled transcripts, GenBank mRNAs, phyloP conservation, and RepeatMasker (Smit et al. 2013–2015) tracks. The “ORF Track” reports the longest ORF
predicted with Pinstripe (Gascoigne et al. 2012). “All assembled transcripts” highlights in gold the HQ transcript (TCONS_00004285) that adds
new exons to the known lncRNA. (B) Dot plot alignment of the human DNAH14 gene (x-axis) with a combination of mouse TCONS_00004285 and
Dnah14.
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Methods

LncRNA Capture design

Oligonucleotide-probe target regions were designed to capture all
mouse lncRNAs. Mouse lncRNAs were identified by updating
and extending the method outlined in Clark et al. (2012). Mouse
RNAs were obtained from the following sources: the UCSC mm9
mRNA track (alignments between GenBank RNAs and the ge-
nome), UCSC genes (predictions based on RefSeq, GenBank, and
the tRNA Genes track) (Kent et al. 2002), and RefSeq genes
(Pruitt et al. 2012) (downloaded April 10, 2012); also included
were lincRNAs identified in Belgard et al. (2011), transcripts over-
lappingnovel lincRNA loci identified inGuttman et al. (2010), and
transcripts overlapping lincRNA loci investigated by Guttman
et al. (2011).

In the initial classification, transcripts with <5% overlap with
protein-coding exons from RefSeq and UCSC genes and an ORF
less than 100 amino acids were putatively defined as noncoding.
Any transcripts of known lncRNAs in lncRNAdb (Amaral et al.
2011) were classified as noncoding. All transcripts >200 nt were se-
lected for further filtering. Further filtering steps involved the
following:

1. Any transcripts with >95% antisense overlap to a RefSeq coding
gene were removed (removes many “mirror” transcripts and 3′

UTR transcripts with an incorrectly determined strand).
2. All multimapping or split chromosome mapping RNAs were

removed.
3. Cuffcompare (Trapnell et al. 2010) was utilized to create a non-

redundant transcript set. Any transcripts classified as “s” or “p”
(if they were downstream from a RefSeq coding gene) were
removed.

4. The coding potential programs CPAT (Wang et al. 2013), CPC
(Kong et al. 2007), and PhyloCSF (Lin et al. 2011) were run to
classify transcripts as coding or noncoding. Using cutoffs of
CPAT: 0.44, CPC: 0, and PhyloCSF: 20, any transcript called
coding by two or more methods was removed. Since not all
transcripts have valid CPC and PhyloCSF scores, any transcript
with a CPAT score only, and which was above the cutoff, was
also removed.

5. Themost highly expressed putative lncRNAsweremanually ex-
amined, and any which appeared to be 3′ UTRs were removed.

6. Any transcripts present in lncRNAdb that were removed in
Steps 1–5 were reinstated.

In total 28,312 transcripts from 23,306 loci were classified as
lncRNAs and targeted by the CaptureSeq array (Supplemental
Data S1, S2, respectively). Of these, only 28,228 transcripts were
successfully converted to the GRCm38 primary assembly using
liftOver (Kuhn et al. 2013) and were used for all analysis. As part
of the array design, monoexonic lncRNA regions overlapping or
within 50 nt of a coding exon in the same orientation were
trimmed to reduce off-target capture of coding genes. A number
of controls were added to the array, including 1278 sequences tar-
geting random lncRNA intronic regions (filtered to ensure targeted
introns were >300 nt in length, target sequences did not overlap
any known exons and were not >50% repetitive); a 100-kb gene
desert region; 2000 promoter controls (500-nt randomly picked
regions located 0.5–1 kb upstream of lncRNA start sites with no ex-
onic overlap andwhichwere not >50% repetitive); a 100-kb region
of the Escherichia coli K12 genomic sequence; and the ERCC RNA
Spike-In Control set (Life Technologies). Also present on the array
were 6,438 putative mouse lncRNA regions with homology to hu-
man lncRNAs identified as previously described (Derrien et al.
2012) and not overlapping known RefSeq or Ensembl V64 coding

exons. In total, the design targeted ∼53.1 Mb of the mouse
MGSCv37 genome.

Probe selection and synthesis was performed by Roche/
Nimblegen and allowed a maximum of five matches to the ge-
nome. The oligonucleotide capture probes covered 85.7% of target
regions directly, with an estimated 91.3% of target regions able to
be captured. Capture design probe coordinates were converted
fromMGSCv37 to GRCm38 assembly using liftOver and provided
in Supplemental Data S10.

Splice junction Capture design

The splice junction design aimed to capture sequence reads that
traversed splice junctions.We initially retrieved allmouse gene an-
notations from the mouse genome (RefSeq genes, UCSC Genome
Browser, mm9). We then retrieved coordinates for the 100-nt re-
gion upstream of the annotated 5′ splice site, or 100 nt down-
stream from the 3′ splice site. We then estimated the relative
abundance of transcription within these regions using signal
tracks (.wig) retrieved from the ENCODE/LICR RNA-seq data sets
(Cerebellum, Cortex, Whole Brain). We ranked regions according
to estimated abundance and removed the most abundant 15%.
This step was performed to improve the enrichment potential of
the design. Regions passing this stepwere considered target regions
for the array, and overlapping target regions (from exons shorter
than 200 nt) were merged. Highly repetitive sequences were re-
moved from the final design according to NimbleDesign Sequence
Capture Developer Guidelines (http://www.nimblegen.com/
products/lit/06465528001_NG_SeqCap_Developer_Guidelines_
v1p0.pdf). The genome coordinates of the probes were passed to
GRCm38 assembly using liftOver (Kuhn et al. 2013). In total,
probes overlapped the splice junctions in 19,201 genes, encom-
passing a total footprint of ∼26.5 Mb. The probe coordinates in
GRCm38 are provided in Supplemental Data S11.

Sample preparation and Capture sequencing

Mouse tissue samples were obtained from adult C57BL/6J mice
(AEC Approval Number IMB/030/08/ARC). Mouse brain samples
were dissected in ice cold PBS, snap frozen in liquid nitrogen,
and RNA extracted with TRIzol (Life Technologies). Nonbrain
organs were removed and placed in ice cold PBS, any contaminat-
ing tissue was removed, and the required organ cut into pieces <30
mg and placed in RNAlater (Qiagen). RNA was extracted using the
TissueRuptor and RNeasy Mini purification kit (Qiagen). Purity of
all mouse samples was validated by Nanodrop (Thermo Scientific).
RNAwas DNase treated with Turbo DNase (Life Technologies), pu-
rified, and confirmed DNA-free by PCR for gDNA as described in
Mercer et al. (2014). Intact RNA was confirmed by Agilent 2100
Bioanalyzer (Agilent Technologies). Ribo-Zero (Epicentre) rRNA
depletion was performed on 10 µg of each sample. For nonbrain
samples, 5 µg of purified RNA from two organ pieces from the
samemousewas ribodepleted and then pooled to ensure good cov-
erage across the tissue. Efficient ribodepletion was confirmed by a
Bioanalyzer (Agilent 2100) Pico chip.

Capture sequencing was performed as previously described
(Mercer et al. 2015) combining the NimbleGen SeqCap EZ
Library SR User’s Guide V3.0 and the NimbleGen Arrays User’s
Guide: Sequence Capture Array Delivery v3.2 with the following
specifications. RNA sequencing libraries were created using the
TruSeq Stranded mRNA Sample Preparation Kit (Illumina). All
samples contained ERCC spike-in mix no1 or no2 at a 1/100 dilu-
tion. Test libraries to estimate yield were amplified for 15 cycles as
per “Enrich DNA fragments” protocol. Ten cycles of precapture
LMPCR was performed for all samples except brain and liver (11
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cycles). Capture hybridizations were performed as a four-plex with
250 ng of brain or nonbrain libraries pooled together. Post-LMPCR
was performed for 17 (nonbrain samples) or 16 (brain samples)
cycles, respectively. Quantitative PCR confirmed enrichment of
target sequences and depletion of off-target sequences
(Supplemental Fig. S23). The primer sequences are available in
Supplemental Data S12. The libraries were sequenced on an
Illumina HiSeq machine (2 × 102 bp paired-end reads) and pro-
duced on average 36,057 million pairs of reads (mean fragment
length 144.066; mean standard deviation 37.29).

Read mapping and transcript assembly

Weused TopHat2, (version 2.0.13; –no-coverage-search; –b2-sensi-
tive) (Kim et al. 2013) to align reads against the mouse genome
(GRCm38) and a prebuilt transcriptome index generated using
GENCODE annotations (M4, released December 3, 2014). We
used Cufflinks (v2.2.1) to perform a Reference Annotation Based
Transcript assembly (RABT) of reads mapped in each of the
16 CaptureSeq samples. We then merged the individual transcrip-
tome assemblies into a comprehensive assembly using Cuffmerge
(v2.2.1). The resulting assembly comprised 137,562 transcript and
59,206 gene models. We then filtered this assembly to discard
transcripts on unplaced contigs. Although the unplaced contigs
are valid sequences and the capture design includes probes map-
ping to them, we excluded these transcripts from the HQ set to al-
low the comparison with publicly available resources that do not
make use of unplaced contigs.

Sample-to-sample distance

Gene expression count quantitation was performed using HTSeq
count (v0.6.1) (Anders et al. 2015) on genes across the 16 samples.
These count data were normalized using DESeq2 (v1.6.3) (Love
et al. 2014), and Euclidean distances between the sampleswere cal-
culated on these regularized log-transformed counts. The distance
matrix was used to compute sample-to-sample distances. The
BioConductor package FactoMineR (v1.29) was used to perform
principal component analysis on this matrix.

Repeat and low complexity filtering

To generate the HQ set, we removed transcripts with a high con-
tent of repeats or low complexity elements. Such regions were
defined according to RepeatMasker (Smit et al. 2013–2015)masked
nucleotides of Ensembl version 74 assembly. Transcripts showing
>90% masked nucleotides were removed.

Filtering of previously annotated transcripts

To generate the HQ set, we removed transcripts already annotated
in GENCODE (M4). To identify such transcripts, we utilized the
BEDTools2 intersect (Quinlan and Hall 2010) (v2.22.1) tool with
options “-s –split –f 0.99.”

Filtering of redundant transcripts

To generate the HQ set, we removed redundant transcript iso-
forms. The Jaccard distance was used to assess isoform dissimilar-
ity, comparing the union and the intersection of the transcript
coordinates. For each gene, we removed all the isoforms with a
Jaccard distance score >0.98 as defined by BEDTools2 (v2.22.1)
(Quinlan and Hall 2010).

FPKM threshold estimate

Transcript assemblies with less than eightfold coverage can be con-
sidered unreliable and discarded (Jiang et al. 2011). To estimate an
FPKM threshold corresponding to eightfold coverage, we calculat-
ed a second-degree polynomial fit between mean ERCC coverage
[log2(read counts × read length/ERCC size)] and known concentra-
tions (log2) for each sample; based on this, we calculated the
concentration for which the fit value equals 8 (Supplemental Fig.
S4). We then computed a third-degree polynomial fit between
known ERCC concentrations and their FPKM values calculated
by Cufflinks; based on this fit, we calculated the fitted FPKM
value at the concentration for which the coverage is eightfold
(Supplemental Fig. S5).

The polynomial fits were calculated in R (version 3.1.2) using
the lm (linear model) function. Based on the known concentra-
tions of ERCC spike-ins, we are able to provide an approximate es-
timate of the RNA copy number at which eightfold coverage is
reached. In liver, an eightfold coverage is reached at 0.02 amol/
µL,which taking into account a total volumeof 24µL, corresponds
to 2.89 × 105molecules (0.02 amol/µL × 24 µL = 0.48 amol = 0.48 ×
10−18mol; 0.48 × 10−18mol × 6.022 × 1023molecules/mol = 2.89 ×
105 molecules). Considering that the starting amount of RNA is 10
µg and assuming an RNA extraction yield for mouse liver of 5 µg/
mg of tissue (Qiagen RNeasy Mini Handbook), we can estimate
that the 10 µg of RNA used for library preparation were extracted
from 2 mg of tissue (10 µg/5 µg/mg = 2 mg of liver tissue).
Assuming an hepatocellularity number for mouse liver of 1.35 ×
108 cells/g tissue (Sohlenius-Sternbeck 2006), we can estimate
that 2 mg of tissue correspond to 2.7 × 105 liver cells (0.002 g ×
1.35 × 108 cells/g = 2.7 × 105 cells). Therefore, it can also be estimat-
ed that 8× sequencing coverage is reached at a concentration of
one copy of RNA per cell (2.89 × 105 molecules/2.7 × 105 cells =
1.07 molecules/cell).

Splicing maturation degradation product filtering

To prevent the inclusion in the HQ set of possible degradation
products of splicing events, we removed sense intronic monoex-
onic transcripts lacking 5′ CAGE support and with no evidence
of being expressed enhancers. Transcripts whose transcription ini-
tiation did not match any permissive FANTOM CAGE peak (The
FANTOM Consortium and the RIKEN PMI and CLST [DGT]
2014) within 100 bp distance and not sharing at least 80% recipro-
cal coverage with mouse enhancers (Villar et al. 2015) were
discarded.

Conservation analysis

The UCSC (Karolchik et al. 2004) phastConsElements60way
track was used to estimate transcript evolutionary conservation
(Supplemental Figs. S4, S20). This considers phastCons-conserved
elements generated using multiple alignments of 59 vertebrate ge-
nomes to the mouse GRCm38 genome. For each transcript, the
scores of the conserved elements are multiplied by the number
of overlapping bases and added. The total score is normalized by
the sum of the exon lengths.

The conservation analysis shown in Figure 2 was made with
the set of HQ spliced exons not overlapping GENCODE (M4) ex-
ons in any strand. The analysis was performed with deepTools
(v1.5.9.1) (Ramírez et al. 2014) and the 60-way phyloP (Pollard
et al. 2010) conservation bigWig (mm10.60way.phyloP60way.
bw) available from UCSC. deepTools was run with the option –

binSize 1 to measure the conservation with 1 nucleotide resolu-
tion. To reduce the redundancy of the data set and avoid double
counting, the coordinates of overlapping exons were collapsed
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with BEDTools2 merge (Quinlan and Hall 2010) (v2.22.1) to the
leftmost and rightmost positions. The promoter conservation
analysis shown in Supplemental Figure S25 was made with
deepTools (v1.5.9.1) together with the phyloP 60-way conserva-
tion bigWig, 10-nt bin resolution and showing an interval of 1
kb (±500 bp around the TSSs).

Coding potential analysis of HQ exons originating

from spliced transcripts

The maximum ORF size of HQ exons derived from spliced tran-
scripts was estimated with CPAT. In Figure 2A and B, exons are la-
beled as coding if the ORF covers at least 70% of their sequence.
Exons aremarked as noncoding if the ORF covers <20% of their se-
quence. ORFs covering between 20% and 70% of the exon se-
quences are not shown. Figure 2C shows three groups of exons
based on evolutionary conservation. The medians of the ORF cov-
erage of the exons in these groupsweremeasured usingCPATmax-
imum ORF size predictions.

Selection on HQ genes starting upstream of the previous

annotation

The selection of HQ genes corresponding to annotated genes but
showing an upstream start consider multiple steps. First, the coor-
dinates of GENCODE (M4) genes overlapping on the same strand
were collapsed into single units. Next, the HQ genes overlapping
one-to-one with either GENCODE (M4) genes or collapsed blocks
and starting at least 400 nt upstream were selected. By doing the
gene bridging, two or more separate GENCODE (M4) genes were
discarded. Finally, the exon coordinates were compared to make
sure that there is a match between HQ exons and previous exons.

Mouse ENCODE data processing

We use the following RNA polymerase II ChIP-seq data sets down-
loaded from the Mouse ENCODE portal (http://hgdownload.cse.
ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeLicrTfbs/): cer-
ebellum, cortex, heart, kidney, liver, olfactory bulb, testis, and
whole brain. This is combined with EP300 ChIP-seq from heart
and the Input samples. DHS data sets were downloaded from
the Mouse ENCODE portal (http://hgdownload.cse.ucsc.edu/
goldenPath/mm9/encodeDCC/wgEncodeUwDnase): brain, cere-
bellum, heart, kidney, and liver. In both cases, reads were re-
mapped to the GRCm38 assembly with Bowtie 2 (–very-sensitive
option set) (Langmead et al. 2009). We aligned a total of 76 sam-
ples. Alignments from multiple samples corresponding to the
same tissue were merged together and transformed to bigWig for-
mat. The ChIP-seq samples were scaled by library size and Input
subtracted using bigwigCompare in the deepTools package
(Ramírez et al. 2014).

Figure 4 demonstrates theChIP-seq scaled and Input subtract-
ed scores for the HQ genes starting upstream of the previous anno-
tations. The panels in Figure 4A represent the mean ChIP-seq
scores, in which each panel refers to a different tissue. The light
gray slopes indicate all the HQ genes starting upstream of the pre-
vious annotations. The dark gray slopes represent tissue-specific
subsets, including just the genes expressed with at least 5 FPKM
in each specific tissue. In Figure 4B, the curve showsmedian score.
In this case, each gene contributes just with the score of the tissue
where it is best expressed (highest FPKM).

Similarly, Supplemental Figure S15 shows the DHS support of
theHQgenes starting upstreamof the previous annotations. In (a),
each panel represents a different tissue. The purple slopes repre-
sent mean DHS values for all the HQ genes starting upstream of
previous annotations. The orange curves represent tissue-specific

subsets, including for each tissue just the genes expressed with at
least five FPKMs. The curve shown in (b) represents the median
DHS scores, in which each gene contributes with the DHS score
of the tissue where it is best expressed (highest FPKM).

Two brain RNA-seq replicates (GEO accession GSM1000572)
were downloaded from http://hgdownload.cse.ucsc.edu/
goldenPath/mm9/encodeDCC/wgEncodeCshlLongRnaSeq, and
the reads were aligned to the mouse GRCm38 genome using
TopHat2, (version 2.0.13; –no-coverage-search; –b2-sensitive) in
combination with a prebuilt transcriptome index generated using
GENCODE annotations (M4, released December 3, 2014).

LncRNA expression sensitivity analysis

In Supplemental Figure S24, the two brain RNA-seq libraries (GEO
accessionGSM1000572) were used to compare the lncRNA expres-
sion sensitivity. To define the lncRNA gene set, the HQ transcript
models corresponding toGENCODEM4 lncRNAswere selected us-
ing BEDTools2 intersect (version 2.25.0) (Quinlan and Hall 2010)
with options “-split -s -F 0.8” (requiring at least 80% overlap be-
tween the GENCODE lncRNA and the HQ model and the same
strand). The genes of the selected transcripts were represented as
dots in Supplemental Figure S24. The expression readout was esti-
mated usingHTSeq count (version 0.6.1) gene counts addedwith 1
pseudo count, normalized by the total reads mapped by TopHat2,
and natural logarithm transformed.

CAGE support analyses

Permissive FANTOM (The FANTOM Consortium and the RIKEN
PMI and CLST [DGT] 2014) CAGE peaks were downloaded from
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/.
The genomic coordinates were recomputed for the GRCm38 as-
sembly using liftOver (Kuhn et al. 2013). We assessed whether
the observed overlap between new transcription sites and CAGE
peaks would be achievable by chance. Hence, we select a nonre-
dundant HQ transcription start site (TSS) set. If two or more tran-
script start sites map at least 50 nt from each other, only the
isoform with the highest FPKM was considered. Additionally, we
discarded all TSSs mapping on the same orientation and within
400 nt from GENCODE TSSs. We randomly projected the TSS co-
ordinates to the mouse genome 1000 times utilizing BEDTools2
shuffle (Quinlan and Hall 2010) (v2.22.1), excluding the gap re-
gions, the random chromosomes, the unplaced contigs, and the
mitochondrial chromosome. The overlap between the CAGE
peaks and the selected genomic areas was performed with
BEDTools2 window (v2.22.1) reporting just the overlaps on the
same strand and within an area of 200 nt.

Selection of brain enriched/depleted HQ genes

and GO analysis

In this analysis, we considered the HQ genes enriched in the brain
tissues (brain, cortex, cerebellum, and olfactory bulb) versus the
nonbrain ones (heart, liver, kidney, and testes). Expression was
measured with Cuffquant/Cuffnorm (Trapnell et al. 2012). We se-
lected the HQ genes with a log2 fold change brain/nonbrain of the
median FPKM above 2 (Equation 1) as follows:

log2
Mb
Ma

( )
. 2FPKM, (1)

where Mb and Ma represent, respectively, the median FPKM in
brain and nonbrain tissues. The HQ genes with median FPKM be-
low 2 in both the brain and nonbrain tissues were not considered
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in this analysis. For each of the remaining HQ genes, we collected
the identifiers of the overlapping RefSeq gene when available, or
the closest RefSeq genes mapping on the 3′ and on the 5′. The
list of RefSeq identifiers was converted to Entrez-ids and evaluated
for GO biological process term enrichment with R 3.1.2 using the
library GOstats 2.32 and the R Bioconductor genomewide mouse
annotations from package org.Mm.eg.db (version 3.0.0) (Falcon
and Gentleman 2007; R Core Team 2014). The results were sorted
by P-value, and the top 20 terms are shown. Each term is shown in
a color scale representing the Benjamini-Hochberg multiple test-
ing adjusted P-value (Benjamini and Hochberg 1995).

Data access

The RNA-seq data from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE72311 and to the
NCBI BioProject (https://www.ncbi.nlm.nih.gov/bioproject/) un-
der accession number PRJNA293710.
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